Facile In Situ Building of Sulfonated SiO2 Coating on Porous Skeletons of Lithium-Ion Battery Separators
Abstract
:1. Introduction
2. Experiments
2.1. Separator Preparation
2.2. Tests and Characterizations
3. Results and Discussion
3.1. Properties of Casting Films
3.2. Porous Structures
3.3. Wettability, Thermal Stability, and Mechanical Properties
3.4. Electrochemical Performance
3.5. Battery Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, L.; Deng, Y.; Luo, T.; Xie, R.; Ju, X.; Wang, W.; Pan, D.; Liu, Z.; Chu, L. A smart membrane with negative thermo-responsiveness in battery electrolyte solution. J. Membr. Sci. 2024, 692, 122266. [Google Scholar] [CrossRef]
- Guo, J.X.; Gao, C.; Liu, H.; Jiang, F.; Liu, Z.; Wang, T.; Ma, Y.; Zhong, Y.; He, J.; Zhu, Z.; et al. Inherent thermal-responsive strategies for safe lithium batteries. J. Energy Chem. 2023, 89, 519–534. [Google Scholar] [CrossRef]
- Wei, Z.; Yu, L.; Lu, S.; Zhao, Y. Reversibly thermo-responsive materials applied in lithium batteries. Energy Storage Mater. 2023, 61, 102901. [Google Scholar] [CrossRef]
- Chen, S.; Li, Y.; Feng, Y.; Feng, W. Thermally responsive polymers for overcoming thermal runaway in high-safety electrochemical storage devices. Mater. Chem. Front. 2023, 7, 1562–1590. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Li, H.; Cao, Y.; Yang, H.; Ai, X. Reversible Temperature-Responsive Cathode for Thermal Protection of Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 5236–5244. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Chen, Z.; Duan, C.; Yuan, B. Anchoring porous F-TiO2 particles by directed-assembly on PMIA separators for enhancing safety and electrochemical performances of Li-ion batteries. Electrochim. Acta 2023, 443, 141926. [Google Scholar] [CrossRef]
- Yang, Y.; Bai, Z.; Liu, S.; Zhu, Y.; Zheng, J.; Chen, G.; Huang, B. Self-Protecting Aqueous Lithium-Ion Batteries. Small 2022, 18, 2203035. [Google Scholar] [CrossRef]
- Francis CF, J.; Kyratzis, I.L.; Best, A.S. Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review. Adv. Mater. 2020, 32, 1904205. [Google Scholar] [CrossRef]
- Saal, A.; Hagemann, T.; Schubert, U.S. Polymers for Battery Applications-Active Materials, Membranes, and Binders. Adv. Energy Mater. 2020, 11, 2001984. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Y.; Hu, Q.; Guo, S.; Yu, L.; Li, Q.; Liu, Q.; Hu, X. Safer Lithium-Ion Batteries from the Separator Aspect: Development and Future Perspectives. Energy Environ. Mater. 2020, 4, 336–362. [Google Scholar] [CrossRef]
- Jang, J.; Oh, J.; Jeong, H.; Kang, W.; Jo, C. A Review of Functional Separators for Lithium Metal Battery Applications. Materials 2020, 13, 4625. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Bruening, M.L. Ion separations with membranes. J. Polym. Sci. 2020, 58, 2831–2856. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, B.; Stoliarov, S.I.; Sun, J. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energy Combust. Sci. 2019, 73, 95–131. [Google Scholar] [CrossRef]
- Costa, C.M.; Lee, Y.; Kim, J.; Lee, S.; Lanceros-Méndez, S. Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Mater. 2019, 22, 346–375. [Google Scholar]
- Zhang, T.; Tian, T.; Shen, B.; Song, Y.; Yao, H. Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos. Commun. 2019, 14, 7–14. [Google Scholar] [CrossRef]
- Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 2019, 7, 6596–6615. [Google Scholar] [CrossRef]
- Asghar, M.R.; Anwar, M.T.; Naveed, A.; Zhang, J. A Review on Inorganic Nanoparticles Modified Composite Membranes for Lithium-Ion Batteries: Recent Progress and Prospects. Membranes 2019, 9, 78. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M. Critical review on lithium-ion batteries: Are they safe? Sustainable? Ionics 2017, 23, 1933–1947. [Google Scholar] [CrossRef]
- Zhang, S.S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364. [Google Scholar] [CrossRef]
- Dong, H.; Wang, P.; Yan, S.; Xia, Y.; Wang, B.; Wang, X.; Liu, K. A thermoresponsive composite separator loaded with paraffin@SiO2 microparticles for safe and stable lithium batteries. J. Energy Chem. 2021, 62, 423–430. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Yang, W.; Ren, Q.; Li, F.; Huang, Z. Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane. J. Power Sources 2018, 396, 265–275. [Google Scholar] [CrossRef]
- Chen, W.; Shi, L.; Wang, Z.; Zhu, J.; Yang, H.; Mao, X.; Chi, M.; Sun, L.; Yuan, S. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery. Carbohydr. Polym. 2016, 147, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.S.; Nirmala, R.; Navamathavan, R.; Kim, K.J.; Chae, S.H.; Kim, T.W.; Kim, H.Y.; Park, S.J. The study of efficiency of Al2O3 drop coated electrospun meta-aramid nanofibers as separating membrane in lithium-ion secondary batteries. Mater. Lett. 2014, 132, 384–388. [Google Scholar] [CrossRef]
- Ding, L.; Yan, N.; Zhang, S.; Xu, R.; Wu, T.; Yang, F.; Cao, Y.; Xiang, M. Low-Cost Mass Manufacturing Technique for the Shutdown-Functionalized Lithium-Ion Battery Separator Based on Al2O3 Coating Online Construction during the β-iPP Cavitation Process. ACS Appl. Mater. Interfaces 2022, 14, 6714–6728. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Gao, C.; Yang, C.; Wang, K.; Li, H.; Gu, H. Ultrathin ZrO2-coated separators based on surface sol-gel process for advanced lithium ion batteries. J. Membr. Sci. 2019, 592, 117368. [Google Scholar] [CrossRef]
- Luo, X.; Liao, Y.; Zhu, Y.; Li, M.; Chen, F.; Huang, Q.; Li, W. Investigation of nano-CeO2 contents on the properties of polymer ceramic separator for high voltage lithium ion batteries. J. Power Sources 2017, 348, 229–238. [Google Scholar] [CrossRef]
- Ding, L.; Yan, N.; Zhang, S.; Xu, R.; Wu, T.; Yang, F.; Cao, Y.; Xiang, M. Low-Cost and Large-Scale Fabricating Technology for High-Performance Lithium-Ion Battery Composite Separators with Connected Nano-Al2O3 Coating. ACS Appl. Energy Mater. 2022, 5, 615–626. [Google Scholar] [CrossRef]
- Ding, L.; Yan, N.; Zhang, S.; Xu, R.; Wu, T.; Yang, F.; Cao, Y.; Xiang, M. Facile manufacture technique for lithium-ion batteries composite separator via online construction of fumed SiO2 coating. Mater. Des. 2022, 215, 110476. [Google Scholar] [CrossRef]
- Ding, L.; Li, D.; Liu, L.; Zhang, P.; Du, F.; Wang, C.; Zhang, D.; Zhang, S.; Zhang, S.; Yang, F. Dependence of lithium metal battery performances on inherent separator porous structure regulation. J. Energy Chem. 2023, 84, 436–447. [Google Scholar] [CrossRef]
- Xu, H.; Usseglio-Viretta, F.; Kench, S.; Cooper, S.J.; Finegan, D.P. Microstructure reconstruction of battery polymer separators by fusing 2D and 3D image data for transport property analysis. J. Power Sources 2020, 480, 229101. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhong, L.; Wang, S.; Qin, J.; Han, D.; Ren, S.; Xiao, M.; Sun, L.; Meng, Y. Ultrahigh Li-ion conductive single-ion polymer electrolyte containing fluorinated polysulfonamide for quasi-solid-state Li-ion batteries. J. Mater. Chem. A 2019, 7, 24251–24261. [Google Scholar] [CrossRef]
- Suharto, Y.; Lee, Y.; Yu, J.; Choi, W.; Kim, K.J. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries. J. Power Sources 2018, 376, 184–190. [Google Scholar] [CrossRef]
- Lin, Y.; Li, X.; Meng, L.; Chen, X.; Lv, F.; Zhang, Q.; Zhang, R.; Li, L. Structural Evolution of Hard-Elastic Isotactic Polypropylene Film during Uniaxial Tensile Deformation: The Effect of Temperature. Macromolecules 2018, 51, 2690–2705. [Google Scholar] [CrossRef]
- Lin, Y.; Meng, L.; Wu, L.; Li, X.; Chen, X.; Zhang, Q.; Zhang, R.; Zhang, W.; Li, L. A semi-quantitative deformation model for pore formation in isotactic polypropylene microporous membrane. Polymer 2015, 80, 214–227. [Google Scholar] [CrossRef]
- Yoneda, H.; Nishimura, Y.; Doi, Y.; Fukuda, M.; Kohno, M. Development of microporous PE films to improve lithium ion batteries. Polym. J. 2010, 42, 425–437. [Google Scholar] [CrossRef]
- Ihm, D.; Noh, J.; Kim, J. Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery. J. Power Sources 2002, 109, 388–393. [Google Scholar] [CrossRef]
- Ding, L.; Yan, N.; Zhang, S.; Xu, R.; Wu, T.; Yang, F.; Cao, Y.; Xiang, M. Separator impregnated with polyvinyl alcohol to simultaneously improve electrochemical performances and compression resistance. Electrochim. Acta 2022, 403, 139568. [Google Scholar] [CrossRef]
- Yang, F.; Yang, F.; Xiang, M.; Wu, T. Preparation of highly oriented β polypropylene and its pore formation mechanism during stretching. Polym. Cryst. 2021, 4, e10183. [Google Scholar] [CrossRef]
- Habumugisha, J.C.; Feng, S.; Iqbal, O.; Lin, Y.; An, M.; Meng, L.; Wang, D.; Chen, W.; Li, L. Stretch-induced structural evolution of pre-oriented isotactic polypropylene films: An in-situ synchrotron radiation SAXS/WAXS study. Polymer 2021, 214, 123234. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, G.G.; Ding, C.; Zhang, Y.; Yang, W.; Yang, M.B. Formation of oriented β-transcrystals induced by self-assembly of nucleating agent and its micropores formation during uniaxial stretching. Polym. Cryst. 2020, 3, e10129. [Google Scholar] [CrossRef]
- Yang, X.; Tuinea Bobe, C.; Whiteside, B.; Coates, P.; Lu, Y.; Men, Y. Molecular weight dependency of β phase formation in injection-molded isotactic polypropylene. J. Appl. Polym. Sci. 2020, 137, 48555. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, L.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Effect of annealing on the microvoid formation and evolution during biaxial stretching of β nucleated isotactic polypropylene. Polym. Plast. Technol. Mater. 2020, 59, 1595–1607. [Google Scholar] [CrossRef]
- Ding, L.; Xu, R.; Pu, L.; Yang, F.; Wu, T.; Xiang, M. Pore formation and evolution mechanism during biaxial stretching of β-iPP used for lithium-ion batteries separator. Mater. Des. 2019, 179, 107880. [Google Scholar] [CrossRef]
- Wu, D.; He, J.; Zhang, M.; Ni, P.; Li, X.; Hu, J. Fabrication of a novel sandwich-like composite separator with enhanced physical and electrochemical performances for lithium-ion battery. J. Power Sources 2015, 290, 53–60. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Fang, J.; Ding, L.; Wang, H. A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J. Membr. Sci. 2017, 537, 248–254. [Google Scholar] [CrossRef]
- Shi, J.; Fang, L.; Li, H.; Zhang, H.; Zhu, B.; Zhu, L. Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries. J. Membr. Sci. 2013, 437, 160–168. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, L.; Wang, Y.; Zhu, Y.; Wan, G.; Li, R.; Zhang, Y.; Qian, D.; Wang, Y.; Zhou, X.; et al. Design of Dendritic Large-Pore Mesoporous Silica Nanoparticles with Controlled Structure and Formation Mechanism in Dual-Templating Strategy. ACS Appl. Mater. Interfaces 2020, 12, 18823–18832. [Google Scholar] [CrossRef]
- Lagadec, M.F.; Zahn, R.; Wood, V. Designing Polyolefin Separators to Minimize the Impact of Local Compressive Stresses on Lithium Ion Battery Performance. J. Electrochem. Soc. 2018, 165, A1829–A1836. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, H.; Hong, H.; Li, Z.; Qin, G.; Zhu, H.; Lin, Y. Novel cellulose aerogel coated on polypropylene separators as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries. J. Membr. Sci. 2016, 514, 332–339. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D.; Jung, H.; Sun, Y.; Hassoun, J.; Scrosati, B. Lithium-Sulfur Batteries: An Advanced Lithium-Sulfur Battery. Adv. Funct. Mater. 2013, 23, 1092. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, F.; Chen, C.; Shi, L.; Yuan, S.; Sun, L.; Zhu, J. Self-Assembly of PEI/SiO2 on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability. ACS Appl. Mater. Interfaces 2015, 7, 3314–3322. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.L.; Yanga, D.A.; Archer, L.A. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites. Chem. Mater. 2013, 25, 834–839. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Li, D.; Zhang, S.; Zhang, Y.; Zhao, S.; Du, F.; Yang, F. Facile In Situ Building of Sulfonated SiO2 Coating on Porous Skeletons of Lithium-Ion Battery Separators. Polymers 2024, 16, 2659. https://doi.org/10.3390/polym16182659
Ding L, Li D, Zhang S, Zhang Y, Zhao S, Du F, Yang F. Facile In Situ Building of Sulfonated SiO2 Coating on Porous Skeletons of Lithium-Ion Battery Separators. Polymers. 2024; 16(18):2659. https://doi.org/10.3390/polym16182659
Chicago/Turabian StyleDing, Lei, Dandan Li, Sihang Zhang, Yuanjie Zhang, Shuyue Zhao, Fanghui Du, and Feng Yang. 2024. "Facile In Situ Building of Sulfonated SiO2 Coating on Porous Skeletons of Lithium-Ion Battery Separators" Polymers 16, no. 18: 2659. https://doi.org/10.3390/polym16182659
APA StyleDing, L., Li, D., Zhang, S., Zhang, Y., Zhao, S., Du, F., & Yang, F. (2024). Facile In Situ Building of Sulfonated SiO2 Coating on Porous Skeletons of Lithium-Ion Battery Separators. Polymers, 16(18), 2659. https://doi.org/10.3390/polym16182659