Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (880)

Search Parameters:
Keywords = compound angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3932 KB  
Article
Intelligent Food Packaging Films Based on pH-Responsive Eugenol@ZIF-8/PVA-HACC with Enhanced Antimicrobial Activity
by Jiarui Liu, Jiachang Feng, Zhefeng Xu, Jinsong Zhang and He Wang
Molecules 2026, 31(4), 669; https://doi.org/10.3390/molecules31040669 - 14 Feb 2026
Viewed by 171
Abstract
Natural antibacterial food packaging materials endowed with environmental responsiveness are garnering substantial research interest in sustainable food preservation. This study reports the development of a pH-responsive antimicrobial composite film through encapsulation of eugenol—a natural phenolic compound—within zeolitic imidazolate framework-8 (ZIF-8). The engineered eugenol@ZIF-8 [...] Read more.
Natural antibacterial food packaging materials endowed with environmental responsiveness are garnering substantial research interest in sustainable food preservation. This study reports the development of a pH-responsive antimicrobial composite film through encapsulation of eugenol—a natural phenolic compound—within zeolitic imidazolate framework-8 (ZIF-8). The engineered eugenol@ZIF-8 system demonstrated pH-dependent release characteristics, with cumulative release reaching 32.2% at pH 6 versus merely 0.61% at pH 7 over 4 h. Subsequent integration of this nanocarrier into a polyvinyl alcohol (PVA)/hydroxypropyltrimethyl ammonium chloride chitosan (HACC) matrix yielded a multifunctional composite film for active food packaging applications. The characterization of film revealed that while eugenol@ZIF-8 incorporation slightly compromised mechanical strength (tensile resistance decreased by 18.7%) and flexibility (elongation at break reduced to 54.3% of control), it significantly enhanced hydrophobicity (water contact angle increased to 92.5°) and thermal stability (decomposition temperature elevated by 34 °C). The composite film demonstrated synergistic antibacterial efficacy through the combined action of Zn2+ ions, ZIF-8 nanostructures, and eugenol, achieving 88% inhibition against E. coli. Practical validation through fresh noodle preservation trials confirmed the material’s effectiveness, with the optimized formulation (PVA-HACC-2% eugenol@ZIF-8, PHEZ2) extending shelf life by >5 days compared to conventional packaging. This work establishes a novel strategy for engineering intelligent ZIF-based packaging systems that respond to food spoilage microenvironments, offering significant potential for reducing food loss. Full article
Show Figures

Graphical abstract

12 pages, 1211 KB  
Proceeding Paper
Color Stability and Bioactive Compound Retention in Patagonian Berry Pulps: Comparative Study of Pasteurization and Freezing Treatments
by Carolina Antonella Paulino, Candela Shaiel Mendinueta Morales, María Laura Coppo and Facundo Carlos Namor
Biol. Life Sci. Forum 2026, 56(1), 17; https://doi.org/10.3390/blsf2026056017 - 11 Feb 2026
Viewed by 103
Abstract
Berry pulps are valued for their intense color and bioactive compounds, which are susceptible to degradation during processing and storage. This study provides a comparative analysis of the effects of pasteurization (85 °C, 15 min) and frozen storage (−18 °C) on the physicochemical [...] Read more.
Berry pulps are valued for their intense color and bioactive compounds, which are susceptible to degradation during processing and storage. This study provides a comparative analysis of the effects of pasteurization (85 °C, 15 min) and frozen storage (−18 °C) on the physicochemical stability of four Patagonian berry pulps, including blackberry, raspberry, sour cherry, and blueberry, over a 12-month storage period. Color changes were evaluated using the CIELab system. Pasteurization caused significant increases in ΔE and L*, and reductions in a* and Chroma (p < 0.05), whereas frozen pulps showed minor changes and null ΔE at time zero. Hue angle shifts were mainly driven by storage time (p < 0.05). Overall, freezing better preserved color stability and bioactive quality. Full article
Show Figures

Figure 1

14 pages, 3488 KB  
Article
Study on the IMC Growth Mechanism of Cu/Sn-58Bi/Cu Joint Under Electromigration with Alternating Current
by Bo Wang, Peiying Zhu, Guopei Zhang, Chunyuan Deng, Kaixuan He, Wei Huang and Kailin Pan
Crystals 2026, 16(2), 127; https://doi.org/10.3390/cryst16020127 - 9 Feb 2026
Viewed by 163
Abstract
With the ongoing miniaturization of solder joints in three-dimensional integrated electronic packaging, electromigration reliability has become a pressing concern. This study systematically examines the interfacial intermetallic compound (IMC) growth behavior of Cu/Sn-58Bi/Cu joint under electromigration (EM) with a symmetrical square-wave alternating current (AC). [...] Read more.
With the ongoing miniaturization of solder joints in three-dimensional integrated electronic packaging, electromigration reliability has become a pressing concern. This study systematically examines the interfacial intermetallic compound (IMC) growth behavior of Cu/Sn-58Bi/Cu joint under electromigration (EM) with a symmetrical square-wave alternating current (AC). Electron backscatter diffraction (EBSD) was employed to perform statistical spatial analysis of Sn grain orientations within the joints to reveal the growth mechanism of interfacial IMC. Results demonstrate that the AC field markedly enhances the anisotropy of IMC growth in Cu/Sn-58Bi/Cu joints, exhibiting two phenomena: uniform growth on both sides and rapid growth (polar growth) on one side of the interfacial IMC. Among them, the IMC thickness difference characterization quantity ΔIMC reached as high as 45.56% for the latter. This is attributed to the directional regulation of atomic migration rate by Sn grain orientation (the angle θ between the c-axis and the electron flow) and is further amplified by the altered atomic diffusion pathways imposed by the Bi phase distribution. Specifically, the Sn grains exhibit a pronounced preferential orientation mode along the current path (horizontal direction), with an orientation gradient of 0.915 μm−1. The arrangement of Bi-rich phases alters the distribution of Sn grains in Cu/Sn-58Bi/Cu joints, thereby reshaping the internal electron transport pathways and significantly intensifying the orientation-dependent effect of IMC growth. Moreover, Sn grains adjacent to the Bi-rich phase boundaries (phase boundary grains) display a stronger tendency for c-axis orientation parallel to the current direction, exhibiting an average effective orientation parameter 1.948 times greater than that of bulk grains, which establishes a well-defined spatial orientation gradient. Full article
(This article belongs to the Special Issue Recent Research on Electronic Materials and Packaging Technology)
Show Figures

Figure 1

17 pages, 3245 KB  
Article
Twisted Anthracene-Fused BODIPY: Intersystem Crossing and Torsion-Induced Non-Radiative Relaxation of the Singlet Excited State
by Andrey A. Sukhanov, Yanran Wu, Yuqi Hou, Bei Li, Yu Dong, Jianzhang Zhao, Violeta K. Voronkova and Bernhard Dick
Molecules 2026, 31(3), 524; https://doi.org/10.3390/molecules31030524 - 2 Feb 2026
Viewed by 328
Abstract
The photophysical properties of a BODIPY derivative with the highly twisted molecular structure of anthracene-fused boron–dipyrromethene (AN-BDP) were studied with steady-state and time-resolved spectroscopic methods. The fused anthryl and the BDP units in AN-BDP units both adopt distorted geometry (with ca. [...] Read more.
The photophysical properties of a BODIPY derivative with the highly twisted molecular structure of anthracene-fused boron–dipyrromethene (AN-BDP) were studied with steady-state and time-resolved spectroscopic methods. The fused anthryl and the BDP units in AN-BDP units both adopt distorted geometry (with ca. 10° of torsion), and there is large dihedral angle between the two units (ca. 49.7°). Interestingly, the fluorescence quantum yields are highly dependent on the solvent polarity (59~3%, from toluene to acetonitrile), yet the fluorescence emission wavelength does not change in different solvents. Nanosecond transient absorption spectra indicate that the triplet state is long-lived, with an intrinsic triplet state lifetime of 551 μs. Interestingly the severely twisted structure only shows a moderate intersystem crossing (ISC) yield (10%). Femtosecond transient absorption spectra indicate slow ISC (>1.5 ns), which is in agreement with the fluorescence lifetime (2.3 ns). Time-resolved electron paramagnetic resonance (TREPR) spectra show smaller zero-field-splitting D and E tensors as (−71.4 mT, 16.7 mT, respectively) compared to the triplet state of the iodinated native BDP (D = −104.6 mT, E = 22.8 mT), inferring that the triplet-state wave function of the new compound is delocalized over the twisted molecular framework. The theoretical computation indicated a solvent-polarity-dependent energy barrier for the relaxed S1 state to a conical interaction (CI) of the S1 and the S0 state potential curves, which agrees with the weaker fluorescence in polar solvents. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

23 pages, 21431 KB  
Article
Microstructure Evolution-Induced Mechanical Response in Welded Joints of 7075-T6 Aluminium Alloy Thin Sheets Subjected to Different Friction Stir Paths
by Jiajia Yang, Feifan Lv, Jie Liu, Xiaoping Xie, Qing Xu, Pengju Xu, Zenglei Ni, Yong Huang and Liang Huang
Coatings 2026, 16(2), 186; https://doi.org/10.3390/coatings16020186 - 2 Feb 2026
Viewed by 203
Abstract
As a solid-state joining technology, friction stir welding (FSW) exhibits significant advantages for joining aluminium alloys, including low heat input and minimal formation of intermetallic compounds, thereby enhancing joint quality and mitigating deformation. This study investigates the single-sided and double-sided FSW processes of [...] Read more.
As a solid-state joining technology, friction stir welding (FSW) exhibits significant advantages for joining aluminium alloys, including low heat input and minimal formation of intermetallic compounds, thereby enhancing joint quality and mitigating deformation. This study investigates the single-sided and double-sided FSW processes of 3 mm thick 7075-T6 aluminium alloy sheets, focusing on characterising the microstructure and mechanical properties of the joints. Experimental results show that at a rotational speed of 1500 rpm and a welding speed of 80 mm/min, the double-sided co-directional FSW joint achieves a tensile strength of 388 MPa and an elongation of 7.09%, significantly outperforming those of the other two welding paths. In the weld nugget zone (WNZ), continuous dynamic recrystallization (CDRX) occurs, generating uniformly refined equiaxed grains (average size: 1.10 μm) and facilitating the transformation of low-angle grain boundaries (LAGBs) to high-angle grain boundaries (HAGBs). Meanwhile, the strong rotated cube texture is remarkably weakened and replaced by random recrystallized brass textures with the lowest kernel average misorientation (KAM) value in the WNZ. In contrast, the thermo-mechanically affected zone (TMAZ) accumulates a high density of LAGBs due to welding-induced plastic deformation. Microhardness testing reveals a typical “W”-shaped distribution: WNZ hardness is relatively high but slightly lower than that of the base metal (BM), and the minimum hardness of the advancing side (AS) of the heat-affected zone (HAZ) is higher than that of the retreating side (RS). This study confirms that double-sided co-directional FSW crucially regulates microstructural evolution and improves the mechanical properties of 7075-T6 aluminium alloy joints, providing a viable process optimisation strategy for high-quality welding of thin-gauge sheets. Full article
Show Figures

Figure 1

19 pages, 3314 KB  
Article
Exploration of Bamboo-Derived Nanocellulose Paper for Versatile Colorimetric Detection of Bio Compounds
by Fitri Rahmah, Farah Nita Adila, Ruri Agung Wahyuono and Agus Muhamad Hatta
Polysaccharides 2026, 7(1), 14; https://doi.org/10.3390/polysaccharides7010014 - 31 Jan 2026
Viewed by 194
Abstract
Paper-based analytical devices (PADs) were developed as low-cost tools for detecting chemical and biological compounds, commonly fabricated from cellulose derived from plant biomass. Bamboo, a fast-growing and abundant plant with high cellulose content (40–50%), was investigated as a substrate source. In this study, [...] Read more.
Paper-based analytical devices (PADs) were developed as low-cost tools for detecting chemical and biological compounds, commonly fabricated from cellulose derived from plant biomass. Bamboo, a fast-growing and abundant plant with high cellulose content (40–50%), was investigated as a substrate source. In this study, the selection of bamboo was based on its rapid growth cycle and the abundance of parenchyma cells that facilitated nanofibrillation compared to cellulose fibers from softwood or hardwood. Cellulose fibers were extracted from black bamboo (30 and 60 mesh) using mechanical and acid hydrolysis methods. The mechanical method employed ultrasonication to obtain nanocellulose, while the acid hydrolysis method used strong acids, i.e., H2SO4. The resulting nanocellulose papers exhibited variations in contact angle, porosity, and transmittance that directly affected their permeability and fluid flow behavior. The results indicated that the mechanical method, which extracted nanocellulose from parenchyma cells, yielded more consistent thermophysical and mechanical properties suitable for paper-based biosensors. The fabricated nanocellulose papers were tested as PADs for colorimetric detection of dopamine and hydrogen peroxide. Based on the literature comparison, their sensing performance, including sensitivity, linearity, limit of detection (LOD), and limit of quantification (LOQ), was comparable to other nanocellulose-based papers, indicating the potential of bamboo-derived nanocellulose as a sustainable substrate for PADs. Full article
Show Figures

Figure 1

25 pages, 2854 KB  
Article
Solvatochromic Study of Brilliant Blue G: Estimation of the Electric Dipole Moment in the Excited State
by Mihaela Miron, Dana Ortansa Dorohoi and Dan-Gheorghe Dimitriu
Symmetry 2026, 18(2), 221; https://doi.org/10.3390/sym18020221 - 25 Jan 2026
Viewed by 461
Abstract
Brilliant blue G is a chemical compound with many important applications in various domains, from dye manufacturing to biotechnologies and medicine. Despite the fact that it is used mainly in solutions, a solvatochromic study of this compound has never been reported, while the [...] Read more.
Brilliant blue G is a chemical compound with many important applications in various domains, from dye manufacturing to biotechnologies and medicine. Despite the fact that it is used mainly in solutions, a solvatochromic study of this compound has never been reported, while the value of the electrical dipole moment in the excited state is unknown. Here, a solvatochromic study of brilliant blue G is described, and the data is analyzed by three models, allowing for the estimation of the intermolecular interactions involved, as well as their contribution to the total shift in the visible electronic absorption spectral band. Two models provide a predominance of the non-specific (universal) intermolecular interactions, while the third model overestimates the weight of the specific interactions. The spectral data also allow for the comparative estimation of the electrical dipole moment in the first excited state of brilliant blue G molecule by two methods. The values obtained are very close, confirming the good agreement between the two approaches. One of these methods also estimates the angle between the electrical dipole moments in the ground and excited states of brilliant blue G molecule, respectively. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Reviews and Papers)
Show Figures

Figure 1

15 pages, 4209 KB  
Review
Ciliary Structures and Particle-Capture Mechanisms in Marine Filter-Feeding Bivalves
by Hans Ulrik Riisgård and Poul S. Larsen
J. Mar. Sci. Eng. 2026, 14(3), 251; https://doi.org/10.3390/jmse14030251 - 25 Jan 2026
Viewed by 248
Abstract
The minimum size of particles being efficiently captured in the gills of filter-feeding bivalves differs between mussels with well-developed laterofrontal cirri (lfc) and scallops having only simple pro-laterofrontal cilia (pro-lfc). The presence of branching compound lfc increases the particle retention efficiency below the [...] Read more.
The minimum size of particles being efficiently captured in the gills of filter-feeding bivalves differs between mussels with well-developed laterofrontal cirri (lfc) and scallops having only simple pro-laterofrontal cilia (pro-lfc). The presence of branching compound lfc increases the particle retention efficiency below the lower limit of about 4 µm for 100% retention, whereas the simple pro-lfc cilia in scallops are less efficient with decreasing retention efficiency for particles smaller than about 7 µm. To understand the particle capture mechanisms in bivalves, attention must be paid to the ciliary structures and water flow in flat gills (mussels) versus plicate gills (scallops, oysters). Here, we briefly review the literature on particle capture mechanisms in filter-feeding marine bivalves with large lfc (mussels, clams), short lfc (oysters), and with only pro-lfc (scallops), and then we describe our present understanding of these processes. This is carried out along with comments on a long-lasting and current controversy on particle-capture mechanisms in filter-feeding bivalves. We rebut the hypothesis of “hydrosol filtering” proposed by Ward et al. (1998), where the approach angle of a particle towards the gill is 30° and the particle is captured by direct interception with a gill filament, whereas lfc generate “zones of blocked through-flow”. No further test of the hydrosol hypothesis has so far been made, but nevertheless, it has been cited in many publications over the last 25 years. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

25 pages, 7120 KB  
Article
Non-Imaging Optics as Radiative Cooling Enhancers: An Empirical Performance Characterization
by Edgar Saavedra, Guillermo del Campo, Igor Gomez, Juan Carrero, Adrian Perez and Asuncion Santamaria
Urban Sci. 2026, 10(1), 64; https://doi.org/10.3390/urbansci10010064 - 20 Jan 2026
Viewed by 1769
Abstract
Radiative cooling (RC) offers a passive pathway to reduce surface and system temperatures by emitting thermal radiation through the atmospheric window, yet its daytime effectiveness is often constrained by geometry, angular solar exposure, and practical integration limits. This work experimentally investigates the use [...] Read more.
Radiative cooling (RC) offers a passive pathway to reduce surface and system temperatures by emitting thermal radiation through the atmospheric window, yet its daytime effectiveness is often constrained by geometry, angular solar exposure, and practical integration limits. This work experimentally investigates the use of passive non-imaging optics, specifically compound parabolic concentrators (CPCs), as enhancers of RC performance under realistic conditions. A three-tier experimental methodology is followed. First, controlled indoor screening using an infrared lamp quantifies the intrinsic heat gain suppression of a commercial RC film, showing a temperature reduction of nearly 88 °C relative to a black-painted reference. Second, outdoor rooftop experiments on aluminum plates assess partial RC coverage, with and without CPCs, under varying orientations and tilt angles, revealing peak daytime temperature reductions close to 8 °C when CPCs are integrated. Third, system-level validation is conducted using a modified GUNT ET-202 solar thermal unit to evaluate the transfer of RC effects to a water circuit absorber. While RC strips alone produce modest reductions in water temperature, the addition of CPC optics amplifies the effect by factors of approximately three for ambient water and nine for water at 70 °C. Across all configurations, statistical analysis confirms stable, repeatable measurements. These results demonstrate that coupling commercially available RC materials with non-imaging optics provides consistent and measurable performance gains, supporting CPC-assisted RC as a scalable and retrofit-friendly strategy for urban and building energy applications while calling for longer-term experiments, durability assessments, and techno-economic analysis before deriving definitive deployment guidelines. Full article
Show Figures

Figure 1

20 pages, 2801 KB  
Article
A Two-Step Strategy for Aroma Restoration of Strawberry Concentrate Based on ZIF-67@PDMS Composite Membrane
by Ziling Teng, Zixuan Ge, Xia Yu, Chunxia Zhou, Suling Guo, Yun Sun and Zhong Yao
Foods 2026, 15(2), 374; https://doi.org/10.3390/foods15020374 - 20 Jan 2026
Viewed by 260
Abstract
An organophilic composite membrane, ZIF-67@PDMS, was fabricated to enhance the isolation of natural aromatic compounds. The as-prepared composite membrane was characterized using SEM, EDS, FTIR, XRD, and contact angle measurement. In comparison to pure PDMS, ZIF-67@PDMS, featuring a loading capacity of 2.5 wt% [...] Read more.
An organophilic composite membrane, ZIF-67@PDMS, was fabricated to enhance the isolation of natural aromatic compounds. The as-prepared composite membrane was characterized using SEM, EDS, FTIR, XRD, and contact angle measurement. In comparison to pure PDMS, ZIF-67@PDMS, featuring a loading capacity of 2.5 wt% of PDMS and a membrane thickness of 15 μm, demonstrated markedly improved separation performance for the characteristic aroma compounds of strawberries, namely linalool, benzaldehyde, and ethyl acetate. Under optimal conditions, the permeation fluxes of the three compounds were 628.02 mg∙m−2∙h−1, 294.82 mg∙m−2∙h−1, and 254.14 mg∙m−2∙h−1, along with separation factors of 26.48, 7.94, and 6.32, respectively. ZIF-67@PDMS was then employed to isolate aromatic compounds from freshly squeezed strawberry juice. By backfilling the permeate, both the variety and the content of aromatic compounds in strawberry concentrate were notably restored, and its aroma profile also closely resembled that of fresh strawberry juice. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

27 pages, 2278 KB  
Article
Germination as a Sustainable Green Pre-Treatment for the Recovery and Enhancement of High-Value Compounds in Broccoli and Kale
by Christine (Neagu) Dragomir, Corina Dana Misca, Sylvestre Dossa, Daniela Stoin, Ariana Velciov, Călin Jianu, Isidora Radulov, Mariana Suba, Catalin Ianasi and Ersilia Alexa
Molecules 2026, 31(2), 350; https://doi.org/10.3390/molecules31020350 - 19 Jan 2026
Viewed by 226
Abstract
Germination is widely recognized as an effective strategy to enhance the nutritional quality and reduce anti-nutritional factors in plant foods. This study evaluated the impact of germination on Cruciferous vegetables (family Cruciferae or Brassicaceae) broccoli and kale by assessing changes in proximate [...] Read more.
Germination is widely recognized as an effective strategy to enhance the nutritional quality and reduce anti-nutritional factors in plant foods. This study evaluated the impact of germination on Cruciferous vegetables (family Cruciferae or Brassicaceae) broccoli and kale by assessing changes in proximate composition, macro- and microelement profiles, total and individual polyphenols, phytic acid content, antimicrobial activity, and structural characteristics using Fourier Transform Infrared Spectroscopy (FTIR) and Small- and Wide-Angle X-ray Scattering (SAXS/WAXS) analyses. Germination significantly increased protein content (30.33% in broccoli sprouts and 30.21% in kale sprouts), total phenolic content (424.40 mg/100 g in broccoli sprouts and 497.94 mg/100 g in kale sprouts), and essential minerals, while reducing phytic acid levels in both species (up to 82.20%). Antimicrobial effects were matrix-dependent, being detected in broccoli and kale seed powders, while no inhibitory activity was observed for the corresponding sprout powders under the tested conditions. FTIR spectra indicated notable modifications in functional groups related to carbohydrates, proteins, and phenolic compounds, while SAXS analysis revealed structural reorganizations at the nanoscale. Overall, germination improved the nutritional and phytochemical quality of broccoli and kale while decreasing anti-nutritional compounds, highlighting its potential to enhance the health-promoting value of Brassica sprouts. Full article
Show Figures

Graphical abstract

20 pages, 2519 KB  
Review
Current Knowledge of Respiratory Function in Early Onset Scoliosis and the Effect of Its Contemporary Surgical Treatment
by Sai Gautham Balasubramanian, David Fender and Paul Rushton
J. Clin. Med. 2026, 15(2), 754; https://doi.org/10.3390/jcm15020754 - 16 Jan 2026
Viewed by 231
Abstract
Early Onset Scoliosis (EOS), defined as presenting before 10 years of age, often has a significant adverse impact on pulmonary function, due to a complex interrelationship between the spine, chest, pulmonary structures and their development. Left untreated, EOS leads to premature death, with [...] Read more.
Early Onset Scoliosis (EOS), defined as presenting before 10 years of age, often has a significant adverse impact on pulmonary function, due to a complex interrelationship between the spine, chest, pulmonary structures and their development. Left untreated, EOS leads to premature death, with early fusion surgery to arrest curve progression making little impact on this. To date, the natural history has not been clearly established as compounded by the heterogeneity of pathologies, causing EOS and challenges in objective measurements of pulmonary function in this young age group. A desire to address this poor natural history has motivated interest in pursuing ‘growth friendly’ surgical strategies. The implants used have evolved with time, often to address compromises and poor results, with multiple options now available based on treatment principles (distraction, compression, or guided growth systems). The aims of such strategies are to control the structural spinal deformity, whilst allowing spinal and thoracic growth, with the seemingly reasonable expectation that this will result in improved pulmonary function and avoidance of premature death. Most studies have focused on radiological outcome measures such as Cobb angle and thoracic height to gauge the success of surgery, with these measures acting as surrogate markers of improved pulmonary outcome. This assumption, however, is not supported by more recent clinical data which has attempted to assess directly the pulmonary outcomes associated with growth-friendly surgical strategies. This literature review therefore sets out to characterise the effect of EOS on pulmonary function and to critically analyse the impact surgical treatment options will have while addressing this. Full article
(This article belongs to the Special Issue Safety in Spinal Surgery)
Show Figures

Figure 1

21 pages, 5291 KB  
Article
Green Surface Engineering of Spun-Bonded Nonwovens Using Polyphenol-Rich Berry Extracts for Bioactive and Functional Applications
by Karolina Gzyra-Jagieła, Bartosz Kopyciński, Piotr Czarnecki, Sławomir Kęska, Natalia Słabęcka, Anna Bednarowicz, Nina Tarzyńska, Dorota Zielińska, Longina Madej-Kiełbik and Patryk Śniarowski
Eng 2026, 7(1), 49; https://doi.org/10.3390/eng7010049 - 16 Jan 2026
Viewed by 402
Abstract
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts [...] Read more.
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts from Vaccinium myrtillus L. and Sambucus nigra L. were applied onto a nonwoven’s surface via aerographic spraying using a water/ethanol system. The resulting materials were characterized in terms of morphology, physicochemical and mechanical behavior, surface characteristics, and stability under accelerated ageing and hydrolytic conditions. Treatment with the extracts increased the tensile strength by roughly 38% and elongation at break by about 50%, and it changed the surface from hydrophobic (contact angle of 115°) to hydrophilic, with contact angles of 83° for the blueberry-modified nonwoven and 55° for the elderberry-modified nonwoven. The modified nonwovens also showed sustained release of polyphenolic compounds over 72 h, which is beneficial for biomedical, healthcare, and cosmetic applications, where short-term use, controlled release of active compounds, and bioactivity are more important than long-term durability. Overall, the results indicate that BIOPLAST®-based spun-bonded nonwovens can serve as fully bio-based carriers for fruit extracts in MedTech-related technical textiles, offering a straightforward way to introduce additional functionality into biodegradable nonwovens. Full article
Show Figures

Figure 1

20 pages, 4718 KB  
Article
Forward Osmosis for Produced Water Treatment: Comparative Performance Evaluation of Fabricated and Commercial Membranes
by Sunith B. Madduri and Raghava R. Kommalapati
Polymers 2026, 18(2), 197; https://doi.org/10.3390/polym18020197 - 10 Jan 2026
Viewed by 482
Abstract
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) [...] Read more.
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) membrane and a fabricated electrospun nanofibrous membrane, both modified with a zwitterionic sulfobetaine methacrylate/polydopamine (SBMA/PDA) coating. Fourier Transform Infrared Spectroscopy (FTIR) spectra verified the successful incorporation of SBMA and PDA through the appearance of characteristic sulfonate, quaternary ammonium, and catechol/amine-related vibrations. Scanning electron microscopy (SEM) imaging revealed the intrinsic dense surface of the CTA membrane and the highly porous nanofibrous architecture of the electrospun membrane, with both materials showing uniform coating coverage after modification. Complementary analyses supported these observations: X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of nitrogen, sulfur, and chlorine containing functionalities associated with the zwitterionic layer; Thermogravimetric Analysis (TGA) demonstrated that surface modification did not compromise the thermal stability of either membrane; and contact-angle measurements showed substantial increases in surface hydrophilicity following modification. Gas chromatography–mass spectrometry (GC–MS) analysis of the Permian Basin PW revealed a chemically complex mixture dominated by light hydrocarbons, alkylated aromatics, and heavy semi-volatile organic compounds. FO experiments using hypersaline PW demonstrated that the fabricated membrane consistently outperformed the commercial membrane under both MgCl2 and Na3PO4 draw conditions, achieving up to ~40% higher initial water flux and total solids rejection as high as ~62% when operated with 2.5 M Na3PO4. The improved performance is attributed to the nanofibrous architecture and zwitterionic surface chemistry, which together reduced fouling and reverse solute transport. These findings highlight the potential of engineered zwitterionic nanofibrous membranes as robust alternatives to commercial FO membranes for sustainable produced water treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

14 pages, 3931 KB  
Article
Experimental Determination of Material Behavior Under Compression of a Carbon-Reinforced Epoxy Composite Boat Damaged by Slamming-like Impact
by Erkin Altunsaray, Mustafa Biçer, Haşim Fırat Karasu and Gökdeniz Neşer
Polymers 2026, 18(2), 173; https://doi.org/10.3390/polym18020173 - 8 Jan 2026
Viewed by 330
Abstract
Carbon-reinforced epoxy laminated composite (CREC) structures are increasingly utilized in high-speed marine vehicles (HSMVs) due to their high specific strength and stiffness; however, they are frequently subjected to impact loads like slamming and aggressive environmental agents during operation. This study experimentally investigates the [...] Read more.
Carbon-reinforced epoxy laminated composite (CREC) structures are increasingly utilized in high-speed marine vehicles (HSMVs) due to their high specific strength and stiffness; however, they are frequently subjected to impact loads like slamming and aggressive environmental agents during operation. This study experimentally investigates the Compression After Impact (CAI) behavior of CREC plates with varying lamination sequences under both atmospheric and accelerated aging conditions. The samples were produced using the vacuum-assisted resin infusion method with three specific orientation types: quasi-isotropic, cross-ply, and angle-ply. To simulate the marine environment, specimens were subjected to accelerated aging in a salt fog and cyclic corrosion cabin for periods of 2, 4, and 6 weeks. Before and following the aging process, low-velocity impact tests were conducted at an energy level of 30 J, after which the residual compressive strength was measured by CAI tests. At the end of the aging process, after the sixth week, the performance of plates with different layer configuration characteristics can be summarized as follows: Plates 1 and 2, which are quasi-isotropic, exhibit opposite behavior. Plate 1, with an initial toughness of 23,000 mJ, increases its performance to 27,000 mJ as it ages, while these values are around 27,000 and 17,000 mJ, respectively, for Plate 2. It is thought that the difference in configurations creates this difference, and the presence of the 0° layer under the effect of compression load at the beginning and end of the configuration has a performance-enhancing effect. In Plates 3 and 4, which have a cross-ply configuration, almost the same performance is observed; the performance, which is initially 13,000 mJ, increases to around 23,000 mJ with the effect of aging. Among the options, angle-ply Plates 5 and 6 demonstrate the highest performance with values around 35,000 mJ, along with an undefined aging effect. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) analyses confirmed the presence of matrix cracking, fiber breakage, and salt accumulation (Na and Ca compounds) on the aged surfaces. The study concludes that the impact of environmental aging on CRECs is not uniformly negative; while it degrades certain configurations, it can enhance the toughness and energy absorption of brittle, cross-ply structures through matrix plasticization. Full article
Show Figures

Figure 1

Back to TopTop