Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (841)

Search Parameters:
Keywords = compound angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1662 KB  
Article
Characterization of Nanocrystals of Eu-Doped GaN Powders Obtained via Pyrolysis, Followed by Their Nitridation
by Erick Gastellóu, Rafael García, Ana M. Herrera, Antonio Ramos, Godofredo García, Gustavo A. Hirata, José A. Luna, Roberto C. Carrillo, Jorge A. Rodríguez, Roman Romano, Yani D. Ramírez, Francisco Brown and Antonio Coyopol
Photonics 2025, 12(10), 982; https://doi.org/10.3390/photonics12100982 - 2 Oct 2025
Abstract
Nanocrystals of Eu-doped GaN powders are produced via pyrolysis of a viscous compound made from europium and gallium nitrates. Furthermore, carbohydrazide is used as a fuel and toluene as a solvent; subsequently, a crucial nitridation process is carried out at 1000 °C for [...] Read more.
Nanocrystals of Eu-doped GaN powders are produced via pyrolysis of a viscous compound made from europium and gallium nitrates. Furthermore, carbohydrazide is used as a fuel and toluene as a solvent; subsequently, a crucial nitridation process is carried out at 1000 °C for one hour. A slight shift of 0.04 degrees toward larger angles was observed for the X-ray diffraction patterns in the Eu-doped GaN powders regarding the undoped GaN powders, while Raman scattering also displayed a slight shift of 10.03 cm−1 toward lower frequencies regarding the undoped GaN powders for the vibration mode, E2(H), in both cases indicating the incorporation of europium atoms into the GaN crystal lattice. A scanning electron microscope micrograph demonstrated a surface morphology for the Eu-doped GaN with a shape similar to elongated platelets with a size of 3.77 µm in length. Energy-dispersive spectroscopy and X-ray photoelectron spectroscopy studies demonstrated the europium elemental contribution in the GaN. The X-ray photoelectron spectroscopy spectrum for gallium demonstrated the binding energies for Ga 2P3/2, Ga 2P1/2, and Eu 3d5/2, which could indicate the incorporation of europium into the GaN and the bonding between gallium and europium atoms. The transmission electron microscope micrograph showed the presence of nanocrystals with an average size of 9.03 nm in length. The photoluminescence spectrum showed the main Eu3+ transition at 2.02 eV (611.69 nm) for europium emission energy, corresponding to the 5D07F2 transition of the f shell, which is known as a laser transition. Full article
(This article belongs to the Special Issue Emerging Trends in Rare-Earth Doped Material for Photonics)
Show Figures

Figure 1

7 pages, 862 KB  
Short Note
Dichloro[2,5-bis(diisopropylphosphorimidoyl-κN-(4,6-dimethylpyrimidine-κN))pyrrole-κN]yttrium(III)·toluene
by Emily L. Trew, David Szucs and Paul G. Hayes
Molbank 2025, 2025(4), M2066; https://doi.org/10.3390/M2066 - 30 Sep 2025
Abstract
The compound dichloro[bis(diisopropylphosphorimidoyl-κN-(4,6-dimethylpyrimidine-κN))pyrrole-κN]yttrium(III) was synthesized from one equivalent of NaL [L = 2,5-[iPr2P=N(PymMe)]2NH(C4H2); PymMe = 4,6-dimethylpyrimidine] and YCl3(THF)3.5 and crystallized from [...] Read more.
The compound dichloro[bis(diisopropylphosphorimidoyl-κN-(4,6-dimethylpyrimidine-κN))pyrrole-κN]yttrium(III) was synthesized from one equivalent of NaL [L = 2,5-[iPr2P=N(PymMe)]2NH(C4H2); PymMe = 4,6-dimethylpyrimidine] and YCl3(THF)3.5 and crystallized from toluene. X-ray quality crystals of LYCl2 were obtained with one toluene solvent molecule in the asymmetric unit. The geometry, bond lengths and angles were analyzed and found to contain similar parameters to comparable structures in the literature, and the product was further characterized by NMR spectroscopy. To the best of our knowledge, this is the first reported seven-coordinate Y(III) complex supported by a pentadentate ligand wherein all five donor atoms are nitrogen. Full article
Show Figures

Figure 1

41 pages, 18706 KB  
Article
Multiscale Analysis and Preventive Measures for Slope Stability in Open-Pit Mines Using a Multimethod Coupling Approach
by Hengyu Chen, Baoliang Wang and Zhongsi Dou
Appl. Sci. 2025, 15(19), 10367; https://doi.org/10.3390/app151910367 - 24 Sep 2025
Viewed by 77
Abstract
This study investigates slope stability in an open-pit mining area by integrating engineering geological surveys, field investigations, and laboratory rock mechanics tests. A coordinated multimethod analysis was carried out using finite element-based numerical simulations from both two-dimensional and three-dimensional perspectives. The integrated approach [...] Read more.
This study investigates slope stability in an open-pit mining area by integrating engineering geological surveys, field investigations, and laboratory rock mechanics tests. A coordinated multimethod analysis was carried out using finite element-based numerical simulations from both two-dimensional and three-dimensional perspectives. The integrated approach revealed deformation patterns across the slopes and established a multiscale analytical framework. The results indicate that the slope failure modes primarily include circular and compound types, with existing step slopes showing a potential risk of wedge failure. While the designed slope meets safety requirements under three working conditions overall, the strongly weathered layer in profile XL3 requires a slope angle reduction from 38° to 37° to comply with standards. Three-dimensional simulations identify the main deformations in the middle-lower sections of the western area and zones B and C, with faults located at the core of the deformation zone. Rainfall and blasting vibrations significantly increase surface tensile stress, accelerating deformation. Although wedges in profiles XL1 and XL4 remain generally stable, coupled blasting–rainfall effects may still induce potential collapse in fractured areas, necessitating preventive measures such as concrete support and bolt support, along with real-time monitoring to dynamically optimize reinforcement strategies for precise risk control. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

15 pages, 1793 KB  
Article
Formation of Racemic Phases of Amino Acids by Liquid-Assisted Resonant Acoustic Mixing Monitored by Solid-State NMR Spectroscopy
by Leeroy Hendrickx, Calogero Quaranta, Emilian Fuchs, Maksim Plekhanov, Mirijam Zobel, Carsten Bolm and Thomas Wiegand
Molecules 2025, 30(18), 3745; https://doi.org/10.3390/molecules30183745 - 15 Sep 2025
Viewed by 296
Abstract
Mechanochemistry has become a fundamental method in various sciences including biology and chemistry. Despite its popularity, the mechanisms behind mechanochemically induced reactions are not very well understood. In previous work, we investigated molecular-recognition processes of molecules capable of forming racemic phases in ball [...] Read more.
Mechanochemistry has become a fundamental method in various sciences including biology and chemistry. Despite its popularity, the mechanisms behind mechanochemically induced reactions are not very well understood. In previous work, we investigated molecular-recognition processes of molecules capable of forming racemic phases in ball mill devices. Solid-state nuclear magnetic resonance (solid-state NMR) was used as the key technique to analyze such events. We now extended this study and focused on mechanochemically induced racemic-phase formations of two representative amino acids, alanine and serine, in a resonant acoustic mixer. The data reveal the importance of adding small amounts of solvents (here water) to facilitate the underlying solid-state molecular-recognition processes. The role of water therein is further studied by deuterium magic-angle spinning (MAS) NMR experiments, also revealing that resonant acoustic mixing (RAM) enables efficient hydrogen to deuterium exchange in enantiopure serine, paving the way to deuterate organic compounds in the RAM device. Full article
(This article belongs to the Special Issue NMR and MRI in Materials Analysis: Opportunities and Challenges)
Show Figures

Figure 1

47 pages, 9723 KB  
Review
Green Superhydrophobic Surfaces: From Natural Substrates to Sustainable Fabrication Processes
by Siyuan Wang, Hengyuan Liu, Gang Liu, Pengfei Song, Jingyi Liu, Zhao Liang, Ding Chen and Guanlin Ren
Materials 2025, 18(18), 4270; https://doi.org/10.3390/ma18184270 - 12 Sep 2025
Viewed by 322
Abstract
Superhydrophobic surfaces, characterized by water contact angles greater than 150°, have attracted widespread interest due to their exceptional water repellency and multifunctional applications. However, traditional fabrication methods often rely on fluorinated compounds and petroleum-based polymers, raising environmental and health concerns. In response to [...] Read more.
Superhydrophobic surfaces, characterized by water contact angles greater than 150°, have attracted widespread interest due to their exceptional water repellency and multifunctional applications. However, traditional fabrication methods often rely on fluorinated compounds and petroleum-based polymers, raising environmental and health concerns. In response to growing environmental and health problems, recent research has increasingly focused on developing green superhydrophobic surfaces, employing eco-friendly materials, energy-efficient processes, and non-toxic modifiers. This review systematically summarizes recent progress in the development of green superhydrophobic materials, focusing on the use of natural substrates such as cellulose, chitosan, starch, lignin, and silk fibroin. Sustainable fabrication techniques, including spray coating, dip coating, sol–gel processing, electrospinning, laser texturing, and self-assembly, are critically discussed with regards to their environmental compatibility, scalability, and integration with biodegradable components. Furthermore, the functional performance of these coatings is explored in diverse application fields, including self-cleaning, oil–water separation, anti-corrosion, anti-icing, food packaging, and biomedical devices. Key challenges such as mechanical durability, substrate adhesion, and large-scale processing are addressed, alongside emerging strategies that combine green chemistry with surface engineering. This review provides a comprehensive perspective on the design and deployment of eco-friendly superhydrophobic surfaces, aiming to accelerate their practical implementation across sustainable technologies. Full article
(This article belongs to the Special Issue Green Materials in Superhydrophobic Coatings)
Show Figures

Figure 1

17 pages, 427 KB  
Article
Effect of Buckwheat Husk Addition on Antioxidant Activity, Phenolic Profile, Color, and Sensory Characteristics of Bread
by Wajeeha Mumtaz, Marta Czarnowska-Kujawska and Joanna Klepacka
Molecules 2025, 30(17), 3625; https://doi.org/10.3390/molecules30173625 - 5 Sep 2025
Viewed by 881
Abstract
The incorporation of bioactive compounds from plant-based by-products into staple foods represents a sustainable strategy to enhance both nutritional quality and health benefits. The aim of this study was to evaluate the effect of buckwheat husk addition (1.5%, 3.0%, 4.5%) on the antioxidant [...] Read more.
The incorporation of bioactive compounds from plant-based by-products into staple foods represents a sustainable strategy to enhance both nutritional quality and health benefits. The aim of this study was to evaluate the effect of buckwheat husk addition (1.5%, 3.0%, 4.5%) on the antioxidant activity, total phenolic content (TPC) and its profile, color parameters, and sensory attributes of wheat and wholemeal breads. Increasing the husk content significantly (p ≤ 0.05) enhanced antioxidant activity, especially in the lipid-soluble fraction, with the highest values observed at 4.5% addition. In terms of TPC, wheat bread showed a significant (p ≤ 0.05) increase (16.5%) only at 3.0% husk addition, while wholemeal breads exhibited consistent TPC growth at all levels, reaching a 35.2% increase at 4.5% enrichment. Phenolic profiling revealed syringic acid as the dominant compound, constituting up to 64.4% of total phenolic acids in wholemeal bread with 4.5% husk. Flavonoids content increased with husk addition, with rutin, catechin, and orientin most prominent. Color analysis indicated a reduction in lightness and hue angle, an increase in browning index and total color difference with higher husk addition. Addition of husk modified aroma, color, and mouthfeel. Wholemeal breads with 1.5% and 4.5% buckwheat husk had the highest acceptability, enhancing nutritional and functional quality without affecting preference. Buckwheat husk effectively enhances bread’s nutritional and functional quality. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Figure 1

22 pages, 2702 KB  
Article
Sustainable Zinc Oxide Nanoparticles as Active Compounds for Pectin Packaging Films
by Sabina Galus, Adrianna Przybyszewska, Cássia H. Barbosa, Carolina Rodrigues, Victor Gomes Lauriano Souza, Marta M. Alves, Catarina F. Santos, Isabel Coelhoso and Ana Luisa Fernando
Coatings 2025, 15(9), 1024; https://doi.org/10.3390/coatings15091024 - 2 Sep 2025
Viewed by 703
Abstract
This study determined the feasibility of using zinc oxide nanoparticles of various origins as an active compound for biopolymer packaging films. The study focused on the effects of green synthesis using passion fruit or tomato extracts and commercial zinc oxide nanoparticles on the [...] Read more.
This study determined the feasibility of using zinc oxide nanoparticles of various origins as an active compound for biopolymer packaging films. The study focused on the effects of green synthesis using passion fruit or tomato extracts and commercial zinc oxide nanoparticles on the physicochemical properties of pectin films, including thickness, microstructure, water content, optical properties, water vapour permeability, water contact angle, sorption properties, and thermal stability. Zinc oxide nanoparticles resulted in lower lightness, higher absorbance, especially in the UV light range, and increased transparency, from 1.55 to 2.18 a.u./mm. Films containing zinc oxide nanoparticles showed reduced water vapour adsorption but increased water vapour permeability, from 6.35 to 12.07 × 10−10 g/m·s·Pa. The initial water contact angles were in a similar range, from 57.3° to 59.2°, but a decrease in contact angle values was observed over 60 s. All films containing nanoparticles exhibited better thermal stability, particularly during the third stage of degradation above 200 °C. Developed composite active films, prepared from apple pectin and zinc oxide nanoparticles of different origins, showed their potential for practical use as UV-VIS light barrier packaging films or protective coatings for food applications. Full article
(This article belongs to the Section Coatings for Food Technology and System)
Show Figures

Figure 1

13 pages, 954 KB  
Article
Interfacial Adhesion of Mouthrinses to Orthodontic Metal Wires: Surface Film Viscoelasticity Effect
by Stanisław Pogorzelski, Krzysztof Dorywalski, Katarzyna Boniewicz-Szmyt and Paweł Rochowski
Materials 2025, 18(17), 4065; https://doi.org/10.3390/ma18174065 - 29 Aug 2025
Viewed by 529
Abstract
This study concerns the evaluation of adhesive and wettability energetic signatures of a model orthodontic wire exposed to commercial mouthrinses. The surface wetting properties were evaluated from the contact angle hysteresis (CAH) approach applied to dynamic contact angle data derived from [...] Read more.
This study concerns the evaluation of adhesive and wettability energetic signatures of a model orthodontic wire exposed to commercial mouthrinses. The surface wetting properties were evaluated from the contact angle hysteresis (CAH) approach applied to dynamic contact angle data derived from the original drop on a vertical filament method. Young, advancing, receding CA apart from adhesive film pressure, surface energy, work of adhesion, etc. were chosen as interfacial interaction indicators, allowing for the optimal concentration and placement of the key component(s) accumulation to be predicted for effective antibacterial activity to eliminate plaque formation on the prosthetic materials. Surfactant compounds when adsorb at interfaces confer rheological properties to the surfaces, leading to surface relaxation, which depends on the timescale of the deformation. The surface dilatational complex modulus E, with compression elasticity Ed and viscosity Ei parts, determined in the stress–relaxation Langmuir trough measurements, exhibited the viscoelastic surface film behavior with the relaxation times (0.41–3.13 s), pointing to the vertically segregated film structure as distinct, stratified layers with the most insoluble compound on the system top (as indicated with the 2D polymer film scaling theory exponent y = 12.9–15.5). Kinetic rheology parameters could affect the wettability, adhesion, and spreading characteristics of mouthrinse liquids. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

15 pages, 2279 KB  
Article
Foliar Traits Drive Chlorophyll Fluorescence Variability in Chilean Sclerophyllous Species Under Early Outplanting Stress
by Sergio Espinoza, Carlos Magni, Marco Yáñez, Nicole Toro and Eduardo Martínez-Herrera
Plants 2025, 14(17), 2682; https://doi.org/10.3390/plants14172682 - 27 Aug 2025
Viewed by 482
Abstract
The photochemical efficiency of photosystem II (PSII) was monitored in two-year-old seedlings from six Chilean woody sclerophyllous species differing in foliage habits (evergreen, deciduous, semi-deciduous) and leaf orientation. A common garden experiment was established in July 2020 in a Mediterranean-type climate site under [...] Read more.
The photochemical efficiency of photosystem II (PSII) was monitored in two-year-old seedlings from six Chilean woody sclerophyllous species differing in foliage habits (evergreen, deciduous, semi-deciduous) and leaf orientation. A common garden experiment was established in July 2020 in a Mediterranean-type climate site under two watering regimes (2 L−1 seedling−1 week−1 for 5 months versus no irrigation). Chlorophyll a fluorescence rise kinetics (OJIP) and JIP test analysis were monitored from December 2021 to January 2022. The semi-deciduous Colliguaja odorifera (leaf angle of 65°) exhibited the highest performance in processes such as absorption and trapping photons, heat dissipation, electron transport, and level of photosynthetic performance (i.e., parameters PIABS FV/FM, FV/F0, and ΔVIP). In contrast, the evergreen Peumus boldus (leaf rolling) exhibited the opposite behavior for the same parameters. On the other hand, the deciduous Vachelia caven (small compound leaves and leaf angle of 15°) showed the lowest values for minimal and maximal fluorescence (F0 and FM) and the highest area above the OJIP transient (Sm) during the study period. Irrigation decreased Sm and the relative contribution of electron transport (parameter ΔVIP) by 22% and 17%, respectively, but no clear effects of the irrigation treatments were observed among species and dates of measurement. Overall, V. caven and C. odorifera exhibited the highest photosynthetic performance, whereas P. boldus seemed to be more prone to photoinhibition. We conclude that different foliar adaptations among species influence light protection mechanisms more than irrigation treatments. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

14 pages, 4874 KB  
Article
Temperature Dependence of Strain-Induced Crystallization in Silica- and Carbon Black-Filled Natural Rubber Compounds
by Gaurav Gupta, André Wehmeier, Rene Sattler, Jens Kiesewetter and Mario Beiner
Polymers 2025, 17(16), 2266; https://doi.org/10.3390/polym17162266 - 21 Aug 2025
Viewed by 515
Abstract
The results of strain-induced crystallization (SIC) studies on natural rubber compounds containing different amounts of carbon black and silica are reported. Two-dimensional wide-angle X-ray diffraction (2D WAXD) experiments were performed to quantify the degree of SIC at ambient and enlarged temperatures. The influence [...] Read more.
The results of strain-induced crystallization (SIC) studies on natural rubber compounds containing different amounts of carbon black and silica are reported. Two-dimensional wide-angle X-ray diffraction (2D WAXD) experiments were performed to quantify the degree of SIC at ambient and enlarged temperatures. The influence of temperature and filler system on the degree of crystallinity of natural rubber was investigated, since the estimated temperatures in truck tire treads are in the range 60–80 °C. Interestingly, the degree of crystallinity for silica-filled natural rubber compounds was commonly at least similar or higher compared to carbon black-filled compounds with identical filler mass fraction. In addition, it was demonstrated that the temperature dependence of natural rubber compounds containing silica and carbon black is also similar. In both cases the SIC disappeared slightly above 100 °C. Hence, it was concluded that the SIC behavior is most likely not the decisive factor for the different abrasion resistance of silica- and carbon black-reinforced natural rubber compounds for truck tire treads. This is an important insight considering the rising demand for sustainable rubber compounds for truck tire treads with low CO2 emissions as well as reduced abrasion. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

29 pages, 3441 KB  
Article
The Use of Whey Powder to Improve Bread Quality: A Sustainable Solution for Utilizing Dairy By-Products
by Diana Fluerasu (Bălțatu), Christine Neagu, Sylvestre Dossa, Monica Negrea, Călin Jianu, Adina Berbecea, Daniela Stoin, Dacian Lalescu, Diana Brezovan, Liliana Cseh, Mariana Suba, Cătălin Ianasi and Ersilia Alexa
Foods 2025, 14(16), 2911; https://doi.org/10.3390/foods14162911 - 21 Aug 2025
Viewed by 742
Abstract
This paper aims to study the potential of whey, a by-product in the dairy industry, to be used as a sustainable and health-promoting ingredient in baking. In this regard, whey powder (WhF) was produced and incorporated into three composite flours consisting of wheat [...] Read more.
This paper aims to study the potential of whey, a by-product in the dairy industry, to be used as a sustainable and health-promoting ingredient in baking. In this regard, whey powder (WhF) was produced and incorporated into three composite flours consisting of wheat flour and whey powder in proportions of 5% (WhWF5), 10% (WhWF10), and 15% (WhWF15). These composite flours were then used to produce bread. The nutritional properties (proximate composition, macro and microelement content) and bioactive compounds (total polyphenols and antioxidant activity) were assessed for both the composite flours and the resulting breads. In addition, the rheological behavior of the dough was evaluated using the Mixolab system, while the microstructural characteristics and physical properties of the composite flours were analyzed using Small/Wide Angle X-ray Scattering (SAXS/WAXS) and Fourier Transform Infrared Spectroscopy (FTIR). Sensory evaluation of the breads was also performed. The results demonstrated a positive effect of the whey powder addition on the nutritional profile of both composite flours and bakery products, particularly through increased protein levels (25.24–37.77% in fortified flours vs. 11.26% in control; 16.64–18.89% in fortified breads vs. 14.12% in control) and enhanced mineral content (11.27–80.45% higher compared to white wheat bread), alongside a reduction in carbohydrate content. Bread fortified with 15% whey powder showed higher monolement with increases of 27.80% for K, 7.01% for Mg, and 28.67% for Ca compared to control bread without whey. The analysis of the Mixolab charts confirmed the progressive influence of whey powder on dough rheology. While water absorption remains high, other functional parameters, such as gluten quality, kneading capacity, and starch viscosity, were negatively affected. Nonetheless, the nutritional advantages and reduced retrogradation tendency may offset these drawbacks in the context of developing functional bakery products. Formulations containing 5–10% whey powder appear to offer an optimal balance between technological performance, nutritional quality, and sensory acceptance. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

12 pages, 2329 KB  
Article
Comparative Analysis of the Substituent Effects on the Supramolecular Structure of N′-(4-Methyl-2-nitrophenyl)benzohydrazide and N′-(2-Nitro-(4-trifluoromethyl)phenyl)benzohydrazide)
by Christos P. Constantinides, Syed Raza, Fadwat Bazzi, Nisreen Sharara and Simona Marincean
Crystals 2025, 15(8), 732; https://doi.org/10.3390/cryst15080732 - 19 Aug 2025
Viewed by 773
Abstract
N′-Phenylbenzohydrazides are valuable precursors for air- and moisture-stable Blatter radicals, with applications in magnetism and spintronics. This study presents the single-crystal X-ray structures of N′-(4-methyl-2-nitrophenyl)benzohydrazide (I) and N′-(2-nitro-(4-trifluoromethyl)phenyl)benzohydrazide (II), highlighting the influence of substituents on supramolecular [...] Read more.
N′-Phenylbenzohydrazides are valuable precursors for air- and moisture-stable Blatter radicals, with applications in magnetism and spintronics. This study presents the single-crystal X-ray structures of N′-(4-methyl-2-nitrophenyl)benzohydrazide (I) and N′-(2-nitro-(4-trifluoromethyl)phenyl)benzohydrazide (II), highlighting the influence of substituents on supramolecular arrangement. Compounds I and II are found to crystallize within the monoclinic crystal system, with the space groups I2/a and P21/n, respectively, with centrosymmetric, one-dimensional columnar packing driven by π-π stacking. In I, π-π dimers form between benzoyl rings (3.018 Å), with additional stacking between aryls (3.408 Å) of neighboring dimers. In II, alternating benzoyl and aryl rings stack with interplanar distances of 2.681 and 2.713 Å. Bifurcated intra- and intermolecular hydrogen bonds (1.938–2.478 Å) further stabilize the packing. Compound II exhibits inter-stack F···F contacts (2.924 Å), attributed to steric effects. The trifluoromethyl group enhances N′NCO-NO2 conjugation, resulting in a near-parallel arrangement of aromatic rings and planar geometry at the N′ nitrogen. In contrast, compound I shows reduced conjugation, leading to pyramidalization at the N′ nitrogen and increased hydrazide bond flexibility, as seen in the 56° angle between aromatic rings. Full article
Show Figures

Figure 1

18 pages, 4202 KB  
Article
Wetting Properties of a Saponin-Rich Aqueous Soapwort Extract
by Anna Zdziennicka, Katarzyna Szymczyk, Bronisław Jańczuk, Kamil Wojciechowski and Ewa Kobylska
Molecules 2025, 30(16), 3413; https://doi.org/10.3390/molecules30163413 - 18 Aug 2025
Viewed by 595
Abstract
The saponin-rich plant extracts are mixtures of various surface-active and non-surface-active compound substances. Their exact composition depends on the type of plant and its part from which they were extracted. In this study, we analyze the wetting properties of the extract obtained by [...] Read more.
The saponin-rich plant extracts are mixtures of various surface-active and non-surface-active compound substances. Their exact composition depends on the type of plant and its part from which they were extracted. In this study, we analyze the wetting properties of the extract obtained by boiling soapwort (Saponaria officinalis L.) roots in water (SE). To this aim, the contact angle measurements of aqueous solutions of SE on apolar (AP) (polytetrafluoroethylene, PTFE), monopolar (MP) (polymethyl methacrylate, PMMA), weak bipolar (WBP) (composites with varying content of cellulose and chitosan), and bipolar solids (BP) (quartz) were determined. The surface tension of the solids used for the contact angle measurements ranged from 20.24 to 47.7 mN/m. Based on the measured contact angles, the relationship between adhesion and surface tension, the cosine of the contact angle and surface tension, the cosine of the contact angle and the reciprocal of the surface tension, as well as the adsorption of the surface-active components of SE at the solid-solution and solid-air interfaces were analyzed. The results indicate that the adsorption of SE components at the hydrophobic solid-solution interface is comparable to that at the solution–air interface. Moreover, the Gibbs free energy of adsorption at the solid-air interface for all solids studied is comparable to that at the solution–air interface. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

13 pages, 2780 KB  
Article
Enhancement on KCl Flotation at Low Temperature by a Novel Amine-Alcohol Compound Collector: Experiment and Molecular Dynamic Simulation
by Bo Wang, Jintai Tian, Biao Fan, Xin Wang and Enze Li
Minerals 2025, 15(8), 862; https://doi.org/10.3390/min15080862 - 15 Aug 2025
Viewed by 453
Abstract
To address the challenges of low KCl recovery and high collector consumption during flotation at low temperature, a novel approach with utilizing a compound collector consisting of octadecylamine hydrochloride (ODA) and alcohols (butanol, octanol, and dodecanol) to enhance low-temperature KCl flotation recovery was [...] Read more.
To address the challenges of low KCl recovery and high collector consumption during flotation at low temperature, a novel approach with utilizing a compound collector consisting of octadecylamine hydrochloride (ODA) and alcohols (butanol, octanol, and dodecanol) to enhance low-temperature KCl flotation recovery was proposed in this study. The flotation performance and underlying mechanisms of this novel amine–alcohol compound collector were investigated through combination of micro-flotation tests, contact angle measurements, and molecular dynamics simulations. The results revealed that KCl flotation recovery decreased with declining temperature using single ODA as the collector, and the maximum KCl flotation recovery was approximately 40% with an ODA concentration of 1 × 10−5 mol/L at the temperature of 0 °C. Moreover, amine–alcohol compound collector shows different KCl flotation recovery; among them, dodecanol (DOD) presents the best performance at 25 °C with an ODA concentration of 3 × 10−6 mol/L. The KCl flotation recovery initially increased and then gradually decreased with increasing the DOD concentration, and 90% KCl recovery was achieved with a DOD concentration of 1.5 × 10−5 mol/L (DOD:ODA = 5:1 in mole) under 25 °C. Furthermore, this compound collector exhibited high selectivity for KCl/NaCl flotation. Mechanism studies indicated that the trend in contact angle changes on the KCl crystal surface closely mirrored the trend in flotation recovery. Molecular dynamics simulations demonstrated that at 0 °C, the presence of DOD resulted in a higher diffusion coefficient for ODA molecules compared to the system without DOD. Additionally, the water molecules in System 3 exhibited a lower diffusion coefficient and a greater number of hydrogen bonds. This novel compound collector offers a potential solution for improving KCl recovery and reducing ODA consumption during low-temperature flotation. It holds significant theoretical and practical implications for advancing low-temperature KCl flotation technology. Full article
(This article belongs to the Special Issue Extraction of Valuable Elements from Salt Lake Brine)
Show Figures

Figure 1

21 pages, 9876 KB  
Article
Laser-Induced Ablation of Hemp Seed-Derived Biomaterials for Transdermal Drug Delivery
by Alexandru Cocean, Georgiana Cocean, Silvia Garofalide, Nicanor Cimpoesu, Daniel Alexa, Iuliana Cocean and Silviu Gurlui
Int. J. Mol. Sci. 2025, 26(16), 7852; https://doi.org/10.3390/ijms26167852 - 14 Aug 2025
Viewed by 523
Abstract
Numerous studies on specific cannabis compounds (cannabinoids and phenolic acids) have demonstrated their therapeutic potential, with their administration methods remaining a key research focus. Transdermal drug delivery (TDD) systems are gaining attention due to their advantages, such as painless administration, controlled release, direct [...] Read more.
Numerous studies on specific cannabis compounds (cannabinoids and phenolic acids) have demonstrated their therapeutic potential, with their administration methods remaining a key research focus. Transdermal drug delivery (TDD) systems are gaining attention due to their advantages, such as painless administration, controlled release, direct absorption into the bloodstream, and its ability to bypass hepatic metabolism. The thin films obtained via pulsed laser deposition consist of micro- and nanoparticles capable of migrating through skin pores upon contact. This study investigates the interaction of phenolic compounds in hemp seeds with pulsed laser beams. The main goal is to achieve the ablation and deposition of these compounds as thin films suitable for TDD applications. The other key objective is optimizing laser energy to enhance the industrial feasibility of this method. Thin layers were deposited on glass and hemp fabric using dual pulsed laser (DPL) ablation on a compressed hemp seed target held in a stainless steel ring. The target was irradiated for 30 min with two synchronized pulsed laser beams, each with parameters of 30 mJ, 532 nm, pulse width of 10 ns, and a repetition rate of 10 Hz. Each beam had an angle of incidence with the target surface of 45°, and the angle between the two beams was also 45°. To improve laser absorption, two approaches were used: (1) HS-DPL/glass and HS-DPL/hemp fabric, in which a portion of the stainless steel ring was included in the irradiated area, and (2) HST-DPL/glass and HST-DPL/hemp fabric—hemp seeds were mixed with turmeric powder, which is known to improve laser interaction and biocompatibility. The FTIR and Micro-FTIR spectroscopy (ATR) performed on thin films compared to the target material confirmed the presence of hemp-derived phenolic compounds, including tetrahydrocannabinol (THC), cannabidiol (CBD), ferulic acid, and coumaric acid, along with other functional groups such as amides. The ATR spectra have been validated against Gaussian 6 numerical simulations. Scanning electron microscopy (SEM) and substance transfer tests revealed the microgranular structure of thin films. Through the analyzes carried out, the following were highlighted: spherical structures (0.3–2 μm) for HS-DPL/glass, HS-DPL/hemp fabric, HST-DPL/glass, and HST-DPL/hemp fabric; larger spherical structures (8–13 μm) for HS-DPL/glass and HST-DPL/glass; angular, amorphous-like structures (~3.5 μm) for HS-DPL/glass; and crystalline-like structures (0.6–1.3 μm) for HST-DPL/glass. Microparticle transfer from thin films on the hemp fabric to the filter paper at a human body temperature (37 °C) confirmed their suitability for TDD applications, aligning with the “whole plant medicine” or “entourage effect” concept. Granular, composite, thin films were successfully developed, capable of releasing microparticles upon contact with a surface whose temperature is 37 °C, specific to the human body. Each of the microparticles in the thin films obtained with the DPL technique contains phenolic compounds (cannabinoids and phenolic acids) comparable to those in hemp seeds, effectively acting as “microseeds.” The obtained films are viable for TDD applications, while the DPL technique ensures industrial scalability due to its low laser energy requirements. Full article
Show Figures

Figure 1

Back to TopTop