Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (523)

Search Parameters:
Keywords = confinement of concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1600 KiB  
Article
Research on Stress–Strain Model of FRP-Confined Concrete Based on Compressive Fracture Energy
by Min Wu, Xinglang Fan and Haimin Qian
Buildings 2025, 15(15), 2716; https://doi.org/10.3390/buildings15152716 - 1 Aug 2025
Viewed by 96
Abstract
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is [...] Read more.
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is then assumed that when FRP-confined concrete and actively confined concrete are subjected to the same lateral strain and confining pressure at a specific loading stage, their axial stress–strain relationships are identical at that stage. Based on this assumption, a numerical method for the axial stress–strain relationship of FRP-confined concrete is developed by combining the stress–strain model of actively confined concrete with the axial–lateral strain correlation. Finally, the validity of this numerical method is verified with experimental data with various geometric and material parameters, demonstrating a reasonable agreement between predicted stress–strain curves and measured ones. A parametric analysis is conducted to reveal that the stress–strain curve is independent of the specimen length for strong FRP confinement with small failure strains, while the specimen length exhibits a significant effect on the softening branch for weak FRP confinement. Therefore, for weakly FRP-confined concrete, it is recommended to consider the specimen length effect in evaluating the axial stress–strain relationship. Full article
Show Figures

Figure 1

22 pages, 8767 KiB  
Article
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 - 31 Jul 2025
Viewed by 81
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to [...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete. Full article
Show Figures

Figure 1

26 pages, 3459 KiB  
Article
Compressive Behaviour of Sustainable Concrete-Filled Steel Tubes Using Waste Glass and Rubber Glove Fibres
by Zobaer Saleheen, Tatheer Zahra, Renga Rao Krishnamoorthy and Sabrina Fawzia
Buildings 2025, 15(15), 2708; https://doi.org/10.3390/buildings15152708 - 31 Jul 2025
Viewed by 111
Abstract
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in [...] Read more.
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in lower compressive strength compared to conventional concrete, limiting their application to non-structural elements. To overcome this limitation, this study adopts the concept of confined concrete by developing concrete-filled steel tube (CFST) stub columns. In total, twelve concrete mix variations were developed, with and without steel tube confinement. GP was utilised at replacement levels of 10–30% by weight of cement, while NR fibres were introduced at 0.5% and 1% by volume of concrete. The findings demonstrate that the incorporation of GP and NR fibres leads to a reduction in compressive strength, with a compounded effect observed when both materials are combined. Steel confinement within CFST columns effectively mitigated the strength reductions, restoring up to 17% of the lost capacity and significantly improving ductility and energy absorption capacity. All CFST columns exhibited consistent local outward buckling failure mode, irrespective of the concrete mix variations. A comparison with predictions from existing design codes and empirical models revealed discrepancies, underscoring the need for refined design approaches for CFST columns incorporating sustainable concrete infill. This study contributes valuable insights into the development of eco-friendly, high-performance structural systems, highlighting the potential of CFST technology in facilitating the adoption of waste materials in the construction sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 2787 KiB  
Article
The Impact of Confinement Configurations on the Compressive Behavior of CFRP—Wrapped Concrete Cylinders
by Riad Babba, Abdellah Douadi, Eyad Alsuhaibani, Laura Moretti, Abdelghani Merdas, Saci Dahmani and Mourad Boutlikht
Materials 2025, 18(15), 3559; https://doi.org/10.3390/ma18153559 - 29 Jul 2025
Viewed by 243
Abstract
Experimental tests on confined concrete specimens are essential to characterize the mechanisms activated under varying degrees of confinement. Such characterization is critical for understanding how full, partial, and non-uniform wrapping configurations influence strength and ductility enhancements. This study investigates the compressive behavior of [...] Read more.
Experimental tests on confined concrete specimens are essential to characterize the mechanisms activated under varying degrees of confinement. Such characterization is critical for understanding how full, partial, and non-uniform wrapping configurations influence strength and ductility enhancements. This study investigates the compressive behavior of concrete cylinders (160 mm × 320 mm) confined using full, partial, and non-uniform carbon fiber-reinforced polymers (CFRP) configurations. In the first phase, all wrapping schemes were applied with equivalent quantities of CFRP, enabling a direct performance comparison under material parity. The results indicate that non-uniform confinement (NUC) achieved approximately 15% higher axial strength than full confinement (FC2) using the same amount of CFRP. In the second phase, the NUC configuration was tested with 25% less CFRP material, yet the reduction in strength was limited to about 3%, demonstrating its superior efficiency. A new predictive model was developed to estimate peak axial stress and strain in CFRP-confined concrete cylinders. Compared to existing models, the proposed model demonstrated greater predictive accuracy (R2 = 0.98 for stress and 0.91 for strain) and reduced error metrics (RMSE and scatter index). ANOVA confirmed the statistical significance of the model’s predictions (p < 0.00001 for stress, p = 0.002 for strain). These findings highlight the performance advantages and material efficiency of non-uniform CFRP confinement and support the utility of the proposed model as a practical design tool for developing advanced confinement strategies in structural engineering. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 8074 KiB  
Article
Cyclic Behavior Enhancement of Existing RC Bridge Columns with UHPC Jackets: Experimental and Parametric Study on Jacket Thickness
by Songtao Gu and Rui Zhang
Buildings 2025, 15(15), 2609; https://doi.org/10.3390/buildings15152609 - 23 Jul 2025
Viewed by 191
Abstract
Ultra-high-performance concrete (UHPC) jackets present a promising solution for enhancing the seismic resilience of seismically deficient reinforced concrete (RC) bridge columns. This study investigates jacket thickness optimization through integrated experimental and numerical analyses. Quasi-static cyclic tests on a control column and a specimen [...] Read more.
Ultra-high-performance concrete (UHPC) jackets present a promising solution for enhancing the seismic resilience of seismically deficient reinforced concrete (RC) bridge columns. This study investigates jacket thickness optimization through integrated experimental and numerical analyses. Quasi-static cyclic tests on a control column and a specimen retrofitted with a 30-mm UHPC jacket over the plastic hinge region demonstrated significant performance improvements: delayed damage initiation, controlled cracking, a 24.6% increase in lateral load capacity, 139.5% higher energy dissipation at 3% drift, and mitigated post-peak strength degradation. A validated OpenSees numerical model accurately replicated this behavior and enabled parametric studies of 15-mm, 30-mm, and 45-mm jackets. Results identified the 30-mm thickness as optimal, balancing substantial gains in lateral strength (~12% higher than other thicknesses), ductility, and energy dissipation while avoiding premature failure modes—insufficient confinement in the 15-mm jacket and strain incompatibility-induced brittle failure in the 45-mm jacket. These findings provide quantitative design guidance, establishing 30 mm as the recommended thickness for efficient seismic retrofitting of existing RC bridge columns. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 5549 KiB  
Article
Axial Compression of BFRP Spiral Strip–PVC Tube Confined Fiber-Recycled Concrete: Experiment and FEM Analysis
by Jiaxing Tian, Huaxin Liu, Genjin Liu, Wenyu Wang and Jiuwen Bao
Materials 2025, 18(15), 3431; https://doi.org/10.3390/ma18153431 - 22 Jul 2025
Viewed by 282
Abstract
The use of short cylinders of recycled aggregate concrete (RAC) reinforced with basalt fiber-reinforced polymer (BFRP) circumferential strips and polyvinyl chloride (PVC) tubes has been proven effective in previous studies. However, BFRP circumferential strips are cumbersome to install and do not ensure the [...] Read more.
The use of short cylinders of recycled aggregate concrete (RAC) reinforced with basalt fiber-reinforced polymer (BFRP) circumferential strips and polyvinyl chloride (PVC) tubes has been proven effective in previous studies. However, BFRP circumferential strips are cumbersome to install and do not ensure the integrity of the BFRP strips. Therefore, this study investigates axial compression experiments on RAC short cylinders reinforced with BFRP spiral strips and PVC tubes. A combination of experimental studies, finite element simulations, and theoretical analyses revealed that the winding angle and spacing of BFRP strips significantly affect the load-bearing capacity and ductility of the restrained specimens. Additionally, an improved strength model was developed based on an existing model. When evaluated using both computational and experimental results, the equations generated in this study showed an average error of less than 10%. The findings indicate that the composite structure provides effective reinforcement and offers valuable reference information for practical applications. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

27 pages, 5072 KiB  
Article
Study on the Mechanical Properties of Optimal Water-Containing Basalt Fiber-Reinforced Concrete Under Triaxial Stress Conditions
by Kaide Liu, Songxin Zhao, Yaru Guo, Wenping Yue, Chaowei Sun, Yu Xia, Qiyu Wang and Xinping Wang
Materials 2025, 18(14), 3358; https://doi.org/10.3390/ma18143358 - 17 Jul 2025
Viewed by 204
Abstract
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents [...] Read more.
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents (0.0%, 0.05%, 0.10%, 0.15%, and 0.20%) to determine the optimal fiber content of 0.1%. The compressive strength of the concrete with this fiber content increased by 13.5% compared to the control group without fiber, reaching 36.90 MPa, while the tensile strength increased by 15.9%, reaching 2.33 MPa. Subsequently, NMR and SEM techniques were employed to analyze the internal pore structure and micro-morphology of BFRC. It was found that an appropriate amount of basalt fiber (content of 0.1%) can optimize the pore structure and form a reticular three-dimensional structure. The pore grading was also improved, with the total porosity decreasing from 7.48% to 7.43%, the proportion of harmless pores increasing from 4.03% to 4.87%, and the proportion of harmful pores decreasing from 1.67% to 1.42%, thereby significantly enhancing the strength of the concrete. Further triaxial compression tests were conducted to investigate the mechanical properties of BFRC under different confining pressures (0, 3, and 6 MPa) and water contents (0%, 1%, 2%, and 4.16%). The results showed that the stress–strain curves primarily underwent four stages: initial crack compaction, elastic deformation, yielding, and failure. In terms of mechanical properties, when the confining pressure increased from 0 MPa to 6 MPa, taking dry sandstone as an example, the peak stress increased by 54.0%, the elastic modulus increased by 15.7%, the peak strain increased by 37.0%, and the peak volumetric strain increased by 80.0%. In contrast, when the water content increased from 0% to 4.16%, taking a confining pressure of 0 MPa as an example, the peak stress decreased by 27.4%, the elastic modulus decreased by 43.2%, the peak strain decreased by 59.3%, and the peak volumetric strain decreased by 106.7%. Regarding failure characteristics, the failure mode shifted from longitudinal splitting under no confining pressure to diagonal shear under confining pressure. Moreover, as the confining pressure increased, the degree of failure became more severe, with more extensive cracks. However, when the water content increased, the failure degree was relatively mild, but it gradually worsened with further increases in water content. Based on the CDP model, a numerical model for simulating the triaxial compression behavior of BFRC was developed. The simulation results exhibited strong consistency with the experimental data, thereby validating the accuracy and applicability of the model. Full article
Show Figures

Figure 1

19 pages, 1827 KiB  
Article
Discrete Element Modeling of Concrete Under Dynamic Tensile Loading
by Ahmad Omar and Laurent Daudeville
Materials 2025, 18(14), 3347; https://doi.org/10.3390/ma18143347 - 17 Jul 2025
Viewed by 259
Abstract
Concrete is a fundamental material in structural engineering, widely used in critical infrastructure such as bridges, nuclear power plants, and dams. These structures may be subjected to extreme dynamic loads resulting from natural disasters, industrial accidents, or missile impacts. Therefore, a comprehensive understanding [...] Read more.
Concrete is a fundamental material in structural engineering, widely used in critical infrastructure such as bridges, nuclear power plants, and dams. These structures may be subjected to extreme dynamic loads resulting from natural disasters, industrial accidents, or missile impacts. Therefore, a comprehensive understanding of concrete behavior under high strain rates is essential for safe and resilient design. Experimental investigations, particularly spalling tests, have highlighted the strain-rate sensitivity of concrete in dynamic tensile loading conditions. This study presents a macroscopic 3D discrete element model specifically developed to simulate the dynamic response of concrete subjected to extreme loading. Unlike conventional continuum-based models, the proposed discrete element framework is particularly suited to capturing damage and fracture mechanisms in cohesive materials. A key innovation lies in incorporating a physically grounded strain-rate dependency directly into the local cohesive laws that govern inter-element interactions. The originality of this work is further underlined by the validation of the discrete element model under dynamic tensile loading through the simulation of spalling tests on normalstrength concrete at strain rates representative of severe impact scenarios (30–115 s−1). After calibrating the model under quasi-static loading, the simulations accurately reproduce key experimental outcomes, including rear-face velocity profiles and failure characteristics. Combined with prior validations under high confining pressure, this study reinforces the capability of the discrete element method for modeling concrete subjected to extreme dynamic loading, offering a robust tool for predictive structural assessment and design. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 7211 KiB  
Article
Hysteresis Model for Flexure-Shear Critical Circular Reinforced Concrete Columns Considering Cyclic Degradation
by Zhibin Feng, Jiying Wang, Hua Huang, Weiqi Liang, Yingjie Zhou, Qin Zhang and Jinxin Gong
Buildings 2025, 15(14), 2445; https://doi.org/10.3390/buildings15142445 - 11 Jul 2025
Viewed by 263
Abstract
Accurate seismic performance assessment of flexure-shear critical reinforced concrete (RC) columns necessitates precise hysteresis modeling that captures their distinct cyclic characteristics—particularly pronounced strength degradation, stiffness deterioration, and pinching effects. However, existing hysteresis models for such circular RC columns fail to comprehensively characterize these [...] Read more.
Accurate seismic performance assessment of flexure-shear critical reinforced concrete (RC) columns necessitates precise hysteresis modeling that captures their distinct cyclic characteristics—particularly pronounced strength degradation, stiffness deterioration, and pinching effects. However, existing hysteresis models for such circular RC columns fail to comprehensively characterize these coupled cyclic degradation mechanisms under repeated loading. This study develops a novel hysteresis model explicitly incorporating three key mechanisms: (1) directionally asymmetric strength degradation weighted by hysteretic energy, (2) cycle-dependent pinching governed by damage accumulation paths, and (3) amplitude-driven stiffness degradation decoupled from cycle count, calibrated and validated using 14 column tests from the Pacific Earthquake Engineering Research Center (PEER) structural performance database. Key findings reveal that significant strength degradation primarily manifests during initial loading cycles but subsequently stabilizes. Unloading stiffness degradation demonstrates negligible dependency on cycle number. Pinching effects progressively intensify with cyclic advancement. The model provides a physically rigorous framework for simulating seismic deterioration, significantly improving flexure-shear failure prediction accuracy, while parametric analysis confirms its potential adaptability beyond tested scenarios. However, applicability remains confined to specific parameter ranges with reliability decreasing near boundaries due to sparse data. Deliberate database expansion for edge cases is essential for broader generalization. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 4556 KiB  
Article
Simulation of Rock Failure Cone Development Using a Modified Load-Transferring Anchor Design
by Kamil Jonak, Robert Karpiński, Andrzej Wójcik and Józef Jonak
Appl. Sci. 2025, 15(14), 7653; https://doi.org/10.3390/app15147653 - 8 Jul 2025
Viewed by 377
Abstract
This study investigates a novel anchor-based method for controlled rock fragmentation, designed as an alternative to conventional excavation or explosive techniques. The proposed solution utilizes a specially modified undercut anchor that induces localized failure within the rock mass through radial expansion rather than [...] Read more.
This study investigates a novel anchor-based method for controlled rock fragmentation, designed as an alternative to conventional excavation or explosive techniques. The proposed solution utilizes a specially modified undercut anchor that induces localized failure within the rock mass through radial expansion rather than traditional pull-out forces. Finite Element Method simulations, performed in ABAQUS with an extended fracture mechanics approach, were used to model the initiation and propagation of failure zones in sandstone. The results revealed a two-phase cracking process starting beneath the anchor’s driving element and progressing toward the rock’s free surface, forming a breakout cone. This behavior significantly deviates from conventional prediction models, such as the 45° cone or Concrete Capacity Design methods (cone 35°). The simulations were supported by field tests, confirming both the feasibility and practical advantages of the proposed anchor system, especially in confined or safety-critical environments. The findings offer valuable insights for the development of compact and efficient rock fragmentation technologies suitable for mining, rescue operations, and civil engineering applications. Full article
(This article belongs to the Special Issue Advances and Techniques in Rock Fracture Mechanics)
Show Figures

Figure 1

33 pages, 6318 KiB  
Review
A Review of External Confinement Methods for Enhancing the Strength of Concrete Columns
by Oliwia Sikora and Krzysztof Adam Ostrowski
Materials 2025, 18(14), 3222; https://doi.org/10.3390/ma18143222 - 8 Jul 2025
Viewed by 305
Abstract
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability [...] Read more.
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability to be tailored to complex geometries. This paper provides a comprehensive review of current technologies used to strengthen concrete columns, with a particular focus on the application of fiber-reinforced polymer (FRP) tubes in composite column systems. The manufacturing processes of FRP composites are discussed, emphasizing the influence of resin types and fabrication methods on the mechanical properties and durability of composite elements. This review also analyzes how factors such as fiber type, orientation, thickness, and application method affect the load-bearing capacity of both newly constructed and retrofitted damaged concrete elements. Furthermore, the paper identifies research gaps concerning the use of perforated CFRP tubes as internal reinforcement components. Considering the increasing interest in innovative column strengthening methods, this paper highlights future research directions, particularly the application of perforated CFRP tubes combined with external composite strengthening and self-compacting concrete (SCC). Full article
Show Figures

Graphical abstract

20 pages, 11400 KiB  
Article
Influence Mechanism of Confining Pressure on Morphology of Concrete Crack Surfaces
by Yuqiang He, Chenyang Zhao, Zhiming Xiao, Mingfeng Lei and Chaojun Jia
Materials 2025, 18(13), 3158; https://doi.org/10.3390/ma18133158 - 3 Jul 2025
Viewed by 303
Abstract
Characterizing the morphological characteristics of concrete crack surfaces is fundamental for accurately analyzing the evolution mechanism of leakage in concrete linings. In this research, concrete crack surfaces are obtained using triaxial compression tests and three-dimensional (3D) laser scanning. The mechanism by which confining [...] Read more.
Characterizing the morphological characteristics of concrete crack surfaces is fundamental for accurately analyzing the evolution mechanism of leakage in concrete linings. In this research, concrete crack surfaces are obtained using triaxial compression tests and three-dimensional (3D) laser scanning. The mechanism by which confining pressure influences crack morphology is further revealed, and the impact of crack morphology on tunnel lining leakage is illustrated from the perspective of fractal dimensions. The results indicate that the concrete crack surface flattens as the confining pressure increases. The distribution of asperity on concrete crack surfaces exhibits strong randomness. A negative exponential function can effectively depict the relationship between the fractal dimension of a concrete crack surface and the confining pressure. As the fractal dimension decreases with increasing confining pressure, concrete cracks developing under higher confining pressure exhibit a higher permeability coefficient, and tunnel linings become more susceptible to water leakage. Full article
(This article belongs to the Special Issue Modeling and Numerical Simulations in Materials Mechanics)
Show Figures

Figure 1

11 pages, 2164 KiB  
Article
Study of Corrosion Characteristics of AlMg3.5 Alloy by Hydrogen-Induced Pressure and Mass Loss Evaluation Under Simulated Cementitious Repository Conditions
by Marvin Schobel, Christian Ekberg, Teodora Retegan Vollmer, Fredrik Wennerlund, Svante Hedström and Anders Puranen
Corros. Mater. Degrad. 2025, 6(3), 27; https://doi.org/10.3390/cmd6030027 - 30 Jun 2025
Viewed by 402
Abstract
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which [...] Read more.
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which leads to alkaline conditions with pH values of 12 and higher. This can be advantageous for some radionuclides due to their precipitation at high pH. For other materials, such as reactive metals, however, it can be disadvantageous because it might foster their corrosion. The Studsvik R2 research reactor contained an AlMg3.5 alloy with a composition close to that of commercial Al5154 for its core internals and the reactor tank. Aluminum corrosion is known to start rapidly due to the formation of an oxidation layer, which later functions as natural protection for the surface. The corrosion can lead to pressure build-up through the accompanied production of hydrogen gas. This can lead to cracks in the concrete, which can be pathways for radioactive nuclides to migrate and must therefore be prevented. In this study, unirradiated rod-shaped samples were cut from the same material as the original reactor tank manufacture. They were embedded in concrete with elevated water–cement ratios of 0.7 compared to regular commercial concrete (ca. 0.45) to ensure water availability throughout all of the experiments. The sample containers were stored in pressure vessels with attached high-definition pressure gauges to read the hydrogen-induced pressure build-up. A second set of samples were exposed in simplified artificial cement–water to study similarities in corrosion characteristics between concrete and cement–water. Additionally, the samples were exposed to concrete and cement–water in free-standing sample containers for deconstructive examinations. In concrete, the corrosion rates started extremely high, with values of more than 10,000 µm/y, and slowed down to less than 500 µm/y after 2000 h, which resulted in visible channels inside the concrete. In the cement–water, the samples showed similar behavior after early fluctuations, most likely caused by the surface coverage of hydrogen bubbles. These trends were further supported by mass loss evaluations. Full article
Show Figures

Figure 1

24 pages, 7576 KiB  
Article
Study on the Damage Evolution Mechanism of FRP-Reinforced Concrete Subjected to Coupled Acid–Freeze Erosion
by Fei Li, Wei Li, Shenghao Jin, Dayang Wang, Peifeng Cheng and Meitong Piao
Coatings 2025, 15(7), 759; https://doi.org/10.3390/coatings15070759 - 26 Jun 2025
Viewed by 463
Abstract
Plain concrete specimens and FRP(Fiber Reinforced Polymer)-reinforced concrete specimens were fabricated to investigate concrete’s mechanical and surface degradation behaviors reinforced with carbon, basalt, glass, and aramid fiber-reinforced polymer under coupled sulfuric acid and freeze–thaw cycles. The compressive strength of fully wrapped FRP cylindrical [...] Read more.
Plain concrete specimens and FRP(Fiber Reinforced Polymer)-reinforced concrete specimens were fabricated to investigate concrete’s mechanical and surface degradation behaviors reinforced with carbon, basalt, glass, and aramid fiber-reinforced polymer under coupled sulfuric acid and freeze–thaw cycles. The compressive strength of fully wrapped FRP cylindrical specimens and the flexural load capacity of prismatic specimens with FRP reinforced to the pre-cracked surface, along with the dynamic elastic modulus and mass loss, were evaluated before and after acid–freeze cycles. The degradation mechanism of the specimens was elucidated through analysis of surface morphological changes captured in photographs, scanning electron microscopy (SEM) observations, and energy-dispersive spectroscopy (EDS) data. The experimental results revealed that after 50 cycles of coupled acid–freeze erosion, the plain cylindrical concrete specimens showed a mass gain of 0.01 kg. In contrast, after 100 cycles, a significant mass loss of 0.082 kg was recorded. The FRP-reinforced specimens initially demonstrated mass loss trends comparable to those of the plain concrete specimens. However, in the later stages, the FRP confinement effectively mitigated the surface spalling of the concrete, leading to a reversal in mass loss and subsequent mass gain. Notably, the GFRP(Glassfiber Reinforced Polymer)-reinforced specimens exhibited the most significant mass gain of 1.653%. During the initial 50 cycles of acid–freeze erosion, the prismatic and cylindrical specimens demonstrated comparable degradation patterns. However, in the subsequent stages, FRP reduced the exposed surface area-to-volume ratio of the specimens in contact with the acid solution, resulting in a marked improvement in their structural integrity. After 100 cycles of acid–freeze erosion, the compressive strength loss rate and flexural load capacity loss rate followed the ascending order: CFRP-reinforced < BFRP(Basalt Fiber Reinforced Polymer)-reinforced < AFRP(Aramid Fiber Reinforced Polymer)-reinforced < GFRP-reinforced < plain specimens. Conversely, the ductility ranking from highest to lowest was AFRP/GFRP > control group > BFRP/CFRP. A probabilistic analysis model was established to complement the experimental findings, encompassing the quantification of hazard levels and reliability indices. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

25 pages, 5206 KiB  
Article
Compressive Behavior of Waste-Steel-Fiber-Reinforced Concrete-Filled Steel Tubes with External Steel Rib Rings
by Jianhua Gao, Xiaopeng Ren, Yongtao Gao, Youzhi Li and Mingshuai Li
Buildings 2025, 15(13), 2246; https://doi.org/10.3390/buildings15132246 - 26 Jun 2025
Viewed by 297
Abstract
In order to explore the axial compression performance of external steel rib ring restraint waste-steel-fiber-reinforced concrete-filled steel tubes (ERWCFSTs), 18 short-column axial compression tests were conducted. The effects of the number of rib rings, rib ring spacing, rib ring setting position, and waste [...] Read more.
In order to explore the axial compression performance of external steel rib ring restraint waste-steel-fiber-reinforced concrete-filled steel tubes (ERWCFSTs), 18 short-column axial compression tests were conducted. The effects of the number of rib rings, rib ring spacing, rib ring setting position, and waste steel fiber (WSF) content on the axial compression performance of the columns were analyzed. The results show that the concrete-filled steel tube (CFST) short columns with rib rings were strengthened, the specimens were mainly characterized by drum-shaped failure, and the buckling was concentrated between the rib rings. Without rib ring specimens, the steel tube is unable to resist the rapid increase in lateral expansion, leading to buckling initiation near the bottom of the specimens. The columns with rib rings exhibited a minimum increase of 32.5% and a maximum increase of 53.17% in load-bearing capacity compared to those without rib rings, with an average improvement of 37.78%. The columns achieved the best ductility when the rib ring spacing was 50 mm. When the rib ring spacing remained constant, columns with a number of rib rings no less than the height-to-diameter ratio (H/D) demonstrated more uniform stress distribution and optimal confinement effects. For a fixed number of rib rings, specimens with rib ring spacing between H/8 and H/4 showed significant improvements in both load-bearing capacity and ductility. The confinement effect was better when the rib rings were positioned in the middle of the column height rather than near the ends. The incorporation of WSF resulted in a minimum increase of 2.86% and a maximum increase of 10.49% in column load-bearing capacity, indicating limited enhancement. However, WSF improved the ductility performance of the columns by at least 10%. Combined with theoretical analysis and experimental data, a formula for calculating the bearing capacity of ERWCFSTs was established. Full article
Show Figures

Figure 1

Back to TopTop