Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,807)

Search Parameters:
Keywords = conservation ecology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1663 KiB  
Article
First Detection and Molecular Identification of Rhabditis (Rhabditella) axei from the Chinese Red Panda (Ailurus styani)
by Chanjuan Yue, Wanjing Yang, Dunwu Qi, Mei Yang, James Edward Ayala, Yanshan Zhou, Chao Chen, Xiaoyan Su, Rong Hou and Songrui Liu
Pathogens 2025, 14(8), 783; https://doi.org/10.3390/pathogens14080783 - 6 Aug 2025
Abstract
Rhabditis (Rhabditella) axei is a predominantly free-living nematode commonly found in sewage systems and decomposing organic matter. While primarily saprophytic, it has been documented as an opportunistic pathogen in human urinary and gastrointestinal tracts. The Chinese red panda (Ailurus styani [...] Read more.
Rhabditis (Rhabditella) axei is a predominantly free-living nematode commonly found in sewage systems and decomposing organic matter. While primarily saprophytic, it has been documented as an opportunistic pathogen in human urinary and gastrointestinal tracts. The Chinese red panda (Ailurus styani), a rare and protected species in China, has not previously been reported as a host for Rhabditis (Rhabditella) spp. infections. This study reports the first documented occurrence of R. axei in red panda feces, unambiguously confirmed through integrative taxonomic approaches combining morphological and molecular analyses. The nematodes exhibited key morphological features consistent with R. axei, including a cylindrical rhabditiform esophagus, sexually dimorphic tail structures, and diagnostic spicule morphology. Molecular analysis based on 18S-ITS-28S rDNA sequencing confirmed their identity, showing >99% sequence similarity to R. axei reference strains (GenBank: PP135624.1, PP135622.1). Phylogenetic reconstruction using 18S rDNA and ITS rDNA sequences placed the isolate within a well-supported R. axei clade, clearly distinguishing it from related species such as R. blumi and R. brassicae. The findings demonstrate the ecological plasticity of R. axei as a facultative parasite capable of infecting non-traditional hosts and further highlight potential zoonotic risks associated with environmental exposure in captive wildlife populations. Our results emphasize the indispensable role of molecular diagnostics in accurately distinguishing morphologically similar nematodes within the Rhabditidae family, while providing essential baseline data for health monitoring in both in situ and ex situ conservation programs for this endangered species. Full article
Show Figures

Figure 1

28 pages, 5190 KiB  
Article
Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China
by Weifeng Jiang and Lin Lu
Land 2025, 14(8), 1604; https://doi.org/10.3390/land14081604 - 6 Aug 2025
Abstract
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in [...] Read more.
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in Zhejiang Province, China, as a case study, with the research objective of exploring the processes, patterns, and mechanisms of the coevolution between ecosystem services (ES) and human well-being (HWB) in ecotourism-dominated counties. By integrating multi-source heterogeneous data, including land use data, the normalized difference vegetation index (NDVI), and statistical records, and employing methods such as the dynamic equivalent factor method, the PLUS model, the coupling coordination degree model, and comprehensive evaluation, we analyzed the synergistic evolution of ES-HWB in Chun’an County from 2000 to 2020. The results indicate that (1) the ecosystem service value (ESV) fluctuated between 30.15 and 36.85 billion CNY, exhibiting a spatial aggregation pattern centered on the Qiandao Lake waterbody, with distance–decay characteristics. The PLUS model confirms ecological conservation policies optimize ES patterns. (2) The HWB index surged from 0.16 to 0.8, driven by tourism-led economic growth, infrastructure investment, and institutional innovation, facilitating a paradigm shift from low to high well-being at the county level. (3) The ES-HWB interaction evolved through three phases—disordered, antagonism, and coordination—revealing tourism as a key mediator driving coupled human–environment system sustainability via a pressure–adaptation–synergy transmission mechanism. This study not only advances the understanding of ES-HWB coevolution in ecotourism-dominated counties, but also provides a transferable methodological framework for sustainable development in similar regions. Full article
Show Figures

Figure 1

22 pages, 10285 KiB  
Article
Biophysical and Social Constraints of Restoring Ecosystem Services in the Border Regions of Tibet, China
by Lizhi Jia, Silin Liu, Xinjie Zha and Ting Hua
Land 2025, 14(8), 1601; https://doi.org/10.3390/land14081601 - 6 Aug 2025
Abstract
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with [...] Read more.
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with scenario analysis to quantify the ecosystem service potential that could be achieved in China’s Tibetan borderlands under two interacting agendas: ecological restoration and border-strengthening policies. Restoration feasibility was evaluated through combining local biophysical constraints, economic viability (via restoration-induced carbon gains vs. opportunity costs), operational practicality, and simulated infrastructure expansion. The results showed that per-unit-area ecosystem services in border counties (particularly Medog, Cona, and Zayu) exceed that of interior Tibet by a factor of two to four. Combining these various constraints, approximately 4–17% of the border zone remains cost-effective for grassland or forest restoration. Under low carbon pricing (US$10 t−1 CO2), the carbon revenue generated through restoration is insufficient to offset the opportunity cost of agricultural production, constituting a major constraint. Habitat quality, soil conservation, and carbon sequestration increase modestly when induced by restoration, but a pronounced carbon–water trade-off emerges. Planned infrastructure reduces restoration benefits only slightly, whereas raising the carbon price to about US$50 t−1 CO2 substantially expands such benefits. These findings highlight both the opportunities and limits of ecosystem restoration in border regions and point to carbon pricing as the key policy lever for unlocking cost-effective restoration. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Rural Development Outcomes)
Show Figures

Figure 1

14 pages, 7789 KiB  
Article
Integrated Sampling Approaches Enhance Assessment of Saproxylic Beetle Biodiversity in a Mediterranean Forest Ecosystem (Sila National Park, Italy)
by Federica Mendicino, Francesco Carlomagno, Domenico Bonelli, Erica Di Biase, Federica Fumo and Teresa Bonacci
Insects 2025, 16(8), 812; https://doi.org/10.3390/insects16080812 - 6 Aug 2025
Abstract
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase [...] Read more.
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase the detection of species with varying ecological traits. We evaluated the effectiveness of integrative sampling methodologies to assess saproxylic beetle diversity within Sila National Park, a Mediterranean forest ecosystem of high conservation value, specifically in two beech forests and four pine forests. The sampling methods tested included Pan Traps (PaTs), Malaise Traps (MTs), Pitfall Traps (PTs), Bait Bottle Traps (BBTs), and Visual Census (VC). All specimens were identified to the species level whenever possible, using specialized dichotomous keys and preserved in the Entomological Collection TB, Unical. Various trap types captured a different number of species: the PaT collected 32 species, followed by the PT with 24, the MT with 16, the VC with 7, and the BBT with 5 species. Interestingly, biodiversity analyses conducted using PAST software version 4.17 revealed that PaTs and MTs recorded the highest biodiversity indices. The GLMM analysis, performed using SPSS software 29.0.1.0, demonstrated that various traps attracted different species with different abundances. By combining multiple trapping techniques, we documented a more comprehensive community composition compared to single-method approaches. Moreover, PaTs, MTs, and PTs recorded 20%, 40%, and 33% of the Near Threatened species, respectively. We report new records for Sila National Park, including the LC species Pteryngium crenulatum (Curculionidae) and the NT species Grynocharis oblonga (Trogossitidae). For the first time in Calabria, the LC species Triplax rufipes (Erotylidae) and the NT species Oxypleurus nodieri (Cerambycidae) and Glischrochilus quadrisignatus (Nitidulidae) were collected. Our results emphasize the importance of method diversity in capturing species with distinct ecological requirements and highlight the relevance of saproxylic beetles as indicators of forest health. These findings support the adoption of multi-method sampling protocols in forest biodiversity monitoring and management programs, especially in biodiversity-rich and structurally heterogeneous landscapes. Full article
Show Figures

Figure 1

20 pages, 876 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Urban Ecological Resilience: Evidence from the Yellow River Basin, China
by Zhongjie Zhang and Yu Wu
Sustainability 2025, 17(15), 7114; https://doi.org/10.3390/su17157114 - 6 Aug 2025
Abstract
Improving the ecological resilience in the Yellow River Basin is a crucial way to achieve ecological conservation and high-quality development in the region. Based on the panel data from 2011 to 2023 of 57 cities in the Yellow River Basin, the ecological resilience [...] Read more.
Improving the ecological resilience in the Yellow River Basin is a crucial way to achieve ecological conservation and high-quality development in the region. Based on the panel data from 2011 to 2023 of 57 cities in the Yellow River Basin, the ecological resilience of each city was measured by using the Catastrophe Progression Model, and its spatial differences and dynamic evolution characteristics were analyzed by the Dagum Gini coefficient and kernel density estimation. At the same time, the STIRPAT model was integrated with the random forest model to identify the key factors influencing urban ecological resilience. The results demonstrated the following: (1) The urban ecological resilience in the Yellow River Basin exhibited a slight upward trend during 2011–2020 and presented a gradient spatial pattern with “high in the east and low in the west”. (2) Hypervariation density is the main source of spatial difference in urban ecological resilience, with trailing and polarization phenomena across the entire basin and its three major subregions. (3) There was significant regional heterogeneity of influences in the urban ecological resilience, with upstream, midstream, and downstream regions characterized by low interference intensity, high sensitivity, and strong adaptability, respectively. Full article
Show Figures

Figure 1

15 pages, 7500 KiB  
Article
Large-Scale Spatiotemporal Patterns of Burned Areas and Fire-Driven Mortality in Boreal Forests (North America)
by Wendi Zhao, Qingchen Zhu, Qiuling Chen, Xiaohan Meng, Kexu Song, Diego I. Rodriguez-Hernandez, Manuel Esteban Lucas-Borja, Demetrio Antonio Zema, Tong Zhang and Xiali Guo
Forests 2025, 16(8), 1282; https://doi.org/10.3390/f16081282 - 6 Aug 2025
Abstract
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically [...] Read more.
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically within the vast North American boreal forest, as previous studies have predominantly focused on Mediterranean and tropical forests. Therefore, in this study, we used satellite observation data obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra MCD64A1 and related database data to study the spatial and temporal variability in burned area and forest mortality due to wildfires in North America (Alaska and Canada) over an 18-year period (2003 to 2020). By calculating the satellite reflectance data before and after the fire, fire-driven forest mortality is defined as the ratio of the area of forest loss in a given period relative to the total forest area in that period, i.e., the area of forest loss divided by the total forest area. Our findings have shown average values of burned area and forest mortality close to 8000 km2/yr and 40%, respectively. Burning and tree loss are mainly concentrated between May and September, with a corresponding temporal trend in the occurrence of forest fires and high mortality. In addition, large-scale forest fires were primarily concentrated in Central Canada, which, however, did not show the highest forest mortality (in contrast to the results recorded in Northern Canada). Critically, based on generalized linear models (GLMs), the results showed that fire size and duration, but not the burned area, had significant effects on post-fire forest mortality. Overall, this study shed light on the most sensitive forest areas and time periods to the detrimental effects of forest wildfire in boreal forests of North America, highlighting distinct spatial and temporal vulnerabilities within the boreal forest and demonstrating that fire regimes (size and duration) are primary drivers of ecological impact. These insights are crucial for refining models of boreal forest carbon dynamics, assessing ecosystem resilience under changing fire regimes, and informing targeted forest management and conservation strategies to mitigate wildfire impacts in this globally significant biome. Full article
(This article belongs to the Special Issue Forest Disturbance and Management)
Show Figures

Figure 1

10 pages, 1248 KiB  
Brief Report
From Nest to Nest: High-Precision GPS-GSM Tracking Reveals Full Natal Dispersal Process in a First-Year Female Montagu’s Harrier Circus pygargus
by Giampiero Sammuri, Guido Alari Esposito, Marta De Paulis, Francesco Pezzo, Andrea Sforzi and Flavio Monti
Birds 2025, 6(3), 40; https://doi.org/10.3390/birds6030040 - 6 Aug 2025
Abstract
This report presents the first complete natal dispersal trajectory of a female Montagu’s Harrier Circus pygargus, tracked in real time from fledging to first breeding using high-resolution continuous Global Positioning System (GPS) telemetry. The bird’s first flight occurred on 26 July 2024, [...] Read more.
This report presents the first complete natal dispersal trajectory of a female Montagu’s Harrier Circus pygargus, tracked in real time from fledging to first breeding using high-resolution continuous Global Positioning System (GPS) telemetry. The bird’s first flight occurred on 26 July 2024, initiating a 31-day post-fledging dependence phase (PFDP), followed by a 23-day pre-migratory phase (PMP), during which it explored areas up to 280.8 km from the nest and eventually settled ca. 190 km away in the Sirente-Velino Regional Park. From there, autumn migration began on 18 September 2024. The bird reached its first wintering site in Mali by 15 October. It used four wintering areas over 178 days, with a winter home range of 37,615.02 km2. Spring migration started on 11 April 2025 and lasted 21 days, ending with arrival in the Gran Sasso e Monti della Laga National Park (Central Italy) on 2 May. The bird used two main sites during the pre-breeding phase (PRBP) before laying eggs on 2 June 2025. The natal dispersal distance, from birthplace to nest site, was 151.28 km. Over 311 days, it covered a total of 14,522.23 km. These findings highlight the value of advanced telemetry in revealing early-life movement ecology and are useful for understanding species-specific patterns of survival, reproduction, and space use and can inform conservation actions. Full article
(This article belongs to the Special Issue Unveiling the Breeding Biology and Life History Evolution in Birds)
Show Figures

Figure 1

14 pages, 2957 KiB  
Article
Histochemical Study of Enzyme Activity in the Digestive Tract of the Small-Spotted Catshark (Scyliorhinus canicula) and the Smooth-Hound (Mustelus mustelus)
by Lucija Devčić, Ivan Vlahek, Magdalena Palić, Valerija Benko, Siniša Faraguna, Marin Lovrić, Damir Valić and Snježana Kužir
Fishes 2025, 10(8), 386; https://doi.org/10.3390/fishes10080386 - 6 Aug 2025
Abstract
The small-spotted catshark and the smooth-hound are cartilaginous, carnivorous fish with similar depth ranges in their habitats. These two species are among the most abundant elasmobranchs in the Adriatic Sea and are frequently caught by local fishermen using longline fishing. Despite their ecological [...] Read more.
The small-spotted catshark and the smooth-hound are cartilaginous, carnivorous fish with similar depth ranges in their habitats. These two species are among the most abundant elasmobranchs in the Adriatic Sea and are frequently caught by local fishermen using longline fishing. Despite their ecological similarities, little is known about the physiological differences in their digestive processes. The study of enzymatic digestion in these ecologically relevant species helps to fill the knowledge gap in the understanding of nutrient processing in cartilaginous fish. Therefore, the aim of this study was to determine, measure and compare the enzymatic activity of alkaline phosphatase, acid phosphatase, non-specific esterase and aminopeptidase. Fish were caught in the central part of the Adriatic Sea between 2021 and 2023. A total of 60 adult individuals were analyzed, with samples taken from six parts of the digestive tract. Histochemical analysis of 1440 slides revealed clear differences in enzyme activity between the two species. In the small-spotted catshark, cellular protein degradation was most pronounced in esophagus, posterior stomach and rectum, whereas in the smooth-hound, it was concentrated in posterior stomach and spiral intestine. Cellular digestion of lipids in the small-spotted catshark appears to occur primarily in the stomach. The results of this study provide new insights into the distribution of cellular digestive enzymes in cartilaginous fish and emphasize the importance of studying the entire digestive tract as an integrated system rather than focusing on individual parts. This study fills an important knowledge gap and contributes to a deeper understanding of digestive physiology, which in turn has implications for species conservation and biological variability. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Figure 1

19 pages, 4059 KiB  
Article
Vulnerability Assessment of Six Endemic Tibetan-Himalayan Plants Under Climate Change and Human Activities
by Jin-Dong Wei and Wen-Ting Wang
Plants 2025, 14(15), 2424; https://doi.org/10.3390/plants14152424 - 5 Aug 2025
Abstract
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed [...] Read more.
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed an improved Climate Niche Factor Analysis (CNFA) framework to assess the vulnerability of six representative alpine endemic herbaceous plants in this ecologically sensitive region under future climate changes. Our results show distinct spatial vulnerability patterns for the six species, with higher vulnerability in the western regions of the Tibetan-Himalayan region and lower vulnerability in the eastern areas. Particularly under high-emission scenarios (SSP5-8.5), climate change is projected to substantially intensify threats to these plant species, reinforcing the imperative for targeted conservation strategies. Additionally, we found that the current coverage of protected areas (PAs) within the species’ habitats was severely insufficient, with less than 25% coverage overall, and it was even lower (<7%) in highly vulnerable regions. Human activity hotspots, such as the regions around Lhasa and Chengdu, further exacerbate species vulnerability. Notably, some species currently classified as least concern (e.g., Stipa purpurea (S. purpurea)) according to the IUCN Red List exhibit higher vulnerability than species listed as near threatened (e.g., Cyananthus microphyllus (C. microphylla)) under future climate change. These findings suggest that existing biodiversity assessments, such as the IUCN Red List, may not adequately account for future climate risks, highlighting the importance of incorporating climate change projections into conservation planning. Our study calls for expanding and optimizing PAs, improving management, and enhancing climate resilience to mitigate biodiversity loss in the face of climate change and human pressures. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

24 pages, 34309 KiB  
Article
Assessing the Motile Fauna of Eastern Mediterranean Marine Caves
by Markos Digenis, Michail Ragkousis, Charalampos Dimitriadis, Stelios Katsanevakis and Vasilis Gerovasileiou
Fishes 2025, 10(8), 383; https://doi.org/10.3390/fishes10080383 - 5 Aug 2025
Abstract
Although marine caves are among the most species-diverse habitats in the Mediterranean Sea, most available studies have focused on their sessile fauna. This study provides the first quantitative assessment of motile fauna in 27 marine caves across four geographical subareas of the Aegean [...] Read more.
Although marine caves are among the most species-diverse habitats in the Mediterranean Sea, most available studies have focused on their sessile fauna. This study provides the first quantitative assessment of motile fauna in 27 marine caves across four geographical subareas of the Aegean and Ionian Seas, using a rapid assessment visual census protocol, applied through 3 min time transects in each ecological cave zone. Multivariate analysis revealed that the motile community structure of the cave entrance was differentiated from that of the semidark and dark zones. Deeper caves were distinct from shallower ones while caves of the east Aegean differed from those around Crete Island. A total of 163 taxa were recorded, 27 of which are reported herein for the first time in marine caves of the eastern Mediterranean Sea, while three species (two native and one introduced) are recorded in Greek waters for the first time, enriching our knowledge on the permanent and occasional cave residents. Seventeen species were introduced, comprising more than half of the total fish abundance in the southeasternmost cave. Our limited knowledge of the motile fauna of Mediterranean marine caves coupled with the continued spread of introduced species highlights the urgent need for monitoring and conservation actions, especially within marine protected areas. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

17 pages, 12216 KiB  
Article
Green/Blue Initiatives as a Proposed Intermediate Step to Achieve Nature-Based Solutions for Wildfire Risk Management
by Stella Schroeder and Carolina Ojeda Leal
Fire 2025, 8(8), 307; https://doi.org/10.3390/fire8080307 - 5 Aug 2025
Abstract
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To [...] Read more.
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To address these challenges, this exploratory study proposes a new concept: green/blue initiatives. These initiatives represent intermediate steps, encompassing small-scale, community-driven activities that can evolve into recognized NbSs over time. To explore this concept, experiences related to wildfire prevention in the Biobío region of Chile were analyzed through primary and secondary source reviews. The analysis identified three initiatives qualifying as green/blue initiatives: (1) goat grazing in Santa Juana to reduce fuel loads, (2) a restoration prevention farm model in Florida called Faro de Restauración Mahuidanche and (3) the Conservation Landscape Strategy in Nonguén. They were examined in detail using data collected from site visits and interviews. In contrast to Chile’s prevailing wildfire policies, which focus on costly, large-scale fire suppression efforts, these initiatives emphasize the importance of reframing wildfire as a manageable ecological process. Lastly, the challenges and enabling factors for adopting green/blue initiatives are discussed, highlighting their potential to pave the way for future NbS implementation in central Chile. Full article
(This article belongs to the Special Issue Nature-Based Solutions to Extreme Wildfires)
Show Figures

Figure 1

20 pages, 4989 KiB  
Article
Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
by Shimin Wei, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang and Xiaochen Guo
Agronomy 2025, 15(8), 1883; https://doi.org/10.3390/agronomy15081883 - 4 Aug 2025
Abstract
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical [...] Read more.
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical approach combining the InVEST model, ArcGIS geospatial processing, R software environment, and Optimal Parameter Geographical Detector (OPGD). The spatiotemporal patterns and driving factors of the interaction of four major ES functions in Hulunbuir area from 2000 to 2020 were studied. The research findings are as follows: (1) carbon storage (CS) and soil conservation (SC) services in the Hulunbuir region mainly show a distribution pattern of high values in the central and northeast areas, with low values in the west and southeast. Water yield (WY) exhibits a distribution pattern characterized by high values in the central–western transition zone and southeast and low values in the west. For forage supply (FS), the overall pattern is higher in the west and lower in the east. (2) The trade-off relationships between CS and WY, CS and SC, and SC and WY are primarily concentrated in the western part of Hulunbuir, while the synergistic relationships are mainly observed in the central and eastern regions. In contrast, the trade-off relationships between CS and FS, as well as FS and WY, are predominantly located in the central and eastern parts of Hulunbuir, with the intensity of these trade-offs steadily increasing. The trade-off relationship between SC and FS is almost widespread throughout HulunBuir. (3) Fractional vegetation cover, mean annual precipitation, and land use type were the primary drivers affecting ESs. Among these factors, fractional vegetation cover demonstrates the highest explanatory power, with a q-value between 0.6 and 0.9. The slope and population density exhibit relatively weak explanatory power, with q-values ranging from 0.001 to 0.2. (4) The interactions between factors have a greater impact on the inter-relationships of ESs in the Hulunbuir region than individual factors alone. The research findings have facilitated the optimization and sustainable development of regional ES, providing a foundation for ecological conservation and restoration in Hulunbuir. Full article
Show Figures

Figure 1

23 pages, 4629 KiB  
Article
Bryophytes of the Serra dos Órgãos National Park: Endemism and Conservation in the Atlantic Forest
by Jéssica Soares de Lima, Allan Laid Alkimim Faria, Mateus Tomás Anselmo Gonçalves and Denilson Fernandes Peralta
Plants 2025, 14(15), 2419; https://doi.org/10.3390/plants14152419 - 4 Aug 2025
Abstract
This study presents a comprehensive inventory of bryophytes in Serra dos Órgãos National Park (PARNASO), aiming to evaluate species richness, floristic composition and threatened taxa. Despite the state of Rio de Janeiro being one of the most extensively sampled regions for bryophytes in [...] Read more.
This study presents a comprehensive inventory of bryophytes in Serra dos Órgãos National Park (PARNASO), aiming to evaluate species richness, floristic composition and threatened taxa. Despite the state of Rio de Janeiro being one of the most extensively sampled regions for bryophytes in Brazil, detailed surveys of its conservation units remain scarce. Data were obtained through bibliographic review, herbarium specimen analysis, and new field collections. A total of 504 species were recorded, belonging to 202 genera and 76 families. The park harbors three locally endemic species, eight endemic to Rio de Janeiro, and sixty-nine species endemic to Brazil. Additionally, eleven species were identified as threatened, comprising seven Endangered (EN), two Critically Endangered (CR), and two Vulnerable (VU) according to the IUCN guidelines. PARNASO includes four distinct ecosystems along an altitudinal gradient: sub-montane forest (up to 500 m), montane forest (500–1500 m), upper-montane forest (1500–2000 m), and high-altitude fields (above 2000 m). Montane Forest showed the highest species richness, followed by high-altitude fields, upper-montane forest, and sub-montane forest. The findings highlight PARNASO’s importance in preserving bryophyte diversity in a highly diverse yet understudied region. This work contributes valuable baseline data to support conservation strategies and future ecological studies in Atlantic Forest remnants. Full article
(This article belongs to the Special Issue Diversity, Distribution and Conservation of Bryophytes)
Show Figures

Figure 1

31 pages, 2983 KiB  
Review
Sustainable Management of Willow Forest Landscapes: A Review of Ecosystem Functions and Conservation Strategies
by Florin Achim, Lucian Dinca, Danut Chira, Razvan Raducu, Alexandru Chirca and Gabriel Murariu
Land 2025, 14(8), 1593; https://doi.org/10.3390/land14081593 - 4 Aug 2025
Abstract
Willow stands (Salix spp.) are an essential part of riparian ecosystems, as they sustain biodiversity and provide bioenergy solutions. The present review synthesizes the global scientific literature about the management of willow stands. In order to achieve this goal, we used a [...] Read more.
Willow stands (Salix spp.) are an essential part of riparian ecosystems, as they sustain biodiversity and provide bioenergy solutions. The present review synthesizes the global scientific literature about the management of willow stands. In order to achieve this goal, we used a dual approach combining bibliometric analysis with traditional literature review. As such, we consulted 416 publications published between 1978 and 2024. This allowed us to identify key species, ecosystem services, conservation strategies, and management issues. The results we have obtained show a diversity of approaches, with an increase in short-rotation coppice (SRC) systems and the multiple roles covered by willow stands (carbon sequestration, biomass production, riparian restoration, and habitat provision). The key trends we have identified show a shift toward topics such as climate resilience, ecological restoration, and precision forestry. This trend has become especially pronounced over the past decade (2014–2024), as reflected in the increasing use of these keywords in the literature. However, as willow systems expand in scale and function—from biomass production to ecological restoration—they also raise complex challenges, including invasive tendencies in non-native regions and uncertainties surrounding biodiversity impacts and soil carbon dynamics over the long term. The present review is a guide for forest policies and, more specifically, for future research, linking the need to integrate and use adaptive strategies in order to maintain the willow stands. Full article
Show Figures

Figure 1

23 pages, 3221 KiB  
Article
Drought Modulates Root–Microbe Interactions and Functional Gene Expression in Plateau Wetland Herbaceous Plants
by Yuanyuan Chen, Shishi Feng, Qianmin Liu, Di Kang and Shuzhen Zou
Plants 2025, 14(15), 2413; https://doi.org/10.3390/plants14152413 - 4 Aug 2025
Viewed by 20
Abstract
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still [...] Read more.
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still know little about this phenomenon. In this context, nine typical wetlands with three different moisture statuses were selected from the eastern Tibetan Plateau in this study to analyze the relationships among herbaceous plant root traits and microbial communities and functions. The results revealed that drought significantly inhibited the accumulation of root biomass and surface area as well as the development of root volumes and diameters. Similarly, drought significantly reduced the diversity of ectorhizosphere soil microbial communities and the relative abundances of key phyla of archaea and bacteria. Redundancy analysis revealed that plant root traits and ectorhizosphere soil microbes were equally regulated by soil physicochemical properties. Functional genes related to carbohydrate metabolism were significantly associated with functional traits related to plant root elongation and nutrient uptake. Functional genes related to carbon and energy metabolism were significantly associated with traits related to plant root support and storage. Key genes such as CS,gltA, and G6PD,zwf help to improve the drought resistance and barrenness resistance of plant roots. This study helps to elucidate the synergistic mechanism of plant and soil microbial functions in plateau wetlands under drought stress, and provides a basis for evolutionary research and conservation of wetland ecosystems in the context of global change. Full article
(This article belongs to the Special Issue Soil-Beneficial Microorganisms and Plant Growth: 2nd Edition)
Show Figures

Figure 1

Back to TopTop