Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = computer-generated holography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8512 KiB  
Article
Interactive Holographic Display System Based on Emotional Adaptability and CCNN-PCG
by Yu Zhao, Zhong Xu, Ting-Yu Zhang, Meng Xie, Bing Han and Ye Liu
Electronics 2025, 14(15), 2981; https://doi.org/10.3390/electronics14152981 - 26 Jul 2025
Viewed by 375
Abstract
Against the backdrop of the rapid advancement of intelligent speech interaction and holographic display technologies, this paper introduces an interactive holographic display system. This paper applies 2D-to-3D technology to acquisition work and uses a Complex-valued Convolutional Neural Network Point Cloud Gridding (CCNN-PCG) algorithm [...] Read more.
Against the backdrop of the rapid advancement of intelligent speech interaction and holographic display technologies, this paper introduces an interactive holographic display system. This paper applies 2D-to-3D technology to acquisition work and uses a Complex-valued Convolutional Neural Network Point Cloud Gridding (CCNN-PCG) algorithm to generate a computer-generated hologram (CGH) with depth information for application in point cloud data. During digital human hologram building, 2D-to-3D conversion yields high-precision point cloud data. The system uses ChatGLM for natural language processing and emotion-adaptive responses, enabling multi-turn voice dialogs and text-driven model generation. The CCNN-PCG algorithm reduces computational complexity and improves display quality. Simulations and experiments show that CCNN-PCG enhances reconstruction quality and speeds up computation by over 2.2 times. This research provides a theoretical framework and practical technology for holographic interactive systems, applicable in virtual assistants, educational displays, and other fields. Full article
(This article belongs to the Special Issue Artificial Intelligence, Computer Vision and 3D Display)
Show Figures

Figure 1

14 pages, 5528 KiB  
Article
From Google Earth Studio to Hologram: A Pipeline for Architectural Visualization
by Philippe Gentet, Tam Le Phuc Do, Jumamurod Farhod Ugli Aralov, Oybek Mirzaevich Narzulloev, Leehwan Hwang and Seunghyun Lee
Appl. Sci. 2025, 15(11), 6179; https://doi.org/10.3390/app15116179 - 30 May 2025
Viewed by 645
Abstract
High-resolution holographic visualization of built environments remains largely inaccessible due to the complexity and technical demands of traditional 3D data acquisition processes. This study proposes a workflow for producing high-quality full-color digital holographic stereograms of architectural landmarks using Google Earth Studio. By leveraging [...] Read more.
High-resolution holographic visualization of built environments remains largely inaccessible due to the complexity and technical demands of traditional 3D data acquisition processes. This study proposes a workflow for producing high-quality full-color digital holographic stereograms of architectural landmarks using Google Earth Studio. By leveraging photogrammetrically reconstructed three-dimensional (3D) city models and a controlled camera path, we generated perspective image sequences of two iconic monuments, that is, the Basílica de la Sagrada Família (Barcelona, Spain) and the Arc de Triomphe (Paris, France). A custom pipeline was implemented to compute keyframe coordinates, extract cinematic image sequences, and convert them into histogram data suitable for CHIMERA holographic printing. The holograms were recorded on Ultimate U04 silver halide plates and illuminated with RGB light-emitting diodes, yielding visually immersive reconstructions with strong parallax effects and color fidelity. This method circumvented the requirement for physical 3D scanning, thereby enabling scalable and cost-effective holography using publicly available 3D datasets. In conclusion, the findings indicate the potential of combining Earth Studio with digital holography for urban visualization, cultural heritage preservation, and educational displays. Full article
(This article belongs to the Topic 3D Documentation of Natural and Cultural Heritage)
Show Figures

Figure 1

18 pages, 8877 KiB  
Article
Noise Impact Analysis in Computer-Generated Holography Based on Dual Metrics Evaluation via Peak Signal-to-Noise Ratio and Structural Similarity Index Measure
by Yucheng Li, Yang Zhang, Deyu Jia, Song Gao and Muqun Zhang
Appl. Sci. 2025, 15(11), 6047; https://doi.org/10.3390/app15116047 - 28 May 2025
Viewed by 420
Abstract
This study investigates the noise impact on reconstructed images in computer-generated holography (CGH) through theoretical analysis and Matlab 2015b simulations. By quantitatively injecting noise to mimic practical interference environments, we systematically analyze the degradation mechanisms of four CGH types: detour-phase, modified off-axis beam [...] Read more.
This study investigates the noise impact on reconstructed images in computer-generated holography (CGH) through theoretical analysis and Matlab 2015b simulations. By quantitatively injecting noise to mimic practical interference environments, we systematically analyze the degradation mechanisms of four CGH types: detour-phase, modified off-axis beam reference, kinoform, and interference type. A dual-metric evaluation framework combining peak signal-to-noise ratio (PSNR) and the Structural Similarity Index Measure (SSIM) is proposed. Results demonstrate that increasing noise intensity induces progressive declines in reconstruction quality, manifested as PSNR reduction and SSIM-based structural fidelity loss. The findings provide theoretical guidance for noise suppression, parameter optimization, and algorithm selection in CGH systems, advancing its applications in optical encryption and high-precision imaging. Full article
Show Figures

Figure 1

33 pages, 9768 KiB  
Review
Recent Advances in Spatially Incoherent Coded Aperture Imaging Technologies
by Vipin Tiwari, Shivasubramanian Gopinath, Tauno Kahro, Francis Gracy Arockiaraj, Agnes Pristy Ignatius Xavier, Narmada Joshi, Kaupo Kukli, Aile Tamm, Saulius Juodkazis, Joseph Rosen and Vijayakumar Anand
Technologies 2025, 13(5), 210; https://doi.org/10.3390/technologies13050210 - 21 May 2025
Viewed by 1131
Abstract
Coded aperture imaging (CAI) is a powerful imaging technology that has rapidly developed during the past decade. CAI technology and its integration with incoherent holography have led to the development of several cutting-edge imaging tools, devices, and techniques with widespread interdisciplinary applications, such [...] Read more.
Coded aperture imaging (CAI) is a powerful imaging technology that has rapidly developed during the past decade. CAI technology and its integration with incoherent holography have led to the development of several cutting-edge imaging tools, devices, and techniques with widespread interdisciplinary applications, such as in astronomy, biomedical sciences, and computational imaging. In this review, we provide a comprehensive overview of the recently developed CAI techniques in the framework of incoherent digital holography. The review starts with an overview of the milestones in modern CAI technology, such as interferenceless coded aperture correlation holography, followed by a detailed survey of recently developed CAI techniques and system designs in subsequent sections. Each section provides a general description, principles, potential applications, and associated challenges. We believe that this review will act as a reference point for further advancements in CAI technologies. Full article
(This article belongs to the Collection Review Papers Collection for Advanced Technologies)
Show Figures

Figure 1

19 pages, 2562 KiB  
Review
Review on Principal and Applications of Temporal and Spatial Beam Shaping for Ultrafast Pulsed Laser
by Jong Hyun Kim and Hae Woon Choi
Photonics 2024, 11(12), 1140; https://doi.org/10.3390/photonics11121140 - 4 Dec 2024
Cited by 4 | Viewed by 2411
Abstract
Ultrafast or ultrashort pulsed lasers have become integral in numerous industrial applications due to their high precision, non-thermal interaction with materials, and ability to induce nonlinear absorption. These characteristics have expanded their use in microfabrication, semiconductor processing, automotive engineering, and biomedical fields. Temporal [...] Read more.
Ultrafast or ultrashort pulsed lasers have become integral in numerous industrial applications due to their high precision, non-thermal interaction with materials, and ability to induce nonlinear absorption. These characteristics have expanded their use in microfabrication, semiconductor processing, automotive engineering, and biomedical fields. Temporal pulse shaping reduces laser pulse durations, often to shorter timescales than many physical and chemical processes, enabling greater control. Meanwhile, spatial shaping improves efficiency and precision in micro- and nanofabrication and biomedical applications. Advances in optical parametric amplifiers (OPAs) and chirped-pulse amplifiers (CPAs) have allowed for more refined temporal and spatial shaping, ensuring the preservation of high peak power while achieving ultrashort pulse durations. Additionally, spatial light modulators (SLMs) have facilitated sophisticated beam shaping, which, when combined with ultrafast lasers, supports applications like computer-generated holography and nanoscale fabrication. These developments underscore the growing utility and versatility of ultrafast lasers in both research and industrial contexts. Full article
Show Figures

Figure 1

10 pages, 3569 KiB  
Communication
Hybrid Refractive and Diffractive Testing Method for Free-Form Convex Mirror in High-Resolution Remote-Sensing Cameras
by Nan Deng, Yanjie Li, He Ma and Feifei Zhang
Remote Sens. 2024, 16(20), 3865; https://doi.org/10.3390/rs16203865 - 17 Oct 2024
Viewed by 1199
Abstract
The development of high-resolution and large field of view remote-sensing cameras is inextricably linked to the application of free-form mirrors. The free-form mirror offers higher design of freedom and is more effective at correcting aberrations in optical systems. The surface shape error of [...] Read more.
The development of high-resolution and large field of view remote-sensing cameras is inextricably linked to the application of free-form mirrors. The free-form mirror offers higher design of freedom and is more effective at correcting aberrations in optical systems. The surface shape error of a free-form mirror directly affects the imaging quality of remote-sensing cameras. Consequently, a high-precision free-form mirror detection method is of paramount importance. For the convex free-form surface mirror with a large aperture, a hybrid refractive and diffractive testing method combining computer-generated holography (CGH) and spherical mirrors for high-precision null test is proposed in this paper. When comparing the effect of error and the detection sensitivity of different designs, the results showed that the influence of the system error is reduced by about 42% and the sensitivity is increased by more than 2.6 times. The proposed method can achieve higher testing accuracy and represents an effective and feasible approach for the surface shape detection method. Full article
(This article belongs to the Special Issue Optical Remote Sensing Payloads, from Design to Flight Test)
Show Figures

Figure 1

22 pages, 7009 KiB  
Article
Interpolation-Filtering Method for Image Improvement in Digital Holography
by Alexander V. Kozlov, Pavel A. Cheremkhin, Andrey S. Svistunov, Vladislav G. Rodin, Rostislav S. Starikov and Nikolay N. Evtikhiev
Appl. Sci. 2024, 14(19), 8790; https://doi.org/10.3390/app14198790 - 29 Sep 2024
Viewed by 1508
Abstract
Digital holography is actively used for the characterization of objects and 3D-scenes, tracking changes in medium parameters, 3D shape reconstruction, detection of micro-object positions, etc. To obtain high-quality images of objects, it is often necessary to register a set of holograms or to [...] Read more.
Digital holography is actively used for the characterization of objects and 3D-scenes, tracking changes in medium parameters, 3D shape reconstruction, detection of micro-object positions, etc. To obtain high-quality images of objects, it is often necessary to register a set of holograms or to select a noise suppression method for specific experimental conditions. In this paper, we propose a method to improve filtering in digital holography. The method requires a single hologram only. It utilizes interpolation upscaling of the reconstructed image size, filtering (e.g., median, BM3D, or NLM), and interpolation to the original image size. The method is validated on computer-generated and experimentally registered digital holograms. Interpolation methods coefficients and filter parameters were analyzed. The quality is improved in comparison with digital image filtering up to 1.4 times in speckle contrast on the registered holograms and up to 17% and 29% in SSIM and NSTD values on the computer-generated holograms. The proposed method is convenient in practice since its realization requires small changes of standard filters, improving the quality of the reconstructed image. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

13 pages, 55283 KiB  
Article
Holo-U2Net for High-Fidelity 3D Hologram Generation
by Tian Yang and Zixiang Lu
Sensors 2024, 24(17), 5505; https://doi.org/10.3390/s24175505 - 25 Aug 2024
Viewed by 1655
Abstract
Traditional methods of hologram generation, such as point-, polygon-, and layer-based physical simulation approaches, suffer from substantial computational overhead and generate low-fidelity holograms. Deep learning-based computer-generated holography demonstrates effective performance in terms of speed and hologram fidelity. There is potential to enhance the [...] Read more.
Traditional methods of hologram generation, such as point-, polygon-, and layer-based physical simulation approaches, suffer from substantial computational overhead and generate low-fidelity holograms. Deep learning-based computer-generated holography demonstrates effective performance in terms of speed and hologram fidelity. There is potential to enhance the network’s capacity for fitting and modeling in the context of computer-generated holography utilizing deep learning methods. Specifically, the ability of the proposed network to simulate Fresnel diffraction based on the provided hologram dataset requires further improvement to meet expectations for high-fidelity holograms. We propose a neural architecture called Holo-U2Net to address the challenge of generating a high-fidelity hologram within an acceptable time frame. Holo-U2Net shows notable performance in hologram evaluation metrics, including an average structural similarity of 0.9988, an average peak signal-to-noise ratio of 46.75 dB, an enhanced correlation coefficient of 0.9996, and a learned perceptual image patch similarity of 0.0008 on the MIT-CGH-4K large-scale hologram dataset. Full article
(This article belongs to the Special Issue Digital Holography Imaging Techniques and Applications Using Sensors)
Show Figures

Figure 1

15 pages, 8091 KiB  
Article
An FEM Study on Minimizing Electrostatic Cross-Talk in a Comb Drive Micro Mirror Array
by Andreas Neudert, Peter Duerr and Mario Nitzsche
Micromachines 2024, 15(8), 942; https://doi.org/10.3390/mi15080942 - 24 Jul 2024
Viewed by 2736
Abstract
We are developing a phase-modulating micro mirror-array spatial light modulator to be used for real holography within the EU-funded project REALHOLO, featuring millions of pixels that can be individually positioned in a piston mode at a large frame rate. We found earlier that [...] Read more.
We are developing a phase-modulating micro mirror-array spatial light modulator to be used for real holography within the EU-funded project REALHOLO, featuring millions of pixels that can be individually positioned in a piston mode at a large frame rate. We found earlier that an electrostatic comb-drive array offers the best performance for the actuators: sufficient yoke forces for fast switching even at low voltages compatible with the CMOS addressing backplane. In our first design, the well-known electrostatic cross-talk issue had already been much smaller than would have been possible for parallel-plate actuators, but it was still larger than the precision requirements for high-image-quality holography. In this paper, we report on our analysis of the crucial regions for the electrostatic cross-talk and ways to reduce it while observing manufacturing constraints as well as avoiding excessively high field strengths that might lead to electrical breakdown. Finally, we present a solution that, in FEM simulations, reduces the remaining cross-talk to well below the required specification limit. This solution can be manufactured without any additional processing steps and suffers only a very small reduction of the yoke forces. Full article
Show Figures

Figure 1

22 pages, 10451 KiB  
Article
Investigation of an Improved Angular Spectrum Method Based on Holography
by Ting Wu, Yuling Yang, Hao Wang, Hao Chen, Hao Zhu, Jisheng Yu and Xiuxin Wang
Photonics 2024, 11(1), 16; https://doi.org/10.3390/photonics11010016 - 25 Dec 2023
Cited by 3 | Viewed by 2890
Abstract
Digital holography (DH) is a novel, real-time, non-destructive, and quantitative phase-contrast imaging method that is particularly suitable for label-free live biological cell imaging and real-time dynamic monitoring. It is currently a research hotspot in the interdisciplinary field of optics and biomedical sciences, both [...] Read more.
Digital holography (DH) is a novel, real-time, non-destructive, and quantitative phase-contrast imaging method that is particularly suitable for label-free live biological cell imaging and real-time dynamic monitoring. It is currently a research hotspot in the interdisciplinary field of optics and biomedical sciences, both domestically and internationally. This article proposes an improved angle spectrum algorithm based on holographic technology, which reconstructs a cellular hologram based on phase information. Optical images and chromosome cell images, reconstructed using holographic technology at different diffraction distances under the improved angle spectrum algorithm, were analyzed and compared. The optimal diffraction distance for reconstructing chromosome cell images was selected, and chromosome cell images reproduced using traditional angle spectrum algorithms, angle spectrum algorithms combined with GS, and improved angle spectrum algorithms were compared. Comparative experiments with the different models show that the proposed algorithm is superior to traditional angle spectrum algorithms in reconstructing cell images based on phase information. Furthermore, experiments have shown that images reconstructed using the improved algorithm can resolve high signal-to-noise ratio information. This algorithmic improvement provides new applications for cellular detection in clinical diagnostics and is more suitable for cell phase reconstruction in practical applications. Full article
(This article belongs to the Special Issue Advanced Techniques in Biomedical Optical Imaging)
Show Figures

Figure 1

20 pages, 6695 KiB  
Article
Compression Performance Analysis of Experimental Holographic Data Coding Systems
by Tianyu Dong, Kwan-Jung Oh, Joongki Park and Euee S. Jang
Sensors 2023, 23(18), 7684; https://doi.org/10.3390/s23187684 - 6 Sep 2023
Cited by 3 | Viewed by 2078
Abstract
It is challenging to find a proper way to compress computer-generated holography (CGH) data owing to their huge data requirements and characteristics. This study proposes CGH data coding systems with high-efficiency video coding (HEVC), three-dimensional extensions of HEVC (3D-HEVC), and video-based point cloud [...] Read more.
It is challenging to find a proper way to compress computer-generated holography (CGH) data owing to their huge data requirements and characteristics. This study proposes CGH data coding systems with high-efficiency video coding (HEVC), three-dimensional extensions of HEVC (3D-HEVC), and video-based point cloud compression (V-PCC) codecs. In the proposed system, we implemented a procedure for codec usage and format conversion and evaluated the objective and subjective results to analyze the performance of the three coding systems. We discuss the relative advantages and disadvantages of the three coding systems with respect to their coding efficiency and reconstruction results. Our analysis concluded that 3D-HEVC and V-PCC are potential solutions for compressing red, green, blue, and depth (RGBD)-sourced CGH data. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

12 pages, 8272 KiB  
Article
Multiplane Holographic Imaging Using the Spatial Light Modulator
by Zhongsheng Zhai, Qinyang Li, Xuan He, Qinghua Lv, Wei Feng, Zhen Zeng and Xuanze Wang
Photonics 2023, 10(9), 977; https://doi.org/10.3390/photonics10090977 - 27 Aug 2023
Cited by 8 | Viewed by 2546
Abstract
The optimization of imaging accuracy and speed is a crucial issue in the development of computer-generated holograms (CGH) for three-dimensional (3D) displays. This paper proposes an optimized iterative algorithm based on the angular spectrum method (ASM) to achieve high-quality holographic imaging across multiple [...] Read more.
The optimization of imaging accuracy and speed is a crucial issue in the development of computer-generated holograms (CGH) for three-dimensional (3D) displays. This paper proposes an optimized iterative algorithm based on the angular spectrum method (ASM) to achieve high-quality holographic imaging across multiple planes. To effectively utilize spatial resources for multi-image reconstruction and mitigate the speckle noise caused by the overlapping of target images, constraint factors are introduced between different layers within the same region. The seeking rule of the constraint factor is also analyzed. By utilizing both constraint factors and variable factors, the presented method is able to calculate phase holograms for target figure imaging at four different planes. Simulation and experimental results demonstrate that the proposed method effectively improves the overall quality of the different planes, thus holding great potential for wide-ranging applications in the field of holography. Full article
Show Figures

Figure 1

20 pages, 13135 KiB  
Review
Advanced Microscopy Techniques for Molecular Biophysics
by Laura Barsanti, Lorenzo Birindelli, Francesca Sbrana, Giovanni Lombardi and Paolo Gualtieri
Int. J. Mol. Sci. 2023, 24(12), 9973; https://doi.org/10.3390/ijms24129973 - 9 Jun 2023
Cited by 4 | Viewed by 3457
Abstract
Though microscopy is most often intended as a technique for providing qualitative assessment of cellular and subcellular properties, when coupled with other instruments such as wavelength selectors, lasers, photoelectric devices and computers, it can perform a wide variety of quantitative measurements, which are [...] Read more.
Though microscopy is most often intended as a technique for providing qualitative assessment of cellular and subcellular properties, when coupled with other instruments such as wavelength selectors, lasers, photoelectric devices and computers, it can perform a wide variety of quantitative measurements, which are demanding in establishing relationships between the properties and structures of biological material in all their spatial and temporal complexities. These combinations of instruments are a powerful approach to improve non-destructive investigations of cellular and subcellular properties (both physical and chemical) at a macromolecular scale resolution. Since many subcellular compartments in living cells are characterized by structurally organized molecules, this review deals with three advanced microscopy techniques well-suited for these kind of investigations, i.e., microspectrophotometry (MSP), super-resolution localization microscopy (SRLM) and holotomographic microscopy (HTM). These techniques can achieve an insight view into the role intracellular molecular organizations such as photoreceptive and photosynthetic structures and lipid bodies play in many cellular processes as well as their biophysical properties. Microspectrophotometry uses a set-up based on the combination of a wide-field microscope and a polychromator, which allows the measurement of spectroscopic features such as absorption spectra. Super resolution localization microscopy combines dedicated optics and sophisticated software algorithms to overcome the diffraction limit of light and allow the visualization of subcellular structures and dynamics in greater detail with respect to conventional optical microscopy. Holotomographic microscopy combines holography and tomography techniques into a single microscopy set-up, and allows 3D reconstruction by means of the phase separation of biomolecule condensates. This review is organized in sections, which for each technique describe some general aspects, a peculiar theoretical aspect, a specific experimental configuration and examples of applications (fish and algae photoreceptors, single labeled proteins and endocellular aggregates of lipids). Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biophysics 2023)
Show Figures

Figure 1

16 pages, 3203 KiB  
Article
HoloForkNet: Digital Hologram Reconstruction via Multibranch Neural Network
by Andrey S. Svistunov, Dmitry A. Rymov, Rostislav S. Starikov and Pavel A. Cheremkhin
Appl. Sci. 2023, 13(10), 6125; https://doi.org/10.3390/app13106125 - 17 May 2023
Cited by 10 | Viewed by 3904
Abstract
Reconstruction of 3D scenes from digital holograms is an important task in different areas of science, such as biology, medicine, ecology, etc. A lot of parameters, such as the object’s shape, number, position, rate and density, can be extracted. However, reconstruction of off-axis [...] Read more.
Reconstruction of 3D scenes from digital holograms is an important task in different areas of science, such as biology, medicine, ecology, etc. A lot of parameters, such as the object’s shape, number, position, rate and density, can be extracted. However, reconstruction of off-axis and especially inline holograms can be challenging due to the presence of optical noise, zero-order image and twin image. We have used a deep-multibranch neural network model, which we call HoloForkNet, to reconstruct different 2D sections of a 3D scene from a single inline hologram. This paper describes the proposed method and analyzes its performance for different types of objects. Both computer-generated and optically registered digital holograms with resolutions up to 2048 × 2048 pixels were reconstructed. High-quality image reconstruction for scenes consisting of up to eight planes was achieved. The average structural similarity index (SSIM) for 3D test scenes with eight object planes was 0.94. The HoloForkNet can be used to reconstruct 3D scenes consisting of micro- and macro-objects. Full article
Show Figures

Figure 1

12 pages, 10790 KiB  
Article
Computer-Generated Holography Methods for Data Page Reconstruction Using Phase-Only Medium
by Timur Z. Minikhanov, Evgenii Y. Zlokazov, Pavel A. Cheremkhin, Rostislav S. Starikov and Nikolay N. Evtikhiev
Appl. Sci. 2023, 13(7), 4479; https://doi.org/10.3390/app13074479 - 31 Mar 2023
Cited by 1 | Viewed by 2148
Abstract
Achievements in the field of high-speed spatial modulation electrooptic components provide the possibility to create perspective optical-digital diffractive systems for information storage and processing that outperform modern electronic counterparts by utilizing throughput, energy efficiency, and reliability. This work presents a study of computer-generated [...] Read more.
Achievements in the field of high-speed spatial modulation electrooptic components provide the possibility to create perspective optical-digital diffractive systems for information storage and processing that outperform modern electronic counterparts by utilizing throughput, energy efficiency, and reliability. This work presents a study of computer-generated holography methods that allow the formation of spatially-modulated information signals (data pages) with high accuracy using phase-only spatial light modulators. Computer-generated Fourier hologram fringe patterns were formed using bipolar intensity and double-phase coding. Numerical and experimental results of both methods’ implementation are compared. It was determined that bipolar intensity holograms provide higher data density on the data page if complex digital modulation methods such as multilevel amplitude and phase or quadrature modulation are used to represent data points. Double-phase coding can offer perspective for multilevel amplitude or multilevel intensity modulated data page reconstruction; however, exact control of phase modulation characteristics is required to obtain high reconstruction quality. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

Back to TopTop