Ultrafast Rechargeable Aluminum-Chlorine Batteries Enabled by a Confined Chlorine Conversion Chemistry in Molten Salts
Highlights
- Novel Aluminum–Chlorine Battery Design: A rechargeable Al-Cl2 battery based on a molten salt electrolyte is proposed, achieving high-rate performance and excellent cycling stability.
- Chlorine Conversion Chemistry Mechanism: Experimental analysis and theoretical calculations reveal a reversible solution-to-gas conversion reaction between AlCl4− and Cl2 at the cathode.
- High-Performance Metrics: The Al-Cl2 battery demonstrates a high discharge plateau of 1.95 V, remarkable rate capability at rates ranging from 5 to 50 A g−1, and good cycling stability with over 1200 cycles at 10 A g−1.
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Lu, Y.-C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499. [Google Scholar] [CrossRef]
- Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. [Google Scholar] [CrossRef]
- Lin, M.-C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.-Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B.-J.; et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328. [Google Scholar] [CrossRef]
- Dhir, S.; Wheeler, S.; Capone, I.; Pasta, M. Outlook on K-Ion Batteries. Chem 2020, 6, 2442–2460. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Z.; Shi, H.; Du, A.; Sun, M.; Cui, G. Progress and perspective on rechargeable magnesium-ion batteries. Sci. China Chem. 2024, 67, 214–246. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, G.; Cui, X.; Liu, X.; Zhong, H.; Zhi, C.; Yang, Y. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 2024, 17, 369–385. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, S.; Yang, M.; Xiao, B.; Zhao, Y.; Luo, J.; Fu, J.; Wang, C.; Li, X.; Li, W.; et al. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries. Nat. Mater. 2025, 24, 83–91. [Google Scholar] [CrossRef]
- Hou, D.; Xia, D.; Gabriel, E.; Russell, J.A.; Graff, K.; Ren, Y.; Sun, C.-J.; Lin, F.; Liu, Y.; Xiong, H. Spatial and Temporal Analysis of Sodium-Ion Batteries. ACS Energy Lett. 2021, 6, 4023–4054. [Google Scholar] [CrossRef]
- Dhir, S.; Cattermull, J.; Jagger, B.; Schart, M.; Olbrich, L.F.; Chen, Y.; Zhao, J.; Sada, K.; Goodwin, A.; Pasta, M. Characterisation and modelling of potassium-ion batteries. Nat. Commun. 2024, 15, 7580. [Google Scholar] [CrossRef]
- Wu, X.; Qiu, S.; Liu, Y.; Xu, Y.; Jian, Z.; Yang, J.; Ji, X.; Liu, J. The Quest for Stable Potassium-Ion Battery Chemistry. Adv. Mater. 2022, 34, 2106876. [Google Scholar] [CrossRef]
- Tao, R.; Fu, H.; Gao, C.; Fan, L.; Xie, E.; Lyu, W.; Zhou, J.; Lu, B. Tailoring Interface to Boost the High-Performance Aqueous Al Ion Batteries. Adv. Funct. Mater. 2023, 33, 2303072. [Google Scholar] [CrossRef]
- Jia, B.-E.; Thang, A.Q.; Yan, C.; Liu, C.; Lv, C.; Zhu, Q.; Xu, J.; Chen, J.; Pan, H.; Yan, Q. Rechargeable Aqueous Aluminum-Ion Battery: Progress and Outlook. Small 2022, 18, 2107773. [Google Scholar] [CrossRef]
- Peng, Z.; Yan, H.; Zhang, Q.; Liu, S.; Jun, S.C.; Poznyak, S.; Guo, N.; Li, Y.; Tian, H.; Dai, L.; et al. Stabilizing Zinc Anode through Ion Selection Sieving for Aqueous Zn-Ion Batteries. Nano Lett. 2024, 24, 9137–9146. [Google Scholar] [CrossRef]
- Boruah, B.D.; Mathieson, A.; Wen, B.; Feldmann, S.; Dose, W.M.; De Volder, M. Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 2020, 13, 2414–2421. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Ji, Y.; Ma, J.; Yu, H. Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives. Adv. Mater. 2018, 30, 1706310. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, H.; Li, J.; Sun, Z.; He, K.; Cheng, H.-M.; Li, F. The Rechargeable Aluminum Battery: Opportunities and Challenges. Angew. Chem. Int. Ed. 2019, 58, 11978–11996. [Google Scholar] [CrossRef]
- Chiku, M.; Takeda, H.; Matsumura, S.; Higuchi, E.; Inoue, H. Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery. ACS Appl. Mater. Interfaces 2015, 7, 24385–24389. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, B.; Ye, D.; Zhu, X.; Lyu, M.; Wang, L. An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS2 Cathode Active Material for Aluminum-Ion Batteries. Adv. Mater. 2017, 29, 1606132. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Li, X.; Wang, X.; Hu, J.; Han, F.; Fan, X.; Suo, L.; Pearse, A.J.; Lee, S.B.; Rubloff, G.W.; et al. A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte. Angew. Chem. Int. Ed. 2016, 55, 9898–9901. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhang, S.; Meng, Z.; He, W.; Han, W.-Q. Rechargeable Aluminum/Iodine Battery Redox Chemistry in Ionic Liquid Electrolyte. ACS Energy Lett. 2017, 2, 1170–1176. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, S.; Tu, J.; Song, W.-L.; Xiao, X.; Li, S.; Wang, M.; Lei, H.; Tian, D.; Chen, H.; et al. Rechargeable ultrahigh-capacity tellurium–aluminum batteries. Energy Environ. Sci. 2019, 12, 1918–1927. [Google Scholar] [CrossRef]
- Yang, H.; Yin, L.; Liang, J.; Sun, Z.; Wang, Y.; Li, H.; He, K.; Ma, L.; Peng, Z.; Qiu, S.; et al. An Aluminum–Sulfur Battery with a Fast Kinetic Response. Angew. Chem. Int. Ed. 2018, 57, 1898–1902. [Google Scholar] [CrossRef]
- Xie, Z.; Sun, L.; Sajid, M.; Feng, Y.; Lv, Z.; Chen, W. Rechargeable alkali metal–chlorine batteries: Advances, challenges, and future perspectives. Chem. Soc. Rev. 2024, 53, 8424–8456. [Google Scholar] [CrossRef]
- Sui, Y.; Zhuo, Z.; Lei, M.; Wang, L.; Yu, M.; Scida, A.M.; Sandstrom, S.K.; Stickle, W.; O’Larey, T.D.; Jiang, D.-e.; et al. Li2MnO3: A Catalyst for a Liquid Cl2 Electrode in Low-Temperature Aqueous Batteries. Adv. Mater. 2023, 35, 2302595. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Zhi, C. Halogen-powered static conversion chemistry. Nat. Rev. Chem. 2024, 8, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Wang, W.; Ma, Y.; Chuai, M.; Zheng, X.; Wang, M.; Xu, Y.; Yuan, Y.; Sun, J.; Li, K.; et al. Aqueous Zinc–Chlorine Battery Modulated by a MnO2 Redox Adsorbent. Small Methods 2024, 8, 2201553. [Google Scholar] [CrossRef]
- Yuan, B.; Xu, Q.; Zhao, X.; Geng, S.; Tang, S.; Zhang, C.; Sun, H. Revitalizing Chlorine–Based Batteries for Low–Cost and High–Performance Energy Storage. Adv. Energy Mater. 2024, 14, 2303127. [Google Scholar] [CrossRef]
- Xu, Y.; Jiao, L.; Ma, J.; Zhang, P.; Tang, Y.; Liu, L.; Liu, Y.; Ding, H.; Sun, J.; Wang, M.; et al. Metal-organic frameworks for nanoconfinement of chlorine in rechargeable lithium-chlorine batteries. Joule 2023, 7, 515–528. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, M.; Sajid, M.; Meng, Y.; Xie, Z.; Sun, L.; Jin, J.; Chen, W.; Zhang, S. Organocatalytic Lithium Chloride Oxidation by Covalent Organic Frameworks for Rechargeable Lithium-Chlorine Batteries. Angew. Chem. Int. Ed. 2024, 63, e202315931. [Google Scholar] [CrossRef]
- Ma, H.; Wang, X.; Wang, C.; Zhang, H.; Ma, X.; Deng, W.; Chen, R.; Cao, T.; Chai, Y.; He, Y.; et al. Metal Halides for High-Capacity Energy Storage. Small 2023, 19, 2205071. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Liang, B.; Chen, A.; Zhu, J.; Li, Q.; Huang, Z.; Li, X.; Wang, Y.; Wang, X.; Xiong, B.; et al. Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat. Commun. 2023, 14, 1856. [Google Scholar] [CrossRef]
- Hausmann, J.N.; Schlögl, R.; Menezes, P.W.; Driess, M. Is direct seawater splitting economically meaningful? Energy Environ. Sci. 2021, 14, 3679–3685. [Google Scholar] [CrossRef]
- Kim, J.T.; Jorné, J. The Kinetics of a Chlorine Graphite Electrode in the Zinc-Chlorine Battery. J. Electrochem. Soc. 1977, 124, 1473. [Google Scholar] [CrossRef]
- Kralik, D.; Jorne, J. Hydrogen Evolution and Zinc Nodular Growth in the Zinc Chloride Battery. J. Electrochem. Soc. 1980, 127, 2335. [Google Scholar] [CrossRef]
- Zhu, G.; Tian, X.; Tai, H.-C.; Li, Y.-Y.; Li, J.; Sun, H.; Liang, P.; Angell, M.; Huang, C.-L.; Ku, C.-S.; et al. Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 2021, 596, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Xu, Q.; Zhang, H.; Geng, S.; Cui, R.; Xiao, T.; Chen, P.; Wu, L.; Yu, W.; Peng, H.; et al. Ultrahigh-Rate Na/Cl2 Batteries Through Improved Electron and Ion Transport by Heteroatom-Doped Bicontinuous-Structured Carbon. Angew. Chem. Int. Ed. 2023, 62, e202312001. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, W.; Du, X.; Wang, C.; Qu, X.; Gao, X.; Dong, S.; Cui, G.; Chen, L. Transforming a Primary Li-SOCl2 Battery into a High-Power Rechargeable System via Molecular Catalysis. J. Am. Chem. Soc. 2023, 145, 22158–22167. [Google Scholar] [CrossRef]
- Ito, Y.; Nohira, T. Non-conventional electrolytes for electrochemical applications. Electrochim. Acta 2000, 45, 2611–2622. [Google Scholar] [CrossRef]
- Jiang, T.; Chollier Brym, M.J.; Dubé, G.; Lasia, A.; Brisard, G.M. Electrodeposition of aluminium from ionic liquids: Part I—Electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf. Coat. Technol. 2006, 201, 1–9. [Google Scholar] [CrossRef]
- Wang, H.; Gu, S.; Bai, Y.; Chen, S.; Zhu, N.; Wu, C.; Wu, F. Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J. Mater. Chem. A 2015, 3, 22677–22686. [Google Scholar] [CrossRef]
- Holleck, G.L. The Reduction of Chlorine on Carbon in AlCl3-KCl-NaCl Melts. J. Electrochem. Soc. 1972, 119, 1158. [Google Scholar] [CrossRef]
- Song, Y.; Jiao, S.; Tu, J.; Wang, J.; Liu, Y.; Jiao, H.; Mao, X.; Guo, Z.; Fray, D.J. A long-life rechargeable Al ion battery based on molten salts. J. Mater. Chem. A 2017, 5, 1282–1291. [Google Scholar] [CrossRef]
- Pang, Q.; Meng, J.; Gupta, S.; Hong, X.; Kwok, C.Y.; Zhao, J.; Jin, Y.; Xu, L.; Karahan, O.; Wang, Z.; et al. Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting. Nature 2022, 608, 704–711. [Google Scholar] [CrossRef]
- Xie, Z.; Zhu, Z.; Liu, Z.; Sajid, M.; Chen, N.; Wang, M.; Meng, Y.; Peng, Q.; Liu, S.; Wang, W.; et al. Rechargeable Hydrogen–Chlorine Battery Operates in a Wide Temperature Range. J. Am. Chem. Soc. 2023, 145, 25422–25430. [Google Scholar] [CrossRef]
- Lan, Z.-A.; Wu, M.; Fang, Z.; Zhang, Y.; Chen, X.; Zhang, G.; Wang, X. Ionothermal Synthesis of Covalent Triazine Frameworks in a NaCl-KCl-ZnCl2 Eutectic Salt for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2022, 61, e202201482. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Hong, X.; Xiao, Z.; Xu, L.; Zhu, L.; Jia, Y.; Liu, F.; Mai, L.; Pang, Q. Rapid-charging aluminium-sulfur batteries operated at 85 °C with a quaternary molten salt electrolyte. Nat. Commun. 2024, 15, 596. [Google Scholar] [CrossRef]
- Hu, S.-W.; Wang, Z.-X.; Qu, F.; Chu, T.-W.; Wang, X.-Y. Reaction Mechanism of Cl2 and 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids. J. Phys. Chem. A 2011, 115, 13452–13466. [Google Scholar] [CrossRef]
- Lenoir, D.; Chiappe, C. What is the Nature of the First-Formed Intermediates in the Electrophilic Halogenation of Alkenes, Alkynes, and Allenes? Chem.—A Eur. J. 2003, 9, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Mukai, T.; Nishikawa, K. Syntheses and crystal structures of two ionic liquids with halogen-bonding groups: 4,5-dibromo- and 4,5-diiodo-1-butyl-3-methylimidazolium trifluoromethanesulfonates. Solid State Sci. 2010, 12, 783–788. [Google Scholar] [CrossRef]
- Han, X.; Bai, Y.; Zhao, R.; Li, Y.; Wu, F.; Wu, C. Electrolytes for rechargeable aluminum batteries. Prog. Mater Sci. 2022, 128, 100960. [Google Scholar] [CrossRef]
- Trémillon, B.; Letisse, G. Proprietes en solution dans le tetrachloroaluminate de sodium fondu I. systemes “acide-base”. J. Electroanal. Chem. Interfacial Electrochem. 1968, 17, 371–386. [Google Scholar] [CrossRef]
- Zhu, G.; Liang, P.; Huang, C.-L.; Wu, S.-C.; Huang, C.-C.; Li, Y.-Y.; Jiang, S.-K.; Huang, W.-H.; Li, J.; Wang, F.; et al. Shedding light on rechargeable Na/Cl2 battery. Proc. Natl. Acad. Sci. USA 2023, 120, e2310903120. [Google Scholar] [CrossRef]
- Liang, P.; Zhu, G.; Huang, C.-L.; Li, Y.-Y.; Sun, H.; Yuan, B.; Wu, S.-C.; Li, J.; Wang, F.; Hwang, B.-J.; et al. Rechargeable Li/Cl2 Battery Down to −80 °C. Adv. Mater. 2024, 36, 2307192. [Google Scholar] [CrossRef]
- Geng, S.; Zhao, X.; Xu, Q.; Yuan, B.; Wang, Y.; Liao, M.; Ye, L.; Wang, S.; Ouyang, Z.; Wu, L.; et al. A rechargeable Ca/Cl2 battery. Nat. Commun. 2024, 15, 944. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.; Wang, M.; Meng, Y.; Xie, Z.; Sun, L.; Huang, C.; Chen, W. Enrichment of Chlorine in Porous Organic Nanocages for High-Performance Rechargeable Lithium–Chlorine Batteries. J. Am. Chem. Soc. 2023, 145, 27877–27885. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Xu, L.; Wang, Y.; Wu, X.; Zhang, M.; Zhang, H.; Tong, X.; Guo, C.; Han, K.; Li, J.; et al. Ultrafast Rechargeable Aluminum-Chlorine Batteries Enabled by a Confined Chlorine Conversion Chemistry in Molten Salts. Materials 2025, 18, 1868. https://doi.org/10.3390/ma18081868
Huang J, Xu L, Wang Y, Wu X, Zhang M, Zhang H, Tong X, Guo C, Han K, Li J, et al. Ultrafast Rechargeable Aluminum-Chlorine Batteries Enabled by a Confined Chlorine Conversion Chemistry in Molten Salts. Materials. 2025; 18(8):1868. https://doi.org/10.3390/ma18081868
Chicago/Turabian StyleHuang, Junling, Linhan Xu, Yu Wang, Xiaolin Wu, Meng Zhang, Hao Zhang, Xin Tong, Changyuan Guo, Kang Han, Jianwei Li, and et al. 2025. "Ultrafast Rechargeable Aluminum-Chlorine Batteries Enabled by a Confined Chlorine Conversion Chemistry in Molten Salts" Materials 18, no. 8: 1868. https://doi.org/10.3390/ma18081868
APA StyleHuang, J., Xu, L., Wang, Y., Wu, X., Zhang, M., Zhang, H., Tong, X., Guo, C., Han, K., Li, J., Meng, J., & Wang, X. (2025). Ultrafast Rechargeable Aluminum-Chlorine Batteries Enabled by a Confined Chlorine Conversion Chemistry in Molten Salts. Materials, 18(8), 1868. https://doi.org/10.3390/ma18081868