Design of a Lifting Robot for Repetitive Inter-Floor Material Transport with Adjustable Gravity Compensation
Abstract
:1. Introduction
- ①
- To develop a lifting robot capable of automated, repetitive material transport between floors with minimal control complexity.
- ②
- To implement a gravity compensation mechanism that enhances system efficiency by reducing actuator capacity requirements.
- ③
- To optimize the pulley positioning mechanism to accommodate varying load conditions.
- ④
- To fabricate a prototype and experimentally validate its performance in terms of torque reduction, structural stability, and positioning accuracy.
2. Mechanical Configuration of the Lifting Robot
2.1. Gear-Connected Parallelogram
2.2. Crank-Rocker
3. Spring-Cable-Based Gravity Compensation
3.1. Necessity of Gravity Compensation
3.2. Cable Path Design
3.3. Compensation Force Determine
3.4. Adjustable Parameter
3.5. Parameter Optimization
4. Verification
4.1. Prototype Fabrication
4.2. Driving Torque
4.3. Gear Transmission Torque
4.4. Accuracy of the Load Platform Position
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, M.M.; Moon, K.S. Advances in Structural Systems for Tall Buildings: Emerging Developments for Contemporary Urban Giants. Buildings 2018, 8, 104. [Google Scholar] [CrossRef]
- Dai, L.; Liao, B. Innovative High Efficient Construction Technologies in Super High Rise Steel Structure Buildings. Int. J. High-Rise Build. 2014, 3, 205–214. [Google Scholar]
- Kowalczyk, T.; Kozłowski, A. Technological Advances and Trends in Modern High-Rise Buildings. Buildings 2019, 9, 193. [Google Scholar] [CrossRef]
- Schneider, S.P. Musculoskeletal Injuries in Construction: A Review of the Literature. Appl. Occup. Environ. Hyg. 2001, 16, 1056–1064. [Google Scholar] [CrossRef]
- Fung, I.W.H.; Tam, V.W.Y.; Tam, C.M.; Wang, K. Frequency and Continuity of Work-Related Musculoskeletal Symptoms for Construction Workers. J. Civ. Eng. Manag. 2008, 14, 183–187. [Google Scholar] [CrossRef]
- Korea Institute of Labor Safety and Health. Construction Site Main Floor Labor Intensity Evaluation Project (in Korean). Korea Institute of Labor Safety and Health Website. 2020. Available online: https://kilsh.or.kr/2829/ (accessed on 20 May 2025).
- Shapira, A.; Lucko, G.; Schexnayder, C.J. Cranes for Building Construction Projects. J. Constr. Eng. Manag. 2007, 133, 690–700. [Google Scholar] [CrossRef]
- Wu, K.; García de Soto, B. Spatio-Temporal Optimization of Construction Elevator Planning in High-Rise Building Projects. Dev. Built Environ. 2024, 17, 100328. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, C.; Fu, Y.; Liu, J.; Bu, J.; Duan, P.; Chen, S. A Parameterized Model for Tower Crane Energy Consumption Based on Theoretical Formulation and Field Data. Sci. Rep. 2025, 15, 10453. [Google Scholar] [CrossRef]
- Tuci, E.; Alkilabi, M.H.M.; Akanyeti, O. Cooperative Object Transport in Multi-Robot Systems: A Review of the State-of-the-Art. Front. Robot. AI 2018, 5, 59. [Google Scholar] [CrossRef]
- Gharbia, M.; Chang-Richards, A.; Lu, Y.; Zhong, R.Y.; Li, H. Robotic Technologies for On-Site Building Construction: A Systematic Review. J. Build. Eng. 2020, 32, 101584. [Google Scholar] [CrossRef]
- Wijayathunga, L.; Rassau, A.; Chai, D. Challenges and Solutions for Autonomous Ground Robot Scene Understanding and Navigation in Unstructured Outdoor Environments: A Review. Appl. Sci. 2023, 13, 9877. [Google Scholar] [CrossRef]
- Yang, G.; Wang, S.; Okamura, H.; Shen, B.; Ueda, Y.; Yasui, T.; Yamada, T.; Miyazawa, Y.; Yoshida, S.; Inada, Y.; et al. Hallway Exploration-Inspired Guidance: Applications in Autonomous Material Transportation in Construction Sites. Autom. Constr. 2021, 128, 103758. [Google Scholar] [CrossRef]
- Wu, M.; Yeong, C.F.; Su, E.L.M.; Holderbaum, W.; Yang, C. A Review on Energy Efficiency in Autonomous Mobile Robots. Robot. Intell. Autom. 2023, 43, 648–668. [Google Scholar] [CrossRef]
- Fragapane, G.; De Koster, R.; Sgarbossa, F.; Strandhagen, J.O. Planning and Control of Autonomous Mobile Robots for Intralogistics: Literature Review and Research Agenda. Eur. J. Oper. Res. 2021, 294, 405–426. [Google Scholar] [CrossRef]
- Han, X.S.; Tian, Q. Kinematics Analysis of Palletizing Robot. Adv. Mater. Res. 2014, 915–916, 477–481. [Google Scholar] [CrossRef]
- Said, H.; El-Rayes, K. Optimizing Material Procurement and Storage on Construction Sites. J. Constr. Eng. Manag. 2011, 137, 421–431. [Google Scholar] [CrossRef]
- Lun, M.; Leu, Y. Design of Crank-Rocker Mechanisms with Optimum Transmission Angle over Working Stroke. Mech. Mach. Theory 1996, 31, 501–511. [Google Scholar] [CrossRef]
- Suh, J.W.; Choi, E.C. Design and Verification of a Gravity-Compensated Tool Handler for Supporting an Automatic Hair-Implanting Device. IEEE Robot. Autom. Lett. 2019, 4, 4410–4417. [Google Scholar] [CrossRef]
- Lee, D.; Seo, T. Lightweight Multi-DOF Manipulator with Wire-Driven Gravity Compensation Mechanism. IEEE/ASME Trans. Mechatron. 2017, 22, 1308–1314. [Google Scholar] [CrossRef]
- Deepak, S.R.; Ananthasuresh, G.K. Static Balancing of a Four-Bar Linkage and Its Cognates. Mech. Mach. Theory 2012, 48, 62–80. [Google Scholar] [CrossRef]
- Choi, W.; Suh, J. Design and Evaluation of a Cable-Actuated Palletizing Robot With Geared Rolling Joints. IEEE/ASME Trans. Mechatron. 2024, 29, 3137–3145. [Google Scholar] [CrossRef]
- Nguyen, V.L. Design of a Compact Gear-Spring Mechanism for Static Balancing of Variable Payloads. J. Mech. Des. 2022, 144, 123301. [Google Scholar] [CrossRef]
- Wu, J.; Xin, G.; Qi, C.; Xue, Y. Learning Robust and Agile Legged Locomotion Using Adversarial Motion Priors. IEEE Robot. Autom. Lett. 2023, 8, 4975–4982. [Google Scholar] [CrossRef]
- Markforged. Composite Materials V5.2. Available online: https://s3.amazonaws.com/mf.product.doc.images/Datasheets/Material+Datasheets/CompositesMaterialDatasheet.pdf (accessed on 20 May 2025).
- Peng, Y.; Huang, K.; Ma, C.; Zhu, Z.; Chang, X.; Lu, H.; Zhang, Q.; Xu, C. Friction and Wear of Multiple Steel Wires in a Wire Rope. Friction 2023, 11, 763–784. [Google Scholar] [CrossRef]
Name of Item | Weight (kg) | Name of Item | Weight (kg) |
---|---|---|---|
Formwork 600X2400 | 29 | Tools | 4.6 |
Formwork 300X1200 | 8.15 | Scaffolding | 16.5 |
Formwork 195X1200 | 5.85 | Pins | 7.6 |
Support | 7.55 | Lever | 3.3 |
Angle | 8.05 | Midbeam | 11.15 |
Jockey | 1.85 |
(mm) | (mm) | Optimal Load (kg) | |
---|---|---|---|
(a) | 66 | 49.5 | 0.05 |
(b) | 85 | 63.75 | 0.51 |
(c) | 104 | 78 | 0.97 |
(d) | 123 | 92.25 | 1.43 |
(e) | 180 | 135 | 2.81 |
Theoretical (N∙m) | Measured with Load (N∙m) | Measured w/o Load (N∙m) | |
---|---|---|---|
(a) | 0.07 | 1.02 | 1.10 |
(b) | 0.73 | 2.00 | 2.03 |
(c) | 1.25 | 2.93 | 2.79 |
(d) | 2.06 | 3.62 | 3.67 |
with Compensation(J)-Measured | w/o Compensation(J)-Simulation | |
---|---|---|
(a) | 174.91 | 445.41 |
(b) | 344.77 | 573.64 |
(c) | 513.02 | 701.86 |
(d) | 680.66 | 830.08 |
Theoretical (N∙m) | Measured (N∙m) | |
---|---|---|
(a) | 0.68 | 0.47 |
(b) | 1.06 | 0.88 |
(c) | 1.37 | 1.33 |
(d) | 1.84 | 1.61 |
Theoretical | w/o Compensation | |||
---|---|---|---|---|
103.88° | 88.97° | 97.38° | 101.36° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, B.; Lim, S.; Suh, J. Design of a Lifting Robot for Repetitive Inter-Floor Material Transport with Adjustable Gravity Compensation. Robotics 2025, 14, 69. https://doi.org/10.3390/robotics14060069
Kwak B, Lim S, Suh J. Design of a Lifting Robot for Repetitive Inter-Floor Material Transport with Adjustable Gravity Compensation. Robotics. 2025; 14(6):69. https://doi.org/10.3390/robotics14060069
Chicago/Turabian StyleKwak, Byungseo, Seungbum Lim, and Jungwook Suh. 2025. "Design of a Lifting Robot for Repetitive Inter-Floor Material Transport with Adjustable Gravity Compensation" Robotics 14, no. 6: 69. https://doi.org/10.3390/robotics14060069
APA StyleKwak, B., Lim, S., & Suh, J. (2025). Design of a Lifting Robot for Repetitive Inter-Floor Material Transport with Adjustable Gravity Compensation. Robotics, 14(6), 69. https://doi.org/10.3390/robotics14060069