Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = confined electrolytes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2223 KiB  
Article
Plasmonic Sensing Design for Measuring the Na+/K+ Concentration in an Electrolyte Solution Based on the Simulation of Optical Principles
by Hongfu Chen, Shubin Yan, Yi Sun, Youbo Hu, Taiquan Wu and Yuntang Li
Photonics 2025, 12(8), 758; https://doi.org/10.3390/photonics12080758 - 28 Jul 2025
Viewed by 205
Abstract
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations [...] Read more.
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations is able to confine light to sub-wavelength dimensions. The data show that different geometrical factors have different effects on sensing, with the geometry of the rectangular cavity and the radius of the circular ring being the key factors affecting the Fano resonance. Furthermore, the resonance bifurcation enables the structure to achieve a tunable dual Fano resonance system. The structure was tuned to obtain optimal sensitivity (S) and figure of merit values up to 3066 nm/RIU and 78. The designed structure has excellent sensing performance with sensitivities of 0.4767 nm·(mg/dL1) and 0.6 nm·(mg/dL1) in detecting Na+ and K+ concentrations in the electrolyte solution, respectively, and can be easily achieved by the spectrometer. The wavelength accuracy of 0.001 nm can be easily achieved by a spectrum analyzer, which has a broad application prospect in the field of optical integration. Full article
Show Figures

Figure 1

18 pages, 908 KiB  
Article
Diffusiophoresis of a Weakly Charged Dielectric Fluid Droplet in a Cylindrical Pore
by Lily Chuang, Sunny Chen, Nemo Chang, Jean Chien, Venesa Liao and Eric Lee
Micromachines 2025, 16(6), 707; https://doi.org/10.3390/mi16060707 - 13 Jun 2025
Viewed by 518
Abstract
Diffusiophoresis of a weakly charged dielectric droplet in a cylindrical pore is investigated theoretically in this study. The governing fundamental electrokinetic equations are solved with a patched pseudo-spectral method based on Chebyshev polynomials, coupled with a geometric mapping scheme to take care of [...] Read more.
Diffusiophoresis of a weakly charged dielectric droplet in a cylindrical pore is investigated theoretically in this study. The governing fundamental electrokinetic equations are solved with a patched pseudo-spectral method based on Chebyshev polynomials, coupled with a geometric mapping scheme to take care of the irregular solution domain. The impact of the boundary confinement effect upon the droplet motion is explored in detail, which is most profound in narrow channels. We found, among other things, that the droplet moving direction may reverse with varying channel widths. Enhanced motion-inducing double-layer polarization due to the presence of a nearby channel wall is found to be responsible for it. In particular, an interesting and seemingly peculiar phenomenon referred to as the “solidification phenomenon” is observed here at some specific critical droplet sizes or electrolyte strengths in narrow channels, under which all the droplets move at identical speeds regardless of their viscosities. They move like a rigid particle without the surface spinning motions and the induced interior recirculating vortex flows. As the corresponding shear rate is zero at this point, the droplet is resilient to undesirable exterior shear stresses tending to damage the droplet in motion. This provides a helpful guideline in the fabrication of liposomes in drug delivery in terms of the optimal liposome size, as well as in the microfluidic and nanofluidic manipulations of cells, among other potential practical applications. The effects of other parameters of electrokinetic interest are also examined. Full article
Show Figures

Figure 1

17 pages, 4793 KiB  
Article
Ultrafast Rechargeable Aluminum-Chlorine Batteries Enabled by a Confined Chlorine Conversion Chemistry in Molten Salts
by Junling Huang, Linhan Xu, Yu Wang, Xiaolin Wu, Meng Zhang, Hao Zhang, Xin Tong, Changyuan Guo, Kang Han, Jianwei Li, Jiashen Meng and Xuanpeng Wang
Materials 2025, 18(8), 1868; https://doi.org/10.3390/ma18081868 - 18 Apr 2025
Viewed by 508
Abstract
Rechargeable metal chloride batteries, with their high discharge voltage and specific capacity, are promising for next-generation sustainable energy storage. However, sluggish solid-to-gas conversion kinetics between solid metal chlorides and gaseous Cl2 cause unsatisfactory rate capability and limited cycle life, hindering their further [...] Read more.
Rechargeable metal chloride batteries, with their high discharge voltage and specific capacity, are promising for next-generation sustainable energy storage. However, sluggish solid-to-gas conversion kinetics between solid metal chlorides and gaseous Cl2 cause unsatisfactory rate capability and limited cycle life, hindering their further applications. Here we present a rechargeable aluminum-chlorine (Al-Cl2) battery that relies on a confined chlorine conversion chemistry in a molten salt electrolyte, exhibiting ultrahigh rate capability and excellent cycling stability. Both experimental analysis and theoretical calculations reveal a reversible solution-to-gas conversion reaction between AlCl4 and Cl2 in the cathode. The designed nitrogen-doped porous carbon cathode enhances Cl2 adsorption, thereby improving the cycling lifespan and coulombic efficiency of the battery. The resulting Al-Cl2 battery demonstrates a high discharge plateau of 1.95 V, remarkable rate capability without capacity decay at different rates from 5 to 50 A g−1, and good cycling stability with over 1200 cycles at a rate of 10 A g−1. Additionally, we implemented a carbon nanofiber membrane on the anode side to mitigate dendrite growth, which further extends the cycle life to 3000 cycles at an ultrahigh rate of 30 A g−1. This work provides a new perspective on the advancement of high-rate metal chloride batteries. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Batteries: Design and Performance)
Show Figures

Figure 1

14 pages, 3994 KiB  
Article
Impregnation of Se2S6 into a Nitrogen- and Sulfur-Co-Doped Functional Metal Carbides and Nitrides for High-Performance Li-S Batteries
by Lu Chen, Zhongyuan Zheng, Shuo Meng, Wenwei Wu, Weicheng Zhou, Shanshan Yang, Kexuan Liao, Yuanhui Zuo and Ting He
Molecules 2025, 30(5), 1070; https://doi.org/10.3390/molecules30051070 - 26 Feb 2025
Viewed by 524
Abstract
In this study, nitrogen- and sulfur-co-doped MXene (NS-MXene) was developed as a high-performance cathode material for lithium–sulfur (Li-S) batteries. Heterocyclic Se2S6 molecules were successfully confined within the NS-MXene structure using a simple melt impregnation method. The resulting NS-MXene exhibited a [...] Read more.
In this study, nitrogen- and sulfur-co-doped MXene (NS-MXene) was developed as a high-performance cathode material for lithium–sulfur (Li-S) batteries. Heterocyclic Se2S6 molecules were successfully confined within the NS-MXene structure using a simple melt impregnation method. The resulting NS-MXene exhibited a unique wrinkled morphology with a stable structure which facilitated rapid ion transport and provided a physical barrier to mitigate the shuttle effect of polysulfide. The introduction of nitrogen and sulfur heteroatoms into the MXene structure not only shifted the Ti d-band center towards the Fermi level but also significantly polarizes the MXene, enhancing the conversion kinetics and ion diffusion capability while preventing the accumulation of Li2S6. Additionally, the incorporation of Se and S in Se2S6 improved the conductivity compared to S alone, resulting in reduced polarization and enhanced electrical properties. Consequently, NS-MXene/Se2S6 exhibited excellent cycling stability, high reversible capacity, and reliable performance at high current densities and under extreme conditions, such as high sulfur loading and low electrolyte-to-sulfur ratios. This work presents a simple and effective strategy for designing heteroatom-doped MXene materials, offering promising potential for the development of high-performance, long-lasting Li-S batteries for practical applications. Full article
Show Figures

Figure 1

10 pages, 2235 KiB  
Article
Enhancing C-C Coupling in CO2 Electroreduction by Engineering Pore Size of Porous Carbon-Supported Cu Catalysts
by Aiming Huang, Jiayue Yu, Junjun Zhang, Yifan Zhang, Yang Wu, Yong Wang and Wen Luo
Catalysts 2025, 15(3), 199; https://doi.org/10.3390/catal15030199 - 20 Feb 2025
Cited by 15 | Viewed by 1157
Abstract
The electroreduction of CO2 (CO2RR) is a promising and environmentally sustainable approach to closing the carbon cycle. However, achieving high activity and selectivity for multicarbon (C2₊) products remains a significant challenge due to the complexity of reaction pathways. [...] Read more.
The electroreduction of CO2 (CO2RR) is a promising and environmentally sustainable approach to closing the carbon cycle. However, achieving high activity and selectivity for multicarbon (C2₊) products remains a significant challenge due to the complexity of reaction pathways. In this study, porous carbon-supported copper catalysts (CuHCS) with pore sizes of 120 nm (CuHCS120) and 500 nm (CuHCS500) were synthesized to tailor the microenvironment at the electrode–electrolyte interface and enhance product selectivity. CuHCS120 achieved a maximum faradaic efficiency (FE) for C2₊ products of 46%, double that of CuHCS500 (23%). In contrast, CuHCS500 showed a higher FE for CO (36%) compared to CuHCS120 (14%) at the same potential. In-depth ex situ and in situ investigations revealed that smaller pores promote the enrichment and adsorption of *CO intermediates, thereby enhancing C–C coupling and the formation of C2₊ products. These findings underscore the critical role of structural confinement in modulating the catalytic microenvironment and provide valuable insights for the rational design of advanced catalysts for CO2RR. Full article
(This article belongs to the Special Issue Nanostructured Materials for Photocatalysis and Electrocatalysis)
Show Figures

Graphical abstract

11 pages, 2190 KiB  
Article
Transient Electroosmosis on a Soft Surface
by Hiroyuki Ohshima
Colloids Interfaces 2025, 9(1), 12; https://doi.org/10.3390/colloids9010012 - 4 Feb 2025
Cited by 1 | Viewed by 1148
Abstract
A general theory was developed for the time-dependent transient electroosmosis on a planar soft surface, i.e., a polyelectrolyte-coated solid surface in an electrolyte solution, when an electric field is suddenly applied. This serves as a simple model for the time-dependent electrokinetic phenomena occurring [...] Read more.
A general theory was developed for the time-dependent transient electroosmosis on a planar soft surface, i.e., a polyelectrolyte-coated solid surface in an electrolyte solution, when an electric field is suddenly applied. This serves as a simple model for the time-dependent electrokinetic phenomena occurring at biointerfaces. A closed-form approximate expression is derived for the electroosmotic velocity distribution within the polyelectrolyte layer as a function of both position and time. This analysis reveals that the temporal and spatial variations in the electroosmotic flow caused by the surface charges of the solid surface is confined to the region near the solid surface. In contrast, the variations due to the fixed charges within the polyelectrolyte layer extend over a wider region inside the polyelectrolyte layer. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Figure 1

6 pages, 993 KiB  
Proceeding Paper
Silica-Polymer Ionogel for Energy Storage Applications
by Raquel San Emeterio, Antía Santiago-Alonso, Pablo Vallet, María Villanueva, Josefa Salgado and Juan José Parajó
Chem. Proc. 2024, 16(1), 61; https://doi.org/10.3390/ecsoc-28-20199 - 14 Nov 2024
Cited by 1 | Viewed by 539
Abstract
Ionic Liquids (ILs) are composed of ions, usually an organic cation with an organic or inorganic anion, with a melting point below 100 °C and in most cases below room temperature. These compounds exhibit important and characteristic properties such as high ionic conductivity, [...] Read more.
Ionic Liquids (ILs) are composed of ions, usually an organic cation with an organic or inorganic anion, with a melting point below 100 °C and in most cases below room temperature. These compounds exhibit important and characteristic properties such as high ionic conductivity, good thermal and electrochemical stability and low toxicity and flammability. Subsequently, ILs have been studied as promising substitutes for conventional electrolytes for electrochemical applications, both as bulk liquids or confined in polymer matrices, commonly known as ionogels, which have the advantages of not leaking and enhancing safety and manipulation during device assembly. For this work, the ionogel of the IL 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2C1Im][TFSI]) was synthesized by the polymerization of Tetramethyl orthosilicate (TMOS) and Dimethyldimethoxysilane (DMDMS). Thermal analyses of the pure ionic liquid and electrochemical response of the ionogel were studied in comparison with the corresponding bulk IL by using differential scanning calorimetry (DSC), thermogravimetry (TGA) and broad-band dielectric spectroscopy (BBDS), respectively. Full article
Show Figures

Figure 1

13 pages, 4716 KiB  
Article
Facile In Situ Building of Sulfonated SiO2 Coating on Porous Skeletons of Lithium-Ion Battery Separators
by Lei Ding, Dandan Li, Sihang Zhang, Yuanjie Zhang, Shuyue Zhao, Fanghui Du and Feng Yang
Polymers 2024, 16(18), 2659; https://doi.org/10.3390/polym16182659 - 20 Sep 2024
Cited by 1 | Viewed by 1301
Abstract
Polyolefin separators with worse porous structures and compatibilities mismatch the internal environment and deteriorate lithium-ion battery (LIB) combination properties. In this study, a sulfonated SiO2 (SSD) composited polypropylene separator (PP@SSD) is prepared to homogenize pore sizes and in situ-built SSD coatings on [...] Read more.
Polyolefin separators with worse porous structures and compatibilities mismatch the internal environment and deteriorate lithium-ion battery (LIB) combination properties. In this study, a sulfonated SiO2 (SSD) composited polypropylene separator (PP@SSD) is prepared to homogenize pore sizes and in situ-built SSD coatings on porous skeletons. Imported SSD uniformizes pore sizes owing to centralized interface distributions within casting films. Meanwhile, abundant cavitations enable the in situ SSD coating to facilely fix onto porous skeleton surfaces during separator fabrications, which feature simple techniques, low cost, environmental friendliness, and the capability for continuous fabrications. A sturdy SSD coating on the porous skeleton confines thermal shrinkages and offers a superior safety guarantee for LIBs. The abundant sulfonic acid groups of SSD endow PP@SSD with excellent electrolyte affinity, which lowers Li+ transfer barriers and optimizes interfacial compatibility. Therefore, assembled LIBs give the optimal C-rate capacity and cycling stability, holding a capacity retention of 82.7% after the 400th cycle at 0.5 C. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 2nd Edition)
Show Figures

Figure 1

16 pages, 5117 KiB  
Article
Exploring Electrochemical Direct Writing Machining of Patterned Microstructures on Zr702 with Polyacrylamide Polymer Electrolyte
by Junfeng He, Wenjie Chen, Junjie Wang, Ming Wu, Li Zhou, Ri Chen and Huazhuo Liang
Micromachines 2024, 15(9), 1074; https://doi.org/10.3390/mi15091074 - 26 Aug 2024
Cited by 1 | Viewed by 1260
Abstract
Zirconium alloys possess excellent wear resistance, which ensures the durability and longevity of the components, making them widely used in medical and other fields. To enhance the functionality of these materials, it is often necessary to fabricate functional microstructures on their surfaces. Electrochemical [...] Read more.
Zirconium alloys possess excellent wear resistance, which ensures the durability and longevity of the components, making them widely used in medical and other fields. To enhance the functionality of these materials, it is often necessary to fabricate functional microstructures on their surfaces. Electrochemical machining (ECM) techniques demonstrate excellent machining performance for these metals, particularly in the processing of microstructures on complex curved surfaces. However, ECM often faces challenges due to the fluid nature of the electrolyte, resulting in low machining accuracy and localization. This paper proposes a novel method for fabricating complex patterned microstructures using a maskless electrochemical direct writing technique with a polyacrylamide (PAM) polymer electrolyte. By leveraging the non-Newtonian properties of PAM, this method effectively confines the electrolyte to specific areas, thus addressing the issue of poor localization in traditional ECM and reducing stray corrosion. To elucidate the electrochemical removal mechanism of Zr702 in the presence of PAM, polarization curves, viscosity characteristics, and current efficiency parameters were analyzed. Additionally, an experimental study was conducted using a custom-designed nozzle structure. The results showed that the PAM electrolyte could effectively reduce the EF, positively impacting machining accuracy and localization. By controlling the nozzle’s motion trajectory, complex microstructures were successfully fabricated through direct writing, demonstrating promising application prospects. Full article
Show Figures

Figure 1

11 pages, 5061 KiB  
Article
Interface Engineering Induced N, P-Doped Carbon-Shell-Encapsulated FeP/NiP2/Ni5P4/NiP Nanoparticles for Highly Efficient Hydrogen Evolution Reaction
by Ting Zhang, Jianguo Zhong, Wei Gao and Yuxin Wang
Coatings 2024, 14(7), 817; https://doi.org/10.3390/coatings14070817 - 1 Jul 2024
Cited by 3 | Viewed by 1732
Abstract
Modifying the electronic structure of a catalyst through interface engineering is an effective strategy to enhance its activity in the hydrogen evolution reaction (HER). Interface engineering is a viable strategy to enhance the catalytic activity of transition metal phosphides (TMPs) in the HER [...] Read more.
Modifying the electronic structure of a catalyst through interface engineering is an effective strategy to enhance its activity in the hydrogen evolution reaction (HER). Interface engineering is a viable strategy to enhance the catalytic activity of transition metal phosphides (TMPs) in the HER process. The interface-engineered FeP/NiP2/Ni5P4/NiP multi-metallic phosphide nanoparticles confined in a N, P-doped carbon matrix was developed by a simple one-step low-temperature phosphorization treatment, which only requires 72 and 155 mV to receive the current density of 10 mA/cm2 in acid and alkaline electrolyte, respectively. This enhanced performance can be primarily attributed to the heterointerface of FeP/NiP2/Ni5P4/NiP multi-metallic phosphides, which promotes electron redistribution and optimizes the adsorption/desorption strength of H* on the active sites. Furthermore, the N, P-doped carbon framework that encapsulates the nanoparticles inhibits their aggregation, leading to an increased availability of active sites throughout the reaction. The results of this study open up a straightforward and innovative approach to developing high-performance catalysts for hydrogen production. Full article
Show Figures

Figure 1

19 pages, 9237 KiB  
Article
Diffusiophoresis of a Charged Soft Sphere in a Charged Spherical Cavity
by Wei-Zhi Chen and Huan-Jang Keh
Colloids Interfaces 2024, 8(3), 36; https://doi.org/10.3390/colloids8030036 - 2 Jun 2024
Viewed by 1668
Abstract
The quasi-steady diffusiophoresis of a soft particle composed of an uncharged hard sphere core and a uniformly charged porous surface layer in a concentric charged spherical cavity full of a symmetric electrolyte solution with a concentration gradient is analyzed. By using a regular [...] Read more.
The quasi-steady diffusiophoresis of a soft particle composed of an uncharged hard sphere core and a uniformly charged porous surface layer in a concentric charged spherical cavity full of a symmetric electrolyte solution with a concentration gradient is analyzed. By using a regular perturbation method with small fixed charge densities of the soft particle and cavity wall, the linearized electrokinetic equations relevant to the fluid velocity field, electric potential profile, and ionic concentration distributions are solved. A closed-form formula for the diffusiophoretic (electrophoretic and chemiphoretic) velocity of the soft particle is obtained as a function of the ratios of the core-to-particle radii, particle-to-cavity radii, particle radius to the Debye screening length, and particle radius to the permeation length in the porous layer. In typical cases, the confining charged cavity wall significantly influences the diffusiophoresis of the soft particle. The fluid flow caused by the diffusioosmosis (electroosmosis and chemiosmosis) along the cavity wall can considerably change the diffusiophoretic velocity of the particle and even reverse its direction. In general, the diffusiophoretic velocity decreases with increasing core-to-particle radius ratios, particle-to-cavity radius ratios, and the ratio of the particle radius to the permeation length in the porous layer, but increases with increasing ratios of the particle radius to the Debye length. Full article
Show Figures

Figure 1

14 pages, 3803 KiB  
Article
Preparation and Characterization of Multielement Composite Oxide Nanomaterials Containing Ce, Zr, Y, and Yb via Continuous Hydrothermal Flow Synthesis
by Qingyun Li, Zihua Wang and Xuezhong Wang
Micromachines 2024, 15(1), 154; https://doi.org/10.3390/mi15010154 - 20 Jan 2024
Viewed by 1687
Abstract
The synthesis of multielement composite oxide nanomaterials containing Ce, Zr, Y, and Yb was investigated using a micro confined jet mixer reactor operated in continuous mode under supercritical water conditions. The obtained nanoparticles were characterized using ICP-AES, SEM-EDS, FTIR, Raman spectroscopy, XRD, and [...] Read more.
The synthesis of multielement composite oxide nanomaterials containing Ce, Zr, Y, and Yb was investigated using a micro confined jet mixer reactor operated in continuous mode under supercritical water conditions. The obtained nanoparticles were characterized using ICP-AES, SEM-EDS, FTIR, Raman spectroscopy, XRD, and TEM. All samples exhibited a uniform particle shape and a narrow particle size distribution. An analysis of the d-spacing results using selected electron area diffraction (SAED) patterns confirmed the production of cubic-phase crystals. A BET test was employed to determine the specific surface area of the prepared nanoparticles. OSC and TPR techniques were utilized to characterize the oxygen storage capacity and reduction performance of the obtained samples, with an analysis conducted to determine how the different proportions of elements affected the performance of multielement mixed oxides. The ionic conductivity of multielement composite oxide was measured using alternating current impedance spectroscopy (EIS), and the impact of Y, Ce, and Yb on the electrolyte material’s ionic conductivity was analyzed. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices)
Show Figures

Figure 1

14 pages, 2959 KiB  
Article
Impact of Single-Walled Carbon Nanotube Functionalization on Ion and Water Molecule Transport at the Nanoscale
by Alia Mejri, Nicolas Arroyo, Guillaume Herlem, John Palmeri, Manoel Manghi, François Henn and Fabien Picaud
Nanomaterials 2024, 14(1), 117; https://doi.org/10.3390/nano14010117 - 3 Jan 2024
Cited by 6 | Viewed by 2734
Abstract
Nanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes [...] Read more.
Nanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes is investigated using classical force field molecular dynamics simulations. By combining one single walled carbon nanotube (uniformly charged or not) with two perforated graphene sheets, we mimic single nanopore devices similar to experimental ones. The graphitic edges delimit two reservoirs of water and ions in the simulation cell from which a voltage is imposed through the application of an external electric field. By analyzing the evolution of the electrolyte conductivity, the role of the carbon nanotube geometric parameters (radius and chirality) and of the functionalization of the carbon nanotube entrances with OH or COO groups is investigated for different concentrations of group functions. Full article
Show Figures

Figure 1

14 pages, 4464 KiB  
Article
Metabolomic Analysis of Arabidopsis ost1-4 Mutant Revealed the Cold Response Regulation Mechanisms by OPEN STOMATA 1 (OST1) at Metabolic Level
by Fangming Wu, Zhimin Du, Zhengrong Hu, Lu Gan, Abul Bashar Mohammad Khaldun, Erick Amombo, Xuebing Huang and Jibiao Fan
Agronomy 2023, 13(10), 2567; https://doi.org/10.3390/agronomy13102567 - 6 Oct 2023
Cited by 2 | Viewed by 1884
Abstract
Cold stress is one of the major abiotic stresses that limits the growth and development of plants. Improving the cold tolerance of plants is essential to enhance crop productivity in the changing environment. OPEN STOMATA 1 (OST1), also known as sucrose non-fermenting 1 [...] Read more.
Cold stress is one of the major abiotic stresses that limits the growth and development of plants. Improving the cold tolerance of plants is essential to enhance crop productivity in the changing environment. OPEN STOMATA 1 (OST1), also known as sucrose non-fermenting 1 related protein kinases 2.6/2E (SnRK2.6/SnRK2E), has been reported to involved in cold stress response in plants. This interesting protein is confined to expressed in guard cells and vascular system. However, the detailed mechanism of how OST1 regulates cold stress, especially at the metabolomic level is largely unknown. In this study, metabolomic profiling of ost1 mutant and WT Arabidopsis plants under cold stress was investigated. The results showed that ost1-4 mutants displayed cold sensitive phenotypes compared with the WT plant, as evidenced by higher MDA content and electrolyte leakage and lower photosynthetic characteristics. Next, the metabolic changes between ost1-4 and WT plants in response to cold stress was analyzed by using the GC-TOF-MS system. The results showed that numbers of metabolites were identified to be related to OST1 regulated cold stress response. A large portion of the metabolites were carbohydrates and organic acids. The KEGG enrichment analysis revealed that the alanine, aspartate and glutamate metabolism, cyanoamino acid metabolism and citrate cycle (TCA cycle) were presumptive pathways that most related to OST1 regulated cold stress response. Gene expression such as AtGDHs, AtPPC1 and AtAK1 was also in line with the metabolic changes in the presumed pathways. Overall, this study provides fundamental knowledge for understanding the underlying metabolic mechanisms of OST1 mediated cold stress response in plants. Full article
(This article belongs to the Special Issue Advances in Environmental Stress Biology: From Omics Approaches)
Show Figures

Figure 1

21 pages, 3894 KiB  
Article
Fe3O4 Nanoparticle-Decorated Bimodal Porous Carbon Nanocomposite Anode for High-Performance Lithium-Ion Batteries
by Juti Rani Deka, Diganta Saikia, Yuan-Hung Lai, Hsien-Ming Kao and Yung-Chin Yang
Batteries 2023, 9(10), 482; https://doi.org/10.3390/batteries9100482 - 22 Sep 2023
Cited by 7 | Viewed by 2258
Abstract
A new nanocomposite system based on Fe3O4 nanoparticles confined in three-dimensional (3D) dual-mode cubic porous carbon is developed using the nanocasting and wet-impregnation methods to assess its performance as an anode for lithium-ion batteries. Several Fe3O4 precursor [...] Read more.
A new nanocomposite system based on Fe3O4 nanoparticles confined in three-dimensional (3D) dual-mode cubic porous carbon is developed using the nanocasting and wet-impregnation methods to assess its performance as an anode for lithium-ion batteries. Several Fe3O4 precursor concentrations are chosen to optimize and determine the best-performing nanocomposite composition. The cubic mesoporous carbon CMK-9 offers a better ability for the Fe3O4 nanoparticles to be accommodated inside the mesopores, efficiently buffering the variation in volume and equally enhancing electrode/electrolyte contact for rapid charge and mass transfer. Among the prepared nanocomposites, the Fe3O4(13)@C9 anode delivers an excellent reversible discharge capacity of 1222 mA h g−1 after 150 cycles at a current rate of 100 mA g−1, with a capacity retention of 96.8% compared to the fourth cycle (1262 mA h g−1). At a higher current rate of 1000 mA g−1, the nanocomposite anode offers a superior discharge capacity of 636 mA h g−1 beyond 300 cycles. The present study reveals the use of a 3D mesoporous carbon material as a scaffold for anchoring Fe3O4 nanoparticles with impressive potential as an anode for new-generation lithium-ion batteries. Full article
(This article belongs to the Special Issue Advanced Cathode and Anode Materials for Lithium/Sodium-Ion Batteries)
Show Figures

Graphical abstract

Back to TopTop