Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (532)

Search Parameters:
Keywords = coniferous species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2752 KB  
Article
Endophytic Bacterial and Fungal Communities of Spruce Picea jezoensis in the Russian Far East
by Nikolay N. Nityagovsky, Alexey A. Ananev, Andrey R. Suprun, Alina A. Dneprovskaya, Konstantin V. Kiselev and Olga A. Aleynova
Plants 2025, 14(16), 2534; https://doi.org/10.3390/plants14162534 - 14 Aug 2025
Viewed by 294
Abstract
A wide range of microorganisms, including endophytes, frequently interact with forest trees. The role of endophytes in industrial conifers has not been fully investigated. The Yezo spruce Picea jezoensis is widely used for logging in Russia and Japan. In this work, the endophytic [...] Read more.
A wide range of microorganisms, including endophytes, frequently interact with forest trees. The role of endophytes in industrial conifers has not been fully investigated. The Yezo spruce Picea jezoensis is widely used for logging in Russia and Japan. In this work, the endophytic communities of bacteria and fungi in healthy needles, branches, and fresh wood of P. jezoensis from Primorsky Territory were analyzed using metagenomic analysis. The results indicate that the diversity of endophytic communities in P. jezoensis is predominantly influenced by the specific tree parts (for both bacteria and fungi) and by different tree specimens (for fungi). The most abundant bacterial classes were Alphaproteobacteria, Gammaproteobacteria and Actinobacteria. Functional analysis of KEGG orthologs (KOs) in endophytic bacterial community using PICRUSt2 and the PLaBAse PGPT ontology revealed that 59.5% of the 8653 KOs were associated with plant growth-promoting traits (PGPTs), mainly, colonization, stress protection, bio-fertilization, bio-remediation, vitamin production, and competition. Metagenomic analysis identified a high abundance of the genera Pseudomonas and Methylobacterium-Methylorubrum in P. jezoensis, which are known for their potential growth-promoting activity in other coniferous species. The dominant fungal classes in P. jezoensis were Dothideomycetes, Sordariomycetes, and Eurotiomycetes. Notably, the genus Penicillium showed a pronounced increase in relative abundance within the fresh wood and needles of Yezo spruce, while Aspergillus displayed elevated abundance specifically in the fresh wood. It is known that some of these fungi exhibit antagonistic activity against phytopathogenic fungi. Thus, our study describes endophytic communities of the Yezo spruce and provides a basis for the production of biologicals with potential applications in forestry and agriculture. Full article
(This article belongs to the Special Issue Plant-Microbiome Interactions)
Show Figures

Figure 1

24 pages, 9834 KB  
Article
Vegetation Succession Dynamics in the Deglaciated Area of the Zepu Glacier, Southeastern Tibet
by Dan Yang, Naiang Wang, Xiao Liu, Xiaoyang Zhao, Rongzhu Lu, Hao Ye, Xiaojun Liu and Jinqiao Liu
Forests 2025, 16(8), 1277; https://doi.org/10.3390/f16081277 - 4 Aug 2025
Viewed by 284
Abstract
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been [...] Read more.
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been exceedingly limited. This study aimed to investigate vegetation succession in the deglaciated area of the Zepu glacier during the Little Ice Age in southeastern Tibet. Quadrat surveys were performed on arboreal communities, and trends in vegetation change were assessed utilizing multi-year (1986–2024) remote sensing data. The findings indicate that vegetation succession in the Zepu glacier deglaciated area typically adheres to a sequence of bare land–shrub–tree, divided into four stages: (1) shrub (species include Larix griffithii Mast., Hippophae rhamnoides subsp. yunnanensis Rousi, Betula utilis D. Don, and Populus pseudoglauca C. Wang & P. Y. Fu); (2) broadleaf forest primarily dominated by Hippophae rhamnoides subsp. yunnanensis Rousi; (3) mixed coniferous–broadleaf forest with Hippophae rhamnoides subsp. yunnanensis Rousi and Populus pseudoglauca C. Wang & P. Y. Fu as the dominant species; and (4) mixed coniferous–broadleaf forest dominated by Picea likiangensis (Franch.) E. Pritz. Soil depth and NDVI both increase with succession. Species diversity is significantly higher in the third stage compared to other successional stages. In addition, soil moisture content is significantly greater in the broadleaf-dominated communities than in the conifer-dominated communities. An analysis of NDVI from 1986 to 2024 reveals an overall positive trend in vegetation recovery in the area, with 93% of the area showing significant vegetation increase. Temperature is the primary controlling factor for this recovery, showing a positive correlation with vegetation cover. The results indicate that Key ecological indicators—including species composition, diversity, NDVI, soil depth, and soil moisture content—exhibit stage-specific patterns, reflecting distinct phases of primary succession. These findings enhance our comprehension of vegetation succession in deglaciated areas and their influencing factors in deglaciated areas, providing theoretical support for vegetation restoration in climate change. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Graphical abstract

17 pages, 1783 KB  
Article
Nature-Based Solutions in Sustainable Cities: Trace Metal Accumulation in Urban Forests of Vienna (Austria) and Krakow (Poland)
by Mateusz Jakubiak, Ewa Panek, Krzysztof Urbański, Sónia Silva Victória, Stanisław Lach, Kamil Maciuk and Marek Kopacz
Sustainability 2025, 17(15), 7042; https://doi.org/10.3390/su17157042 - 3 Aug 2025
Viewed by 401
Abstract
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective [...] Read more.
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective capturing of particulate matter is one of the ecosystem services provided by urban forests. These ecosystems function as efficient biological filters. Plants accumulate pollutants passively via their leaves. Therefore, another ecosystem service provided by city forests could be the use of tree organs as bioindicators of pollution. This paper aims to estimate differences in trace metal pollution between the wooded urban areas of Vienna and Krakow using leaves of evergreen and deciduous trees as biomonitors. An additional objective of the research was to assess the ability of the applied tree species to act as biomonitors. Plant samples of five species—Norway spruce, Scots pine, European larch, common white birch, and common beech—were collected within both areas, in seven locations: four in the “Wienerwald” Vienna forest (Austria) and three in the “Las Wolski” forest in Krakow (Poland). Concentrations of Cr, Cu, Cd, Pb, and Zn in plant material were determined. Biomonitoring studies with deciduous and coniferous tree leaves showed statistically higher heavy metal contamination in the “Las Wolski” forest compared to the “Wienerwald” forest. Based on the conducted analyses and the literature study, it can be concluded that among the analyzed tree species, only two: European beech and common white birch can be considered potential indicators in environmental studies. These species appear to be suitable bioindicators, as both are widespread in urban woodlands of Central Europe and have shown the highest accumulation levels of trace metals. Full article
Show Figures

Figure 1

15 pages, 428 KB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 - 2 Aug 2025
Viewed by 597
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
Show Figures

Figure 1

18 pages, 2100 KB  
Article
Spatial Patterning and Growth of Naturally Regenerated Eastern White Pine in a Northern Hardwood Silviculture Experiment
by David A. Kromholz, Christopher R. Webster and Michael D. Hyslop
Forests 2025, 16(8), 1235; https://doi.org/10.3390/f16081235 - 26 Jul 2025
Viewed by 292
Abstract
In forests dominated by deciduous tree species, coniferous species are often disproportionately important because of their contrasting functional traits. Eastern white pine (Pinus strobus L.), once a widespread emergent canopy species, co-occurs with deciduous hardwoods in the northern Lake States, but is [...] Read more.
In forests dominated by deciduous tree species, coniferous species are often disproportionately important because of their contrasting functional traits. Eastern white pine (Pinus strobus L.), once a widespread emergent canopy species, co-occurs with deciduous hardwoods in the northern Lake States, but is often uncommon in contemporary hardwood stands. To gain insights into the potential utility of hardwood management strategies for simultaneously regenerating white pine, we leveraged a northern hardwood silvicultural experiment with scattered overstory pine. Seven growing seasons post-harvest, we conducted a complete census of white pine regeneration (height ≥ 30 cm) and mapped their locations and the locations of potential seed trees. Pine regeneration was sparse and strongly spatially aggregated, with most clusters falling within potential seed shadows of overstory pines. New recruits were found to have the highest density in a scarified portion of the study area leeward of potential seed trees. Low regeneration densities within treatment units, strong spatial aggregation, and the spatial arrangement of potential seed trees precluded generalizable inferences regarding the utility of specific treatment combinations. Nevertheless, our results underscore the critical importance of residual overstory pines as seed sources and highlight the challenges associated with realizing their potential in managed northern hardwoods. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 3898 KB  
Article
How Reliable Are the Spectral Vegetation Indices for the Assessment of Tree Condition and Mortality in European Temporal Forests?
by Kinga Kulesza, Paweł Hawryło, Jarosław Socha and Agata Hościło
Remote Sens. 2025, 17(15), 2549; https://doi.org/10.3390/rs17152549 - 23 Jul 2025
Viewed by 404
Abstract
The continuous monitoring of forest vegetation conditions is of the utmost importance. The commonly used tools for assessing vegetation conditions are the normalized difference vegetation index (NDVI) and its successor—the enhanced vegetation index (EVI). In this study, the NDVI and EVI were coupled [...] Read more.
The continuous monitoring of forest vegetation conditions is of the utmost importance. The commonly used tools for assessing vegetation conditions are the normalized difference vegetation index (NDVI) and its successor—the enhanced vegetation index (EVI). In this study, the NDVI and EVI were coupled with the data on the number of dead trees removed during sanitation felling in an area of 13,780 km2 during the period 2015–2022. In order to determine which satellite-borne index best represents the actual condition of vegetation in forests of the European temperate zone, the classes of the trend in changes in the NDVI and EVI were compared with the respective trends in the volume of dead trees, following the assumption that a positive trend in the spectral index values should be reflected by a negative trend in the volume of dead trees, and vice versa. The analyses were carried out for pixels within the all-species mask in the study area and for pixels representing individual tree species. NDVI is a good predictor of forest vegetation in the European temperate zone and is substantially better than EVI. Spatially, NDVI yields more pixels showing a negative slope for the trend in changes in the spectral index values, while EVI seems to overestimate the number of positive slopes. A larger number of negative slopes in the trend in changes in NDVI seems to agree with the increasing volume of dead trees in the analysed period. Comparing the detected trend class masks for spectral indices and the multi-annual course of dead trees, in 12 out of 16 cases, the slopes of the trend in changes in NDVI agree with the slopes of the trend in the volume of dead trees, while for EVI, this number is reduced to 9. In addition, NDVI reflects the condition of coniferous tree species, Scots pine and Norway spruce, substantially better. Full article
Show Figures

Graphical abstract

17 pages, 9455 KB  
Article
The Phenophases of Mixed-Forest Species Are Regulated by Photo-Hydro-Thermal Conditions: An Approach Using UAV-Derived and In Situ Data
by Marín Pompa-García, Eduardo Daniel Vivar-Vivar, Andrea Cecilia Acosta-Hernández and Sergio Rossi
Forests 2025, 16(7), 1118; https://doi.org/10.3390/f16071118 - 6 Jul 2025
Viewed by 575
Abstract
Severe drought events have raised concerns regarding their effects on the phenological cycles of forest species. This study evaluates the correspondence between in situ phenophases and those detected by an unmanned aerial vehicle (UAV) in tree species coexisting within a mixed forest, with [...] Read more.
Severe drought events have raised concerns regarding their effects on the phenological cycles of forest species. This study evaluates the correspondence between in situ phenophases and those detected by an unmanned aerial vehicle (UAV) in tree species coexisting within a mixed forest, with particular attention to their relationship with climatic variables. Based on 12 consecutive monthly field observations, we compared phenological developments with UAV-derived normalized difference vegetation index (NDVI) values, which were then correlated with environmental variables. The analysis revealed a convergence of inflection points and seasonal phenological shifts, likely driven by climatic factors, although distinct patterns emerged between coniferous and broadleaf species. Photoperiod (PP), vapor pressure deficit (VPD), maximum temperature (TMAX), and, to a lesser extent, precipitation (P) were the primary environmental variables influencing NDVI results, used here as a proxy for phenology. Photothermal conditions revealed seasonal asynchrony in NDVI responses between coniferous and broadleaf species, exerting a positive influence on conifers during summer, while having a negative impact on broadleaf species in spring. Validation of in situ observations with UAV-derived data demonstrated a biological correlation between canopy dynamics and NDVI values, supporting its use as a proxy for detecting phenophases at the level of individual trees. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Graphical abstract

60 pages, 1066 KB  
Review
Dwarf Mistletoes (Arceuthobium, Viscaceae) of North America: Classification Systems, Phylogenetic Relationships, and Taxonomic Characteristics
by Shawn C. Kenaley and Robert L. Mathiasen
Plants 2025, 14(13), 2051; https://doi.org/10.3390/plants14132051 - 4 Jul 2025
Viewed by 528
Abstract
Arceuthobium—the dwarf mistletoes—is a clearly defined genus of hemi-parasitic plants in the family Viscaceae. The genus occurs throughout much of the Northern Hemisphere; however, the greatest concentration of species and subspecies occurs within coniferous forests of western North America, where considerable research [...] Read more.
Arceuthobium—the dwarf mistletoes—is a clearly defined genus of hemi-parasitic plants in the family Viscaceae. The genus occurs throughout much of the Northern Hemisphere; however, the greatest concentration of species and subspecies occurs within coniferous forests of western North America, where considerable research was executed in the mid-to-late 20th century to determine their geographic distributions, host specializations, and taxonomic boundaries. However, the last monograph of Arceuthobium presenting morphological, phenological, phylogenetic, and physiological information for N. American dwarf mistletoes was published in 1996, and since that time, no subsequent publications have presented taxonomic information for the present classification of N. American Arceuthobium. Thus, herein, we provide updated phylogenetic and taxonomic data for 44 taxa of Arceuthobium indigenous to N. America while simultaneously addressing knowledge gaps and suggesting future research to improve our understanding of these ecologically and economically important forest tree parasites. The present classification systems for and recent treatments of N. American Arceuthobium are also discussed. Full article
(This article belongs to the Special Issue Taxonomy, Phylogeny and Distribution of Vascular Plants)
Show Figures

Figure 1

11 pages, 1288 KB  
Communication
First Record of Dioryctria simplicella (Lepidoptera: Pyralidae) in China: Morphology, Molecular Identification, and Phylogenetic Position
by Niya Jia, Xiyao Ding, Dan Xie, Huanwen Chen, Defu Chi and Jia Yu
Insects 2025, 16(7), 664; https://doi.org/10.3390/insects16070664 - 26 Jun 2025
Viewed by 714
Abstract
Dioryctria Zeller, 1846 (Lepidoptera: Pyralidae) is a significant genus whose species primarily infest coniferous trees and are predominantly distributed across the Northern Hemisphere. To date, 17 species within this genus have been recorded in China. This study reports the discovery of Dioryctria simplicella [...] Read more.
Dioryctria Zeller, 1846 (Lepidoptera: Pyralidae) is a significant genus whose species primarily infest coniferous trees and are predominantly distributed across the Northern Hemisphere. To date, 17 species within this genus have been recorded in China. This study reports the discovery of Dioryctria simplicella (Heinemann, 1863) in China. During field surveys in forests of Heilongjiang Province, D. simplicella was observed infesting the cones and trunks of Pinus sylvestris var. mongolica Litv. as larvae. Comprehensive morphological descriptions and diagnostic characteristics of the adult, larva, pupa, and egg stages of D. simplicella are provided herein to facilitate accurate species identification within the genus. Molecular phylogenetic analysis based on mitochondrial cytochrome c oxidase subunit I (COI) DNA barcoding sequences was conducted to assess the phylogenetic position of D. simplicella within Dioryctria. These results strongly support its species identity and clarify its phylogenetic relationships with congeners. This discovery not only expands the known diversity of Lepidoptera in China but also provides new data supporting taxonomic and phylogenetic studies of the genus Dioryctria. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

21 pages, 4818 KB  
Article
Typical Greening Species Based on Five “Capability Indicators” Under the Artificial Control of Negative Ion Releasing Capacity
by Shaoning Li, Di Yu, Na Zhao, Tingting Li, Bin Li, Xiaotian Xu and Shaowei Lu
Forests 2025, 16(7), 1037; https://doi.org/10.3390/f16071037 - 20 Jun 2025
Viewed by 274
Abstract
Negative air ions (NAIs) can purify the atmosphere and maintain human health. In this study, we selected six tree species, Pinus tabuliformis, Pinus bungeana, Acer truncatum, Sophora japonica, Koelreuteria paniculata, Quercus variabilis, Robinia pseudoacacia, and Populus [...] Read more.
Negative air ions (NAIs) can purify the atmosphere and maintain human health. In this study, we selected six tree species, Pinus tabuliformis, Pinus bungeana, Acer truncatum, Sophora japonica, Koelreuteria paniculata, Quercus variabilis, Robinia pseudoacacia, and Populus tomentosa, and we established for the first time five “capacity indicators” to characterize and judge the capacity of plants to release negative ions: they comprised the release contribution rate L, release coefficient n, release rate s, instantaneous current number v, and total level of release Z. These indicators were used to assess the ability of the plants to release NAIs by themselves. The results showed the following. (1) The daily variations in L and n show “W” and “concave” shapes, respectively, and the contribution capacity at night is significantly higher than that during the day. The diurnal variations in s, v, and Z all showed a “bimodal” pattern. The NAI release rate and release level of each tree species during the day were significantly higher than those at night. (2) The trees released the most NAIs during the day at approximately 10:00, while Robinia pseudoacacia and Populus tomentosa peaked with a 2 h lag (12:00). The NAI release capacity of each tree species was the worst at 13:00. (3) During the growing season, the self-contribution effects L and n of the plants were the strongest in May. The release rates and release levels s, v, and Z were the lowest in August. The coniferous plants released NAIs at the fastest rate in September and broad-leaved plants in July, with the highest release levels. In this study, the plants released the most NAIs from 10:00 a.m. to 11:00 a.m., which is the best time to travel. Quercus variabilis was preferentially recommended in the pairing of species of tree with the quickest NAI release and the highest total number released, followed by Koelreuteria paniculata and Sophora japonica. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

17 pages, 2455 KB  
Article
Tree Diversity and Identity Effects on Aboveground Biomass Are Stronger than Those of Abiotic Drivers in Coniferous and Broadleaved Forest Restoration Sites of South Korea
by Ji-Soo Kwak, Joonhyung Park, Yong-Ju Lee, Min-Ki Lee, Chae-Young Lim and Chang-Bae Lee
Forests 2025, 16(6), 979; https://doi.org/10.3390/f16060979 - 10 Jun 2025
Viewed by 546
Abstract
Forest restoration sites have a critical role in the maintenance and improvement of forest ecosystem health and resilience, as well as increasing carbon storage capacity. However, previous studies on forest restoration sites have primarily focused on monitoring vegetation changes and investigating changes in [...] Read more.
Forest restoration sites have a critical role in the maintenance and improvement of forest ecosystem health and resilience, as well as increasing carbon storage capacity. However, previous studies on forest restoration sites have primarily focused on monitoring vegetation changes and investigating changes in carbon storage (e.g., aboveground biomass). Research on identifying the controlling drivers of aboveground biomass (AGB) between/among forest types according to stand age within restoration sites remains limited. Our study analyzed data from a total of 149 plots in forest restoration sites in South Korea, comprising 57 coniferous forest plots (38.3%) and 92 broadleaved forest plots (61.7%). This study employed a piecewise structural equation model to determine the main biotic (i.e., stand structural diversity, species diversity, functional diversity, and tree identity) and abiotic drivers (i.e., topographic, climate factors driver, stand age, and soil properties) influencing AGB in each forest type. The results revealed that stand structural diversity was the most critical driver of AGB across all forest types, highlighting the importance of structural complexity in early stage restoration. Specifically, in coniferous forests, stand structural diversity (DBH STD) and tree identity (CWM WD) were more influential, whereas in broadleaved forests, SR and climatic conditions played a greater role. Therefore, our findings provide empirical evidence for understanding AGB dynamics in early stage forest restoration sites and may help inform the development of management strategies for each forest type and early restoration planning in similar ecosystems. Full article
(This article belongs to the Special Issue Forest Ecosystem Services and Sustainable Management)
Show Figures

Figure 1

14 pages, 4240 KB  
Article
Exploring Fungal Communities in the Needles of Marginal Conifer Tree Populations
by Jelena Lazarević and Audrius Menkis
Forests 2025, 16(6), 968; https://doi.org/10.3390/f16060968 - 7 Jun 2025
Cited by 1 | Viewed by 570
Abstract
In Montenegro, coniferous forests play a key ecological role in maintaining ecosystem stability. Root-associated mycorrhizal fungi and saprotrophic fungi inhabiting forest soils are well known for their roles in nutrient cycling, organic matter decomposition, and supporting host tree health. In contrast, the fungal [...] Read more.
In Montenegro, coniferous forests play a key ecological role in maintaining ecosystem stability. Root-associated mycorrhizal fungi and saprotrophic fungi inhabiting forest soils are well known for their roles in nutrient cycling, organic matter decomposition, and supporting host tree health. In contrast, the fungal communities residing within conifer needles, despite potentially important ecological functions, remain largely underexplored, particularly in natural and marginal forest ecosystems such as those in the Balkans. This study aimed to investigate the diversity and community composition of needle-associated fungi in three native conifers: Picea abies and Abies alba (at the edge of their native range), and the endemic Pinus heldreichii, from different mountainous regions in Montenegro. High-throughput sequencing was conducted to assess fungal diversity and community composition. Dothideomycetes dominated fungal communities in all three tree species, followed by Leotiomycetes and Tremellomycetes. Multivariate analysis revealed distinct fungal communities in P. heldreichii, whereas fungal communities in A. alba and P. abies were partially overlapping. Functional classification showed a dominance of saprotrophic, pathogenic, and endophytic fungi, with P. heldreichii exhibiting the highest proportion of saprotrophs, while A. alba and P. abies showed a considerable proportion of pathogens. The findings highlight strong host specificity, biogeographical influences, and the ecological importance of fungal communities in coniferous forests. This study provides new insights into the diversity and functional roles of needle-associated fungi, emphasizing the need for conservation efforts to maintain microbial biodiversity in native forests of Montenegro. Full article
(This article belongs to the Special Issue Recent Scientific Developments in Forest Pathology)
Show Figures

Figure 1

28 pages, 2448 KB  
Article
Influence of Increasing Fires on Mixed Conifer Stand Dynamics in the U.S. Southwest
by Simon D. Baker, Kristen M. Waring, David Auty and Nicholas Wilhelmi
Forests 2025, 16(6), 967; https://doi.org/10.3390/f16060967 - 7 Jun 2025
Viewed by 680
Abstract
(1) Stand-replacing fires may threaten the continued stability of mixed conifer forests in the U.S. Southwest. Increasing fire frequency and severity have made post-fire forest recovery trajectories uncertain for many coniferous species, potentially leading to long-term shifts in forest structure and composition. (2) [...] Read more.
(1) Stand-replacing fires may threaten the continued stability of mixed conifer forests in the U.S. Southwest. Increasing fire frequency and severity have made post-fire forest recovery trajectories uncertain for many coniferous species, potentially leading to long-term shifts in forest structure and composition. (2) The purpose of this study was to examine post-fire stand dynamics over a 10-year period, using a network of permanent plots established prior to wildfire events across Arizona and New Mexico. We assessed changes in overstory composition, regeneration, and fuel loading across different fire severities. (3) High severity fire caused near-total overstory mortality, with little to no conifer regeneration and abundant sprouting hardwood regeneration. Lower severity fire was more favorable to fire-tolerant conifer species; however, mortality among mature trees was high, and fire-intolerant conifers were either diminished or extirpated completely. (4) In high severity fires, changes in overstory and understory structure and composition may be long-lasting. Additionally, increased fuel loads following high severity fire suggests a heightened risk of reburns, potentially perpetuating ecotype conversion. Our findings highlight the need for active management strategies, including reforestation and fuel reduction treatments, to support forest resilience for mixed conifer ecosystems in the US Southwest and similar forest types in other regions in the face of ongoing climate and fire regime changes. Full article
Show Figures

Figure 1

22 pages, 4944 KB  
Article
Developing Diameter Distribution Models of Major Coniferous Species in South Korea
by Sanghyun Jung, Daesung Lee and Jungkee Choi
Forests 2025, 16(6), 961; https://doi.org/10.3390/f16060961 - 6 Jun 2025
Viewed by 479
Abstract
This study developed diameter distribution models using the Weibull function for Korean red pine (Pinus densiflora), Korean white pine (P. koraiensis), and Japanese larch (Larix kaempferi). The study data were collected from 49 Korean red pine stands, [...] Read more.
This study developed diameter distribution models using the Weibull function for Korean red pine (Pinus densiflora), Korean white pine (P. koraiensis), and Japanese larch (Larix kaempferi). The study data were collected from 49 Korean red pine stands, 54 Korean white pine stands, and 49 Japanese larch stands located in national forests in Gangwon and North Gyeongsang Provinces, South Korea. To identify the optimal method for modeling the diameter distribution of these three species, parameter recovery methods and parameter prediction methods were analyzed. To identify the optimal parameter recovery method for presenting the diameter distribution of these three species, ten parameter recovery methods were compared using moment-based, percentile-based, and hybrid approaches. For parameter prediction methods, major stand characteristics were used as independent variables to develop the models for the parameters a, b, and c of the Weibull function. For estimating the Weibull parameters, two methods—the estimated parameter recovery method and the parameter prediction method—were compared and analyzed. The optimal parameter recovery method was the one using the minimum DBH, the mean DBH, and the DBH variance. The coefficient of determination (R2) for the models predicting the minimum DBH, the mean DBH, and the DBH variance ranged from 0.7186 to 0.9747, and the R2 for the models directly predicting parameters ranged from 0.7032 to 0.9374, indicating high explanatory power and unbiased results. When comparing the two methods, the parameter prediction method showed higher accuracy and lower bias. In addition, paired t-tests were conducted to assess differences from the observed Weibull parameters. The results showed a significant difference for the estimated parameter recovery method, whereas no significant difference was found for the parameter prediction method, further supporting its reliability. Full article
(This article belongs to the Special Issue Silviculture and Management Strategy in Coniferous Forests)
Show Figures

Figure 1

12 pages, 1362 KB  
Article
Thermal Modulation of Leaf Nitrogen Forms in Chinese Fir Under Soil-Warming Conditions
by Xing Chen, Lijuan Zhu, Zhijie Yang, Caixia Shen, Yin Li, Zexuan Tang and Yankun Zhu
Forests 2025, 16(6), 942; https://doi.org/10.3390/f16060942 - 4 Jun 2025
Viewed by 445
Abstract
While soil warming has been demonstrated to significantly alter the processes of the nitrogen cycle in forest ecosystems, how leaf-available nitrogen, representing the primary forms of nitrogen absorbed by plants, responds to such thermal alterations remains insufficiently understood. In the present study, a [...] Read more.
While soil warming has been demonstrated to significantly alter the processes of the nitrogen cycle in forest ecosystems, how leaf-available nitrogen, representing the primary forms of nitrogen absorbed by plants, responds to such thermal alterations remains insufficiently understood. In the present study, a control (CK) group and a soil-warming treatment (W) were set up. The nitrogen contents of nitrate (NO3-N), ammonium (NH4+-N), and amino acids (AA-N) in previous- and current-year leaves from the upper and lower canopy of Chinese fir were measured under both CK and W conditions. By comparing the differences in available nitrogen distribution across different canopy layers or leaf ages, we aimed to illustrate the effects of soil warming on the allocation of available nitrogen in leaves. It was shown that soil warming can alter the distribution of available nitrogen in Chinese fir leaves, and its impact on leaf AA-N was significantly greater than its impact on inorganic nitrogen. Additionally, the allocation of available nitrogen in Chinese fir under soil warming was also influenced by leaf position and leaf age. Soil warming altered the distribution patterns of available nitrogen in leaves of Chinese fir across different canopy layers or leaf ages, which provides a scientific basis for coniferous tree species to adapt to the thermal environment by regulating available nitrogen allocation. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

Back to TopTop