Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (176)

Search Parameters:
Keywords = connected and automated driving

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1393 KiB  
Article
A Proactive Collision Avoidance Model for Connected and Autonomous Vehicles in Mixed Traffic Flow
by Guojing Hu, Kun Li, Weike Lu, Ouchan Chen, Chuan Sun and Yuanqi Zhao
World Electr. Veh. J. 2025, 16(7), 394; https://doi.org/10.3390/wevj16070394 - 14 Jul 2025
Viewed by 122
Abstract
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive [...] Read more.
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive collision avoidance model, aiming to avoid collisions by controlling the speed and lane-changing behavior of CAVs. In the model, the subject vehicle first collects information about surrounding lanes and judges the traffic conditions; it then chooses to decelerate or change lanes to avoid collisions. The subject vehicle also searches for the optimal vehicle in the surrounding lanes for cooperation. The effectiveness of the proposed collision avoidance model is verified through the Python-SUMO platform. The experimental results show that the performance of the collision avoidance model is better than that of the cooperative adaptive cruise control (CACC) model in terms of average speed, lost time and the number of vehicle conflicts, proving the advantages of the proposed model in safety and efficiency. Full article
(This article belongs to the Special Issue Modeling for Intelligent Vehicles)
Show Figures

Figure 1

19 pages, 26419 KiB  
Article
Pulse–Glide Behavior in Emerging Mixed Traffic Flow Under Sensor Accuracy Variations: An Energy-Safety Perspective
by Mengyuan Huang, Jinjun Sun, Honggang Li and Qiqi Miao
Sensors 2025, 25(13), 4189; https://doi.org/10.3390/s25134189 - 5 Jul 2025
Viewed by 275
Abstract
Pulse and Glide (PnG), as a fuel-saving technique, has primarily been applied to manual transmission vehicles. So, its effectiveness when integrated with a novel vehicle type like connected and automated vehicles (CAVs) remains largely unexplored. On the other hand, CAVs have evidently received [...] Read more.
Pulse and Glide (PnG), as a fuel-saving technique, has primarily been applied to manual transmission vehicles. So, its effectiveness when integrated with a novel vehicle type like connected and automated vehicles (CAVs) remains largely unexplored. On the other hand, CAVs have evidently received less attention regarding energy conservation, and their prominent perception capabilities clearly exhibit individual variations. In light of this, this study investigates the impacts of PnG combined with CAVs on energy conservation and safety within the emerging mixed traffic flow composed of CAVs with varying sensing accuracies. The results indicate the following: (i) compared to the traditional driving modes, the PnG can achieve a maximum fuel-saving rate of 39.53% at Fuel Consumption with Idle (FCI), reducing conflicts by approximately 30% on average; (ii) CAVs, equipped with sensors boasting a greater detection range, markedly enhance safety during vehicle operation and contribute to a more uniform distribution of individual fuel consumption; (iii) PnG modes with moderate acceleration, such as 1–2 m/s2, can achieve excellent fuel consumption while ensuring safety and may even slightly enhance the operational efficiency of the intersection. The findings could provide a theoretical reference for the transition of transportation systems toward sustainability. Full article
Show Figures

Figure 1

39 pages, 1839 KiB  
Review
The Integration of the Internet of Things (IoT) Applications into 5G Networks: A Review and Analysis
by Aymen I. Zreikat, Zakwan AlArnaout, Ahmad Abadleh, Ersin Elbasi and Nour Mostafa
Computers 2025, 14(7), 250; https://doi.org/10.3390/computers14070250 - 25 Jun 2025
Cited by 1 | Viewed by 1051
Abstract
The incorporation of Internet of Things (IoT) applications into 5G networks marks a significant step towards realizing the full potential of connected systems. 5G networks, with their ultra-low latency, high data speeds, and huge interconnection, provide a perfect foundation for IoT ecosystems to [...] Read more.
The incorporation of Internet of Things (IoT) applications into 5G networks marks a significant step towards realizing the full potential of connected systems. 5G networks, with their ultra-low latency, high data speeds, and huge interconnection, provide a perfect foundation for IoT ecosystems to thrive. This connectivity offers a diverse set of applications, including smart cities, self-driving cars, industrial automation, healthcare monitoring, and agricultural solutions. IoT devices can improve their reliability, real-time communication, and scalability by exploiting 5G’s advanced capabilities such as network slicing, edge computing, and enhanced mobile broadband. Furthermore, the convergence of IoT with 5G fosters interoperability, allowing for smooth communication across diverse devices and networks. This study examines the fundamental technical applications, obstacles, and future perspectives for integrating IoT applications with 5G networks, emphasizing the potential benefits while also addressing essential concerns such as security, energy efficiency, and network management. The results of this review and analysis will act as a valuable resource for researchers, industry experts, and policymakers involved in the progression of 5G technologies and their incorporation with IT solutions. Full article
Show Figures

Figure 1

20 pages, 1369 KiB  
Article
Analysis of the Impact for Mixed Traffic Flow Based on the Time-Varying Model Predictive Control
by Rongjun Cheng, Haoli Lou and Qi Wei
Systems 2025, 13(6), 481; https://doi.org/10.3390/systems13060481 - 17 Jun 2025
Viewed by 344
Abstract
The connected and automated vehicles (CAV) smoothing mixed traffic flow has gained attention, and a thorough assessment of these control algorithms is necessary. Our previous research proposed the time-varying model predictive control (TV-MPC) strategy, which considers the time-varying driving style of human driven [...] Read more.
The connected and automated vehicles (CAV) smoothing mixed traffic flow has gained attention, and a thorough assessment of these control algorithms is necessary. Our previous research proposed the time-varying model predictive control (TV-MPC) strategy, which considers the time-varying driving style of human driven vehicles (HDV), performing better than current baseline models. Due TV-MPC can be applied to any traffic congestion scenario and the dynamic modeling that considers driving style, can be easily transferred to other control algorithms. Thus, TV-MPC enable to represent typical control algorithms in mixed traffic flow. This study investigates the performance of TV-MPC under diverse disturbance characteristics and mixed platoons. Firstly, quantifying mixed traffic flow with different CAV penetration rates and platooning intensities by a Markov chain model. Secondly, by constructing evaluation indicators for micro-level operation of mixed traffic flow, this paper analyzed the impact of TV-MPC on the operation of mixed traffic flow through simulation. The results demonstrate that (1) CAV achieve optimal control at specific positions within mixed traffic flow; (2) higher CAV penetration enhances TV-MPC performance; (3) dispersed CAV distributions improve control effectiveness; and (4) TV-MPC excels in scenarios with significant disturbances. Full article
Show Figures

Figure 1

13 pages, 904 KiB  
Article
An Integrated Traffic and Powertrain Simulation Framework to Evaluate Fuel Efficiency Impacts of Fully and Partial Vehicle Automation
by Yicheng Fu and Yuche Chen
Sustainability 2025, 17(12), 5527; https://doi.org/10.3390/su17125527 - 16 Jun 2025
Viewed by 259
Abstract
The assessment of energy impacts associated with autonomous vehicles must extend beyond individual vehicle analysis to encompass mixed fleets with varying degrees of automation. This study presents an integrated simulation framework designed to evaluate fuel efficiency improvements resulting from both full and partial [...] Read more.
The assessment of energy impacts associated with autonomous vehicles must extend beyond individual vehicle analysis to encompass mixed fleets with varying degrees of automation. This study presents an integrated simulation framework designed to evaluate fuel efficiency improvements resulting from both full and partial vehicle automation across diverse road types and vehicle categories. By coupling traffic microsimulation with detailed powertrain modeling, the framework captures the intricate interdependencies between automation levels and energy consumption. A comprehensive analysis reveals the complex interactions among powertrain architectures, automation levels, and driving environments in both urban and highway contexts. Results indicate that the increased penetration of Connected and Autonomous Vehicles (CAVs) is generally associated with improved energy efficiency across a range of vehicle technologies. These findings offer critical insights into the broader implications of CAV adoption on energy consumption, emphasizing the nuanced dynamics between vehicle heterogeneity and traffic conditions. Full article
Show Figures

Figure 1

65 pages, 2739 KiB  
Systematic Review
Brain-Inspired Multisensory Learning: A Systematic Review of Neuroplasticity and Cognitive Outcomes in Adult Multicultural and Second Language Acquisition
by Evgenia Gkintoni, Stephanos P. Vassilopoulos and Georgios Nikolaou
Biomimetics 2025, 10(6), 397; https://doi.org/10.3390/biomimetics10060397 - 12 Jun 2025
Viewed by 1535
Abstract
Background: Multicultural education and second-language acquisition engaged neural networks, supporting executive function, memory, and social cognition in adulthood, represent powerful forms of brain-inspired multisensory learning. The neuroeducational framework integrates neuroscience with pedagogical practice to understand how linguistically and culturally rich environments drive neuroplasticity [...] Read more.
Background: Multicultural education and second-language acquisition engaged neural networks, supporting executive function, memory, and social cognition in adulthood, represent powerful forms of brain-inspired multisensory learning. The neuroeducational framework integrates neuroscience with pedagogical practice to understand how linguistically and culturally rich environments drive neuroplasticity and cognitive adaptation in adult learners. Objective: This systematic review synthesizes findings from 80 studies examining neuroplasticity and cognitive outcomes in adults undergoing multicultural and second-language acquisition, focusing on underlying neural mechanisms and educational effectiveness. Methods: The analysis included randomized controlled trials and longitudinal studies employing diverse neuroimaging techniques (fMRI, MEG, DTI) to assess structural and functional brain network changes. Interventions varied in terms of immersion intensity (ranging from limited classroom contact to complete environmental immersion), multimodal approaches (integrating visual, auditory, and kinesthetic elements), feedback mechanisms (immediate vs. delayed, social vs. automated), and learning contexts (formal instruction, naturalistic acquisition, and technology-enhanced environments). Outcomes encompassed cognitive domains (executive function, working memory, attention) and socio-emotional processes (empathy, cultural adaptation). Results: Strong evidence demonstrates that multicultural and second-language acquisition induce specific neuroplastic adaptations, including enhanced connectivity between language and executive networks, increased cortical thickness in frontal–temporal regions, and white matter reorganization supporting processing efficiency. These neural changes are correlated with significant improvements in working memory, attentional control, and cognitive flexibility. Immersion intensity, multimodal design features, learning context, and individual differences, including age and sociocultural background, moderate the effectiveness of interventions across adult populations. Conclusions: Adult multicultural and second-language acquisition represents a biologically aligned educational approach that leverages natural neuroplastic mechanisms to enhance cognitive resilience. Findings support the design of interventions that engage integrated neural networks through rich, culturally relevant environments, with significant implications for cognitive health across the adult lifespan and for evidence-based educational practice. Full article
Show Figures

Figure 1

26 pages, 19159 KiB  
Article
Development of a Pipeline-Cleaning Robot for Heat-Exchanger Tubes
by Qianwen Liu, Canlin Li, Guangfei Wang, Lijuan Li, Jinrong Wang, Jianping Tan and Yuxiang Wu
Electronics 2025, 14(12), 2321; https://doi.org/10.3390/electronics14122321 - 6 Jun 2025
Viewed by 474
Abstract
Cleaning operations in narrow pipelines are often hindered by limited maneuverability and low efficiency, necessitating the development of a high-performance and highly adaptable robotic solution. To address this challenge, this study proposes a pipeline-cleaning robot specifically designed for the heat-exchange tubes of industrial [...] Read more.
Cleaning operations in narrow pipelines are often hindered by limited maneuverability and low efficiency, necessitating the development of a high-performance and highly adaptable robotic solution. To address this challenge, this study proposes a pipeline-cleaning robot specifically designed for the heat-exchange tubes of industrial heat exchangers. The robot features a dual-wheel cross-drive configuration to enhance motion stability and integrates a gear–rack-based alignment mechanism with a cam-based propulsion system to enable autonomous deployment and cleaning via a flexible arm. The robot adopts a modular architecture with a separated body and cleaning arm, allowing for rapid assembly and maintenance through bolted connections. A vision-guided control system is implemented to support accurate positioning and task scheduling within the primary pipeline. Experimental results demonstrate that the robot can stably execute automatic navigation and sub-pipe cleaning, achieving pipe-switching times of less than 30 s. The system operates reliably and significantly improves cleaning efficiency. The proposed robotic system exhibits strong adaptability and generalizability, offering an effective solution for automated cleaning in confined pipeline environments. Full article
(This article belongs to the Special Issue Intelligent Mobile Robotic Systems: Decision, Planning and Control)
Show Figures

Figure 1

24 pages, 4659 KiB  
Article
Optimizing Autonomous Taxi Deployment for Safety at Skewed Intersections: A Simulation Study
by Zi Yang, Yaojie Yao and Liyan Zhang
Sensors 2025, 25(11), 3544; https://doi.org/10.3390/s25113544 - 4 Jun 2025
Viewed by 460
Abstract
This study optimizes the deployment of autonomous taxis for safety at skewed intersections through a simulation-based approach, identifying an optimal penetration rate and control strategies. Here, we investigate the safety impacts of autonomous taxis (ATs) at such intersections using a simulation-based approach, leveraging [...] Read more.
This study optimizes the deployment of autonomous taxis for safety at skewed intersections through a simulation-based approach, identifying an optimal penetration rate and control strategies. Here, we investigate the safety impacts of autonomous taxis (ATs) at such intersections using a simulation-based approach, leveraging the VISSIM traffic simulation tool and the Surrogate Safety Assessment Model (SSAM). Our study identifies an optimal AT penetration rate of approximately 0.5–0.7, as exceeding this range may lead to a decline in safety metrics such as TTC and PET. We find that connectivity among ATs does not linearly correlate with safety improvements, suggesting a nuanced approach to AT deployment is necessary. The “Normal” control strategy, which mimics human driving, shows a direct proportionality between AT penetration and TTC, indicating that not all levels of automation enhance safety. Our conflict analysis reveals distinct patterns for crossing, lane-change, and rear-end conflicts under various control strategies, underscoring the need for tailored approaches at skewed intersections. This research contributes to the discourse on AT safety and informs the development of traffic management strategies and policy frameworks that prioritize safety and efficiency in the context of skewed intersections. Full article
Show Figures

Figure 1

21 pages, 5038 KiB  
Article
Design of a Lifting Robot for Repetitive Inter-Floor Material Transport with Adjustable Gravity Compensation
by Byungseo Kwak, Seungbum Lim and Jungwook Suh
Robotics 2025, 14(6), 69; https://doi.org/10.3390/robotics14060069 - 26 May 2025
Viewed by 879
Abstract
The construction of high-rise buildings necessitates efficient and reliable material transport systems to improve productivity and reduce labor-intensive tasks. Traditional methods such as cranes and elevators are widely used but are often constrained by high costs and spatial limitations. Manipulator-based robotic systems have [...] Read more.
The construction of high-rise buildings necessitates efficient and reliable material transport systems to improve productivity and reduce labor-intensive tasks. Traditional methods such as cranes and elevators are widely used but are often constrained by high costs and spatial limitations. Manipulator-based robotic systems have been explored as alternatives; however, they require complex control algorithms and struggle with confined construction environments. To address these challenges, we propose a lifting robot designed for repetitive inter-floor material transport in construction sites. The proposed system integrates a gear-connected double parallelogram linkage with a crank-rocker mechanism, enabling one-degree of freedom (1-DOF) operation for simplified control and precise positioning. Additionally, a spring-cable-based gravity compensation mechanism is implemented to reduce actuator torque, enhancing energy efficiency and structural stability. A prototype was fabricated, and experimental validation was conducted to evaluate torque reduction, positioning accuracy, and structural performance. Results demonstrate that the proposed system effectively minimizes driving torque, improves load-handling stability, and enhances overall operational efficiency. This study provides a foundation for developing automated lifting solutions in construction, contributing to reduced worker strain and increased productivity. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

26 pages, 5813 KiB  
Article
Assaying Traffic Settings with Connected and Automated Mobility Channeled into Road Intersection Design
by Maria Luisa Tumminello, Nazanin Zare, Elżbieta Macioszek and Anna Granà
Smart Cities 2025, 8(3), 86; https://doi.org/10.3390/smartcities8030086 - 25 May 2025
Viewed by 911
Abstract
This paper presents a microsimulation-driven framework to analyze the performance of connected and automated vehicles (CAVs) alongside vehicles with human drivers (VHDs), channeled towards assessing project alternatives in road intersection design. The transition to fully automated mobility is driving the development of new [...] Read more.
This paper presents a microsimulation-driven framework to analyze the performance of connected and automated vehicles (CAVs) alongside vehicles with human drivers (VHDs), channeled towards assessing project alternatives in road intersection design. The transition to fully automated mobility is driving the development of new intersection geometries and traffic configurations, influenced by increasing market entry rates (MERs) for CAVs (CAV-MERs), which were analyzed in a microsimulation environment. A suburban signalized intersection from the Polish road network was selected as a representative case study. Two alternative design hypotheses regarding the intersection’s geometric configurations were proposed. The Aimsun micro-simulator was used to hone the driving model parameters by calibrating the simulated data with reference capacity functions (RCFs) based on CAV factors derived from the Highway Capacity Manual 2022. Cross-referencing the conceptualized geometric design solutions, including a two-lane roundabout and an innovative knee-turbo roundabout, allowed the experimental results to demonstrate that CAV operation is influenced by the intersection layout and CAV-MERs. The research provides an overview of potential future traffic settings featuring CAVs and VHDs operating within various intersection designs. Additionally, the findings can support project proposals for the geometric and functional design of intersections by highlighting the potential benefits expected from smart driving. Full article
Show Figures

Figure 1

23 pages, 8057 KiB  
Article
Strategies for Coordinated Merging of Vehicles at Ramps in New Hybrid Traffic Environments
by Zhizhen Liu, Xinyue Liu, Qile Li, Zhaolei Zhang, Chao Gao and Feng Tang
Sustainability 2025, 17(10), 4522; https://doi.org/10.3390/su17104522 - 15 May 2025
Viewed by 463
Abstract
With the advancement of autonomous driving technology, transportation systems are inevitably confronted with mixed traffic flows consisting of connected and automated vehicles (CAVs) and human-driven vehicles (HDVs). Current research has predominantly focused on implementing homogeneous control strategies for ramp merging vehicles in such [...] Read more.
With the advancement of autonomous driving technology, transportation systems are inevitably confronted with mixed traffic flows consisting of connected and automated vehicles (CAVs) and human-driven vehicles (HDVs). Current research has predominantly focused on implementing homogeneous control strategies for ramp merging vehicles in such scenarios, which, however, may result in the oversight of specific requirements in fine-grained traffic scenarios. Therefore, a classified cooperative merging strategy is proposed to address the challenges of microscopic decision-making in hybrid traffic environments where HDVs and CAVs coexist. The optimal cooperating vehicle on the mainline is first selected for the target ramp vehicle based on the principle of minimizing time differences. Three merging strategies—joint coordinated control, partial cooperation, and speed limit optimization—are then established according to the pairing type between the cooperating and ramp vehicles. Optimal deceleration and lane-changing decisions are implemented using the average speed change rate within the control area to achieve cooperative merging. Validation via a SUMO-based simulation platform demonstrates that the proposed strategy reduces fuel consumption by 6.32%, NOx emissions by 9.42%, CO2 emissions by 9.37%, and total delay by 32.15% compared to uncontrolled merging. These results confirm the effectiveness of the proposed strategy in mitigating energy consumption, emissions, and vehicle delays. Full article
Show Figures

Figure 1

15 pages, 8494 KiB  
Article
Physical Adaptation of Articulated Robotic Arm into 3D Scanning System
by Mirko Sokovic, Dejan Bozic, Dejan Lukic, Mijodrag Milosevic, Mario Sokac and Zeljko Santosi
Appl. Sci. 2025, 15(10), 5377; https://doi.org/10.3390/app15105377 - 12 May 2025
Viewed by 513
Abstract
Robots and 3D scanning systems are essential in modern industrial production, enhancing quality control, reducing costs, and improving production efficiency. Such systems align with Industry 4.0 trends, incorporating the Internet of Things (IoT), Big Data, Cyber–Physical Systems, and Artificial Intelligence to drive innovation. [...] Read more.
Robots and 3D scanning systems are essential in modern industrial production, enhancing quality control, reducing costs, and improving production efficiency. Such systems align with Industry 4.0 trends, incorporating the Internet of Things (IoT), Big Data, Cyber–Physical Systems, and Artificial Intelligence to drive innovation. This paper focuses on the physical adaptation of old or out-of-use articulated robot arms for new tasks such as manipulation with a handheld 3D scanner, with the goal of automated quality control. The adaptation was carried out using a methodology that features the application of several techniques such as 3D digitization (photogrammetry), reverse engineering and 3D modeling (SolidWorks), the CAD search engine (3Dfindit), and 3D printing (fused deposition modeling—FDM). Reconstructed 3D models were used to design connecting elements, such as gripper jaws. The final results show that it is possible to create a connecting element utilizing this approach with very little expenditure of resources and time. Full article
(This article belongs to the Special Issue Cyber-Physical Systems for Smart Manufacturing)
Show Figures

Figure 1

27 pages, 9692 KiB  
Article
Mitigating Urban Congestion: A Cooperative Reservation Framework for Automated Vehicles
by David Yagüe-Cuevas, Pablo Marín-Plaza, María Paz-Sesmero Lorente, Stephen F. Smith, Araceli Sanchis and José María Armingol Moreno
Appl. Sci. 2025, 15(10), 5347; https://doi.org/10.3390/app15105347 - 10 May 2025
Viewed by 439
Abstract
Today’s urban environments are complex, highly congested traffic scenarios that suffer from multiple unsolved problems such as traffic jams and congestion. These problems pose a significant increase in the risks and probability of traffic accidents in modern cities, which have experienced an enormous [...] Read more.
Today’s urban environments are complex, highly congested traffic scenarios that suffer from multiple unsolved problems such as traffic jams and congestion. These problems pose a significant increase in the risks and probability of traffic accidents in modern cities, which have experienced an enormous growth in the number of vehicles. This work introduces a centralized arbitration framework designed for Cooperative Connected Automated Vehicles (CCAVs) to make real-time decisions and resolve conflicts among various driving strategies or behaviors to facilitate resource reservation based on their collaborative actions. Cooperation and arbitration are two of the most important areas of research that seek to provide tools and mechanisms for the optimization and control of traffic flow at critical locations such as intersections and traffic circles. The approach presented, fully implemented on ROS and capable of constructing a software-defined traffic control environment, is able to supervise in a distributed manner how any CCAV operates with the infrastructure, potentially reducing the number of vehicles waiting and harmonizing the traffic flow. The methodology proposed surpasses traditional driver-in-the-loop cooperation by delivering a higher level of automation for collaborative traffic behavior. This approach demonstrably reduces average waiting time by 13% and increases the total utilization of the traffic emplacement by 70% compared to the classic simulated traffic light model. The solution presented was tested on the Carla simulator, with a complete ROS-based vehicle automation solution that provides promising results for CCAV coordination in complex traffic scenarios through a general framework of behavior-based collaboration. Full article
Show Figures

Figure 1

32 pages, 414 KiB  
Review
A Survey of Open-Source Autonomous Driving Systems and Their Impact on Research
by Nourdine Aliane
Information 2025, 16(4), 317; https://doi.org/10.3390/info16040317 - 17 Apr 2025
Viewed by 3490
Abstract
Open-source autonomous driving systems (ADS) have become a cornerstone of autonomous vehicle development. By providing access to cutting-edge technology, fostering global collaboration, and accelerating innovation, these platforms are transforming the automated vehicle landscape. This survey conducts a comprehensive analysis of leading open-source ADS [...] Read more.
Open-source autonomous driving systems (ADS) have become a cornerstone of autonomous vehicle development. By providing access to cutting-edge technology, fostering global collaboration, and accelerating innovation, these platforms are transforming the automated vehicle landscape. This survey conducts a comprehensive analysis of leading open-source ADS platforms, evaluating their functionalities, strengths, and limitations. Through an extensive literature review, the survey explores their adoption and utilization across key research domains. Additionally, it identifies emerging trends shaping the field. The main contributions of this survey include (1) a detailed overview of leading open-source platforms, highlighting their strengths and weaknesses; (2) an examination of their impact on research; and (3) a synthesis of current trends, particularly in interoperability with emerging technologies such as AI/ML solutions and edge computing. This study aims to provide researchers and practitioners with a holistic understanding of open-source ADS platforms, guiding them in selecting the right platforms for future innovation. Full article
(This article belongs to the Special Issue Surveys in Information Systems and Applications)
Show Figures

Graphical abstract

13 pages, 5770 KiB  
Perspective
Digital Pathology Tailored for Assessment of Liver Biopsies
by Alina-Iuliana Onoiu, David Parada Domínguez and Jorge Joven
Biomedicines 2025, 13(4), 846; https://doi.org/10.3390/biomedicines13040846 - 1 Apr 2025
Viewed by 776
Abstract
Improved image quality, better scanners, innovative software technologies, enhanced computational power, superior network connectivity, and the ease of virtual image reproduction and distribution are driving the potential use of digital pathology for diagnosis and education. Although relatively common in clinical oncology, its application [...] Read more.
Improved image quality, better scanners, innovative software technologies, enhanced computational power, superior network connectivity, and the ease of virtual image reproduction and distribution are driving the potential use of digital pathology for diagnosis and education. Although relatively common in clinical oncology, its application in liver pathology is under development. Digital pathology and improving subjective histologic scoring systems could be essential in managing obesity-associated steatotic liver disease. The increasing use of digital pathology in analyzing liver specimens is particularly intriguing as it may offer a more detailed view of liver biology and eliminate the incomplete measurement of treatment responses in clinical trials. The objective and automated quantification of histological results may help establish standardized diagnosis, treatment, and assessment protocols, providing a foundation for personalized patient care. Our experience with artificial intelligence (AI)-based software enhances reproducibility and accuracy, enabling continuous scoring and detecting subtle changes that indicate disease progression or regression. Ongoing validation highlights the need for collaboration between pathologists and AI developers. Concurrently, automated image analysis can address issues related to the historical failure of clinical trials stemming from challenges in histologic assessment. We discuss how these novel tools can be incorporated into liver research and complement post-diagnosis scenarios where quantification is necessary, thus clarifying the evolving role of digital pathology in the field. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

Back to TopTop