Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (233)

Search Parameters:
Keywords = concrete strength at early ages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 15193 KiB  
Article
Bio-Mitigation of Sulfate Attack and Enhancement of Crack Self-Healing in Sustainable Concrete Using Bacillus megaterium and sphaericus Bacteria
by Ibrahim AbdElFattah, Seleem S. E. Ahmad, Ahmed A. Elakhras, Ahmed A. Elshami, Mohamed A. R. Elmahdy and Attitou Aboubakr
Infrastructures 2025, 10(8), 205; https://doi.org/10.3390/infrastructures10080205 (registering DOI) - 7 Aug 2025
Abstract
Concrete cracks and sulfate degradation severely compromise structural durability, highlighting the need for sustainable solutions to enhance longevity and minimize environmental impact. This study assesses the efficacy of bacterial self-healing technology utilizing Bacillus megaterium (BM) and Bacillus sphaericus (BS) in enhancing the resistance [...] Read more.
Concrete cracks and sulfate degradation severely compromise structural durability, highlighting the need for sustainable solutions to enhance longevity and minimize environmental impact. This study assesses the efficacy of bacterial self-healing technology utilizing Bacillus megaterium (BM) and Bacillus sphaericus (BS) in enhancing the resistance of concrete to sulfate attacks and improving its mechanical properties. Bacterial suspensions (1% and 2.5% of cement weight) were mixed with concrete containing silica fume or fly ash (10% of cement weight) and cured in freshwater or sulfate solutions (2%, 5%, and 10% concentrations). Specimens were tested for compressive strength, flexural strength, and microstructure using a Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and X-ray diffraction (XRD) at various ages. The results indicate that a 2.5% bacterial content yielded the best performance, with BM surpassing BS, enhancing compressive strength by up to 41.3% and flexural strength by 52.3% in freshwater-cured samples. Although sulfate exposure initially improved early-age strength by 1.97% at 7 days, it led to an 8.5% loss at 120 days. Bacterial inclusion mitigated sulfate damage through microbially induced calcium carbonate precipitation (MICP), sealing cracks, and bolstering durability. Cracked specimens treated with BM recovered up to 93.1% of their original compressive strength, promoting sustainable, sulfate-resistant, self-healing concrete for more resilient infrastructure. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

24 pages, 3479 KiB  
Article
Assessment of Low-Cost Sensors in Early-Age Concrete: Laboratory Testing and Industrial Applications
by Rocío Porras, Behnam Mobaraki, Zhenquan Liu, Thayré Muñoz, Fidel Lozano and José A. Lozano
Appl. Sci. 2025, 15(15), 8701; https://doi.org/10.3390/app15158701 - 6 Aug 2025
Abstract
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. [...] Read more.
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. While high-precision sensors (e.g., piezoelectric and fiber optic) offer accurate measurements, their cost and fragility limit their widespread use in construction environments. In response, this study proposes a cost-effective, Arduino-based wireless monitoring system to track temperature and humidity in fresh and early-age concrete elements. The system was validated through laboratory tests on cylindrical specimens and industrial applications on self-compacting concrete New Jersey barriers. The sensors recorded temperature variations between 15 °C and 35 °C and relative humidity from 100% down to 45%, depending on environmental exposure. In situ monitoring confirmed the system’s ability to detect thermal gradients and evaporation dynamics during curing. Additionally, the presence of embedded sensors caused a tensile strength reduction of up to 37.5% in small specimens, highlighting the importance of sensor placement. The proposed solution demonstrates potential for improving quality control and curing management in precast concrete production with low-cost devices. Full article
Show Figures

Figure 1

29 pages, 3167 KiB  
Article
A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance
by Daniel D. Akerele and Federico Aguayo
Buildings 2025, 15(15), 2759; https://doi.org/10.3390/buildings15152759 - 5 Aug 2025
Abstract
Rapid pavement repair demands materials that combine accelerated strength gains, dimensional stability, long-term durability, and sustainability. However, finding materials or formulations that offer these balances remains a critical challenge. This study systematically evaluates two polymer-modified belitic calcium sulfoaluminate (CSA) concretes—CSAP (powdered polymer) and [...] Read more.
Rapid pavement repair demands materials that combine accelerated strength gains, dimensional stability, long-term durability, and sustainability. However, finding materials or formulations that offer these balances remains a critical challenge. This study systematically evaluates two polymer-modified belitic calcium sulfoaluminate (CSA) concretes—CSAP (powdered polymer) and CSA-LLP (liquid polymer admixture)—against a traditional Type III Portland cement (OPC) control under both laboratory and realistic outdoor conditions. Laboratory specimens were tested for fresh properties, early-age and later-age compressive, flexural, and splitting tensile strengths, as well as drying shrinkage according to ASTM standards. Outdoor 5 × 4 × 12-inch slabs mimicking typical jointed plain concrete panels (JPCPs), instrumented with vibrating wire strain gauges and thermocouples, recorded the strain and temperature at 5 min intervals over 16 weeks, with 24 h wet-burlap curing to replicate field practices. Laboratory findings show that CSA mixes exceeded 3200 psi of compressive strength at 4 h, but cold outdoor casting (~48 °F) delayed the early-age strength development. The CSA-LLP exhibited the lowest drying shrinkage (0.036% at 16 weeks), and outdoor CSA slabs captured the initial ettringite-driven expansion, resulting in a net expansion (+200 µε) rather than contraction. Approximately 80% of the total strain evolved within the first 48 h, driven by autogenous and plastic effects. CSA mixes generated lower peak internal temperatures and reduced thermal strain amplitudes compared to the OPC, improving dimensional stability and mitigating restraint-induced cracking. These results underscore the necessity of field validation for shrinkage compensation mechanisms and highlight the critical roles of the polymer type and curing protocol in optimizing CSA-based repairs for durable, low-carbon pavement rehabilitation. Full article
(This article belongs to the Special Issue Study on Concrete Structures—2nd Edition)
Show Figures

Figure 1

32 pages, 8548 KiB  
Article
A Comprehensive Study of the Macro-Scale Performance of Graphene Oxide Enhanced Low Carbon Concrete
by Thusitha Ginigaddara, Pasadi Devapura, Vanissorn Vimonsatit, Michael Booy, Priyan Mendis and Rish Satsangi
Constr. Mater. 2025, 5(3), 47; https://doi.org/10.3390/constrmater5030047 - 18 Jul 2025
Viewed by 365
Abstract
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and [...] Read more.
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and tensile strength, drying shrinkage, and elastic modulus. Scanning Electron Microscopy (SEM), energy-dispersive spectroscopy (EDS), Thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H-NMR) was employed to examine microstructural evolution and early age water retention, confirming GO’s role in accelerating cement hydration and promoting C-S-H formation. Optimal performance was achieved at 0.05% GO (by binder weight), resulting in a 25% increase in 28-day compressive strength without compromising workability. This outcome is attributed to a tailored, non-invasive mixing strategy, wherein GO was pre-dispersed during synthesis and subsequently blended without the use of invasive mixing methods such as high shear mixing or ultrasonication. Fourier-transform infrared (FTIR) spectroscopy further validated the chemical compatibility of GO and PCE and confirmed the compatibility and efficiency of the admixture. Sustainability metrics, including embodied carbon and strength-normalized cost indices (USD/MPa), indicated that, although GO increased material cost, the overall cost-performance ratio remained competitive at breakeven GO prices. Enhanced efficiency also led to lower net embodied CO2 emissions. By integrating mechanical, microstructural, and environmental analyses, this study demonstrates GO’s multifunctional benefits and provides a robust basis for its industrial implementation in sustainable infrastructure. Full article
Show Figures

Figure 1

17 pages, 1579 KiB  
Article
Mechanical Behavior of Fly-Ash Geopolymer Under Stray-Current and Soft-Water Coupling
by Ran Tang, Fang Liu, Baoming Wang, Xiaojun Wang, Cheng Hua and Xiaosa Yuan
Buildings 2025, 15(14), 2514; https://doi.org/10.3390/buildings15142514 - 17 Jul 2025
Viewed by 232
Abstract
Stray-current and soft-water leaching can induce severe corrosion in reinforced concrete structures and buried metal pipelines within subway environments. The effects of water-to-binder ratio (W/C), modulus of sodium silicate (Ms), and alkali content (AC) on the mechanical properties of fly-ash-based geopolymer (FAG) at [...] Read more.
Stray-current and soft-water leaching can induce severe corrosion in reinforced concrete structures and buried metal pipelines within subway environments. The effects of water-to-binder ratio (W/C), modulus of sodium silicate (Ms), and alkali content (AC) on the mechanical properties of fly-ash-based geopolymer (FAG) at various curing ages were investigated. The influence of curing temperature and high-temperature curing duration on the development of mechanical performance were examined, and the optimal curing regime was determined. Furthermore, based on the mix design of FAG resistant to coupled erosion from stray-current and soft-water, the effects of stray-current intensity and erosion duration on the coupled erosion behavior were analyzed. The results indicated that FAG exhibited slow strength development under ambient conditions. However, thermal curing at 80 °C for 24 h markedly improved early-age strength. The compressive strength of FAG exhibited an increase followed by a decrease with increasing W/B, Ms, and AC, with optimal ranges identified as 0.28–0.34, 1.0–1.6, and 4–7%, respectively. Soft-water alone caused limited leaching, while the presence of stray-current significantly accelerated degradation, with corrosion rates increasing by 4.1 and 7.2 times under 20 V and 40 V, respectively. The coupled corrosion effect was found to weaken over time and with increasing current intensity. Under coupled leaching conditions, compressive strength loss of FAG was primarily influenced by AC, with lesser contributions from W/B and Ms. The optimal mix proportion for corrosion resistance was determined to be W/B of 0.30, Ms of 1.2, and AC of 6%, under which the compressive strength after corrosion achieved the highest value, thereby significantly improving the durability of FAG in harsh environments such as stray-current zones in subways. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 5800 KiB  
Article
Mitigating Environmental Impact Through the Use of Rice Husk Ash in Sustainable Concrete: Experimental Study, Numerical Modelling, and Optimisation
by Md Jihad Miah, Mohammad Shamim Miah, Humera Mughal and Noor Md. Sadiqul Hasan
Materials 2025, 18(14), 3298; https://doi.org/10.3390/ma18143298 - 13 Jul 2025
Cited by 1 | Viewed by 575
Abstract
Cement production significantly contributes to CO2 emissions (8% of worldwide CO2 emissions) and global warming, accelerating climate change and increasing air pollution, which harms ecosystems and human health. To this end, this research investigates the fresh and hardened properties of sustainable [...] Read more.
Cement production significantly contributes to CO2 emissions (8% of worldwide CO2 emissions) and global warming, accelerating climate change and increasing air pollution, which harms ecosystems and human health. To this end, this research investigates the fresh and hardened properties of sustainable concrete fabricated with three different replacement percentages (0%, 5%, and 10% by weight) of ordinary Portland cement (OPC) using rice husk ash (RHA). The hardened properties were evaluated at 14, 28, 60, 90, and 120 days of water curing. In addition, data-based models were developed, validated, and optimised, and the models were compared with experimental results and validated with the literature findings. The outcomes reveal that the slump values increased (17% higher) with the increased content of RHA, which aligns with the lower temperatures (12% lower) of freshly mixed concrete with RHA than the control mix (100% OPC). The slopes of the stress–strain profiles decreased at early ages and improved at longer curing ages (more than 28 days), especially for mixes with 5% RHA. The compressive strength decreased slightly (18% at 28 days) with increased percentages of RHA, which was minimised with increased curing ages (8% at 90 days). The data-based model accurately predicted the stress–strain profiles (coefficient of determination, R2 ≈ 0.9950–0.9993) and compressive strength at each curing age, including crack progression (i.e., highly nonlinear region) and validates its effectiveness. In contrast, the optimisation model shows excellent results, mirroring the experimental data throughout the profile. These outcomes indicate that the 10% RHA could potentially replace OPC due to its lower reduction in strength (8% at 90 days), which in turn lowers CO2 emissions and promotes sustainability. Full article
(This article belongs to the Special Issue Sustainability and Performance of Cement-Based Materials)
Show Figures

Figure 1

15 pages, 6309 KiB  
Article
Study on the Sustainability of Carbon Emission Reduction in China’s Cement Industry
by Kui Zhao, Congling Bao and Bingxin Zhang
Sustainability 2025, 17(14), 6349; https://doi.org/10.3390/su17146349 - 10 Jul 2025
Viewed by 451
Abstract
Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this [...] Read more.
Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this research, a wet grinding carbonation (WGC) technique was introduced to enhance the reactivity of RCFs. The research indicates that RCFs after WGC exhibit a finer particle size and a larger specific surface area. The carbonation products include calcite with smaller grains, metastable calcium carbonate, and nanoscale silica gel and Al-Si gel. When RCF-WGC is used as an SCM in ordinary Portland cement (OPC), it significantly promotes the hydration of the cement paste, as evidenced by the advancement and increased intensity of the exothermic peaks of aluminates and silicates. RCF-WGC can significantly enhance the compressive strength of hydrated samples, particularly at early ages. Specifically, at a curing age of 1 day, the compressive strength of WGC5, WGC10, and WGC20 samples increased by 9.9%, 22.5%, and 7.7%, respectively, compared to the Ref sample (0% RCF-WGC). At a curing age of 3 days, the compressive strength of the WGC5, WGC10, and WGC20 samples showed even more significant improvements, increasing by 20.8%, 21.9%, and 11.8%, respectively. The performance enhancement of the WGC samples is attributed to the chemical reactions involving nanoscale silica gel, Al-Si gel, and calcium carbonate in the RCFs. When RCF-WGC is used as an SCM to replace 5%, 10%, and 20% of cement, it can reduce carbon emissions by 27.5 kg/t, 55 kg/t, and 110 kg/t, respectively. Large-scale application of RCFs as a high-value SCM can significantly reduce the life-cycle carbon emissions of the cement industry, contributing to the achievement of carbon peaking in China’s cement sector. Full article
Show Figures

Figure 1

29 pages, 12425 KiB  
Article
Investigation of the Evolutionary Patterns of Pore Structures and Mechanical Properties During the Hydration Process of Basalt-Fiber-Reinforced Concrete
by Junqin Zhao, Xuewei Wang, Fuheng Yan, Xin Cai, Shengcai Xiao, Shengai Cui and Ping Liu
Materials 2025, 18(14), 3212; https://doi.org/10.3390/ma18143212 - 8 Jul 2025
Viewed by 327
Abstract
Recent studies primarily focus on how the fiber content and curing age influence the pore structure and strength of concrete. However, The interfacial bonding mechanism in basalt-fiber-reinforced concrete hydration remains unclear. The lack of a long-term performance-prediction model and insufficient research on multi-field [...] Read more.
Recent studies primarily focus on how the fiber content and curing age influence the pore structure and strength of concrete. However, The interfacial bonding mechanism in basalt-fiber-reinforced concrete hydration remains unclear. The lack of a long-term performance-prediction model and insufficient research on multi-field coupling effects form key knowledge gaps, hindering the systematic optimal design and wider engineering applications of such materials. By integrating X-ray computed tomography (CT) with the watershed algorithm, this study proposes an innovative gray scale threshold method for pore quantification, enabling a quantitative analysis of pore structure evolution and its correlation with mechanical properties in basalt-fiber-reinforced concrete (BFRC) and normal concrete (NC). The results show the following: (1) Mechanical Enhancement: the incorporation of 0.2% basalt fiber by volume demonstrates significant enhancement in the mechanical performance index. At 28 days, BFRC exhibits compressive and splitting tensile strengths of 50.78 MPa and 4.07 MPa, surpassing NC by 19.88% and 43.3%, respectively. The early strength reduction in BFRC (13.13 MPa vs. 22.81 MPa for NC at 3 days) is attributed to fiber-induced interference through physical obstruction of cement particle hydration pathways, which diminishes as hydration progresses. (2) Porosity Reduction: BFRC demonstrates a 64.83% lower porosity (5.13%) than NC (11.66%) at 28 days, with microscopic analysis revealing a 77.5% proportion of harmless pores (<1.104 × 107 μm3) in BFRC versus 67.6% in NC, driven by densified interfacial transition zones (ITZs). (3) Predictive Modeling: a two dimensional strength-porosity model and a three-dimensional age-dependent model are developed. The proposed multi-factor model demonstrates exceptional predictive capability (R2 = 0.9994), establishing a quantitative relationship between pore micro structure and mechanical performance. The innovative pore extraction method and mathematical modeling approach offer valuable insights into the micro-structural evolution mechanism of fiber concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

37 pages, 888 KiB  
Review
A Review of the Effects of Nanomaterials on the Properties of Concrete
by Qi Yang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Buildings 2025, 15(13), 2363; https://doi.org/10.3390/buildings15132363 - 5 Jul 2025
Viewed by 570
Abstract
With the continuous improvement in technology, the construction industry is constantly advancing. Traditional concrete can no longer meet modern market demands, making research on new types of concrete imperative. This study reviews the application of common nanomaterials in concrete and their impact on [...] Read more.
With the continuous improvement in technology, the construction industry is constantly advancing. Traditional concrete can no longer meet modern market demands, making research on new types of concrete imperative. This study reviews the application of common nanomaterials in concrete and their impact on concrete performance. It provides a detailed explanation of the characteristics of three common nanomaterials: nano-silica, nano-calcium carbonate, and carbon nanotubes. This study analyzes how these materials improve the microstructure, accelerate hydration reactions, and enhance interfacial transition zones, thereby enhancing the mechanical properties, durability, and workability of concrete. For conventional engineering projects, nano-calcium carbonate is the preferred choice owing to its low cost and its capacity to improve workability and early-age strength. For high-strength and durable structures, nano-silica is selected due to its high specific surface area (ranging from 100 to 800 m2/g) and its superior compactness and impermeability. In the context of intelligent buildings, carbon nanotubes are the most suitable option because of their exceptional thermal conductivity and electrical conductivity (with axial thermal conductivity reaching 2000–6000 W/m*K and electrical conductivity ranging from 103 to 106 S/cm). However, it should be noted that carbon nanotubes are the most expensive among the three materials. Additionally, this study discusses the issues and challenges currently faced by the application of nanomaterials in concrete and looks ahead to future research directions, aiming to provide a reference for further research and engineering applications of nanomaterials in the field of concrete. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Building Materials)
Show Figures

Figure 1

19 pages, 3569 KiB  
Article
Comprehensive Assessment and Freeze–Thaw Durability Prediction of Wet-Sprayed Concrete for Cold-Region Tunnels
by Haiyan Wang, Yanli Wang, Zhaohui Sun, Lichuan Wang, Hongtao Zhang, Wenhua Zheng and Qianqian Wang
Materials 2025, 18(13), 2955; https://doi.org/10.3390/ma18132955 - 22 Jun 2025
Viewed by 479
Abstract
This study examines freeze–thaw deterioration patterns and predicts the service life of wet-sprayed concrete with composite cementitious materials in cold-region tunnels. The microstructure and particle size distribution of four materials (cement, fly ash, silica fume, and mineral powder) were analyzed. Subsequent tests evaluated [...] Read more.
This study examines freeze–thaw deterioration patterns and predicts the service life of wet-sprayed concrete with composite cementitious materials in cold-region tunnels. The microstructure and particle size distribution of four materials (cement, fly ash, silica fume, and mineral powder) were analyzed. Subsequent tests evaluated the rebound rate, mechanical properties, and durability of wet-sprayed concrete with various compositions and proportions of cementitious materials, emphasizing freeze–thaw resistance under cyclic freezing and thawing. A freeze–thaw deterioration equation was developed using damage mechanics theory to predict the service life of early-stage wet-sprayed concrete in tunnels. The results indicate that proportionally combining cementitious materials with different particle sizes and gradations can enhance concrete compactness. Adding mineral admixtures increases concrete viscosity, effectively reducing rebound rates and dust generation during wet spraying. Concrete incorporating binary and ternary mineral admixtures shows reduced early-age strength but significantly enhanced later-age strength. Its frost resistance is also improved to varying degrees. The ternary composite binder fills voids between cement particles and at the interface between paste and aggregate, resulting in a dense microstructure due to a ‘composite superposition effect.’ This significantly enhances the frost resistance of wet-mixed shotcrete, enabling it to withstand up to 200 freeze–thaw cycles, compared to failure after 75 cycles in plain cement concrete. The relative dynamic modulus of elasticity of wet-shotcrete follows a parabolic deterioration trend with increasing freeze–thaw cycles. Except for specimen P5 (R2 = 0.89), the correlation coefficients of deterioration models exceed 0.94, supporting their use in durability prediction. Simulation results indicate that, across all regions of China, the service life of wet-shotcrete with ternary admixtures can exceed 100 years, while that of plain cement concrete remains below 41 years. Full article
Show Figures

Figure 1

21 pages, 5254 KiB  
Article
Performance of Concrete Incorporating Waste Glass Cullet and Snail Shell Powder: Workability and Strength Characteristics
by Udeme Udo Imoh, Akindele Christopher Apata and Majid Movahedi Rad
Buildings 2025, 15(13), 2161; https://doi.org/10.3390/buildings15132161 - 21 Jun 2025
Viewed by 690
Abstract
This study investigates the combined use of waste glass cullet (WGC) and snail shell powder (SSP) as a sustainable binary cementitious system to enhance the mechanical performance and durability of concrete, particularly for rigid pavement applications. Nine concrete mixes were formulated: a control [...] Read more.
This study investigates the combined use of waste glass cullet (WGC) and snail shell powder (SSP) as a sustainable binary cementitious system to enhance the mechanical performance and durability of concrete, particularly for rigid pavement applications. Nine concrete mixes were formulated: a control mix, four mixes with 5%, 10%, 15%, and 20% WGC as partial cement replacement, and four corresponding mixes with 1% SSP addition. Slump, compressive strength, and flexural strength were evaluated at various curing ages. Results showed that while WGC reduced workability due to its angular morphology (slump decreased from 30 mm to 20 mm at 20% WGC), the inclusion of SSP slightly mitigated this reduction (21 mm at 20% WGC + 1% SSP). At 28 days, compressive strength increased from 40.0 MPa (control) to 45.0 MPa with 20% WGC and further to 48.0 MPa with the addition of SSP. Flexural strength also improved from 7.0 MPa (control) to 7.8 MPa with both WGC and SSP. These improvements were statistically significant (p < 0.05) and supported by correlation analysis, which revealed a strong inverse relationship between WGC content and slump (r = −0.97) and strong positive correlations between early and later-age strength. Microstructural analyses (SEM/EDX) confirmed enhanced matrix densification and pozzolanic activity. The findings demonstrate that up to 20% WGC with 1% SSP not only enhances strength development but also provides a viable, low-cost, and eco-friendly alternative for producing durable, load-bearing, and sustainable concrete for rigid pavements and infrastructure applications. This approach supports circular economic principles by valorizing industrial and biogenic waste streams in civil construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

46 pages, 5055 KiB  
Review
Innovations and Applications in Lightweight Concrete: Review of Current Practices and Future Directions
by Diptikar Behera, Kuang-Yen Liu, Firmansyah Rachman and Aman Mola Worku
Buildings 2025, 15(12), 2113; https://doi.org/10.3390/buildings15122113 - 18 Jun 2025
Viewed by 1428
Abstract
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while [...] Read more.
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while reducing density by up to 30% compared to conventional concrete. Fiber incorporation enhances flexural strength and fracture toughness by 20–40%, concurrently mitigating brittleness and improving ductility. The synergistic interaction between SCMs and lightweight aggregates optimizes matrix densification and interfacial transition zones, curtailing shrinkage and bolstering durability against chemical and environmental aggressors. Integration of recycled and bio-based aggregates substantially diminishes the embodied carbon footprint by approximately 40%—aligning LWC with circular economy principles. Nanomaterials such as nano-silica and carbon nanotubes augment early-age strength development by 25% and refine microstructural integrity. Thermal performance is markedly enhanced through advanced lightweight fillers, including expanded polystyrene and aerogels, achieving up to a 50% reduction in thermal conductivity, thereby facilitating energy-efficient building envelopes. Although challenges persist in cost and workability, the convergence of hybrid fiber systems, optimized mix designs, and sophisticated multi-scale modeling is expanding the applicability of LWC across demanding structural, marine, and prefabricated contexts. In essence, LWC’s holistic development embodies a paradigm shift toward resilient, low-carbon infrastructure, cementing its role as a pivotal material in the evolution of next-generation sustainable construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 5902 KiB  
Article
Effect of Combined MgO Expansive Agent and Rice Husk Ash on Deformation and Strength of Post-Cast Concrete
by Feifei Jiang, Yijiang Xing, Wencong Deng, Qi Wang, Jialei Wang and Zhongyang Mao
Materials 2025, 18(12), 2815; https://doi.org/10.3390/ma18122815 - 16 Jun 2025
Viewed by 341
Abstract
This study investigates the effects of the combined addition of MgO expansive agent (MEA) and rice husk ash (RHA) on the performance of concrete. Results show that MEA absorbs water and competes with superplasticizers for adsorption, reducing early-age fluidity. In the later stages, [...] Read more.
This study investigates the effects of the combined addition of MgO expansive agent (MEA) and rice husk ash (RHA) on the performance of concrete. Results show that MEA absorbs water and competes with superplasticizers for adsorption, reducing early-age fluidity. In the later stages, its reaction with RHA generates M-S-H gel, accelerating slump loss. At early ages (up to 7 days), due to the slow hydration of MEA and partial replacement of cement, fewer hydration products are formed. Additionally, the pozzolanic reaction of RHA has not yet developed, resulting in the low early strength of concrete. In the later stages, Mg(OH)2 fills pores and enhances compactness, while the pozzolanic reaction of RHA further optimizes the pore structure. The internal curing effect also provides the moisture needed for continued MEA hydration, significantly improving later-age strength. Moreover, in the post-cast strip of a tall building, the internal curing effect of RHA ensures the effective shrinkage compensation by MEA under low water-to-cement ratio conditions. The restraint provided by reinforcement enhances the pore-filling effect of Mg(OH)2, improving concrete compactness and crack resistance, ultimately boosting long-term strength and durability. Full article
Show Figures

Figure 1

17 pages, 4028 KiB  
Article
The Effect of Colloidal Nano-Silica on the Initial Hydration of High-Volume Fly Ash Cement
by Young-Cheol Choi
Materials 2025, 18(12), 2769; https://doi.org/10.3390/ma18122769 - 12 Jun 2025
Viewed by 449
Abstract
High-volume fly ash cement exhibits drawbacks such as delayed hydration and reduced early-age compressive strength due to the replacement of large amounts of cement with fly ash. In recent years, various studies have been conducted to overcome these limitations by incorporating nanomaterials, such [...] Read more.
High-volume fly ash cement exhibits drawbacks such as delayed hydration and reduced early-age compressive strength due to the replacement of large amounts of cement with fly ash. In recent years, various studies have been conducted to overcome these limitations by incorporating nanomaterials, such as nano-silica, to promote the hydration of cementitious systems. This study aims to investigate the effect of colloidal nano-silica on the hydration behavior of cement. Cement paste specimens were prepared with varying dosages of colloidal nano-silica to evaluate its influence. To examine the hydration characteristics and mechanical performance, compressive strength tests, isothermal calorimetry, and thermo-gravimetric analyses were conducted. Furthermore, the effect of colloidal nano-silica on the hydration of cement blended with fly ash was also examined. The experimental results revealed that the incorporation of colloidal nano-silica accelerated the hydration reactions in both ordinary and fly ash-blended cement pastes and significantly improved early-age compressive strength. In particular, the 7-day compressive strength of fly ash-blended cement mortar improved by 22.2% compared to the control specimen when 2% colloidal nano-silica was incorporated. The use of colloidal nano-silica appears to be a practical approach for enhancing the early strength of high-volume fly ash concrete, and its broader application and target expansion could contribute to the advancement of a low-carbon construction industry. Full article
Show Figures

Figure 1

18 pages, 1390 KiB  
Article
Durability and Mechanical Analysis of Basalt Fiber Reinforced Metakaolin–Red Mud-Based Geopolymer Composites
by Ouiame Chakkor
Buildings 2025, 15(12), 2010; https://doi.org/10.3390/buildings15122010 - 11 Jun 2025
Cited by 1 | Viewed by 542
Abstract
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint [...] Read more.
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint and potential to utilize industrial byproducts. Geopolymer mortar, like other cementitious substances, exhibits brittleness and tensile weakness. Basalt fibers serve as fracture-bridging reinforcements, enhancing flexural and tensile strength by redistributing loads and postponing crack growth. Basalt fibers enhance the energy absorption capacity of the mortar, rendering it less susceptible to abrupt collapse. Basalt fibers have thermal stability up to about 800–1000 °C, rendering them appropriate for geopolymer mortars designed for fire-resistant or high-temperature applications. They assist in preserving structural integrity during heat exposure. Fibers mitigate early-age microcracks resulting from shrinkage, drying, or heat gradients. This results in a more compact and resilient microstructure. Using basalt fibers improves surface abrasion and impact resistance, which is advantageous for industrial flooring or infrastructure applications. Basalt fibers originate from natural volcanic rock, are non-toxic, and possess a minimal ecological imprint, consistent with the sustainability objectives of geopolymer applications. This study investigates the mechanical and thermal performance of a geopolymer mortar composed of metakaolin and red mud as binders, with basalt powder and limestone powder replacing traditional sand. The primary objective was to evaluate the effect of basalt fiber incorporation at varying contents (0.4%, 0.8%, and 1.2% by weight) on the durability and strength of the mortar. Eight different mortar mixes were activated using sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solutions. Mechanical properties, including compressive strength, flexural strength, and ultrasonic pulse velocity (UPV), were tested 7 and 28 days before and after exposure to elevated temperatures (200, 400, 600, and 800 °C). The results indicated that basalt fiber significantly enhanced the performance of the geopolymer mortar, particularly at a content of 1.2%. Specimens with 1.2% fiber showed up to 20% improvement in compressive strength and 40% in flexural strength after thermal exposure, attributed to the fiber’s role in microcrack bridging and structural densification. Subsequent research should concentrate on refining fiber type, dose, and dispersion techniques to improve mechanical performance and durability. Examinations of microstructural behavior, long-term durability under environmental settings, and performance following high-temperature exposure are crucial. Furthermore, investigations into hybrid fiber systems, extensive structural applications, and life-cycle evaluations will inform the practical and sustainable implementation in the buildings. Full article
Show Figures

Figure 1

Back to TopTop