Sustainable Zinc Oxide Nanoparticles as Active Compounds for Pectin Packaging Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Pectin Films
2.3. Film Thickness
2.4. Film Microstructure
2.5. Light Transmission
2.6. Colour
2.7. Film Transparency
2.8. Water Content
2.9. Water Vapour Sorption Kinetics
2.10. Water Vapour Sorption Isotherms
2.11. Water Contact Angle
2.12. Water Vapour Permeability
2.13. Fourier Transform Infrared Spectra of Films
2.14. Thermal Properties
2.15. Statistical Analysis
3. Results and Discussion
3.1. The Effect of Zinc Oxide Nanoparticles on Film Characterisation and Microstructure
3.2. The Effect of Zinc Oxide Nanoparticles on the UV Light Transmission of Pectin Films
3.3. The Effect of Zinc Oxide Nanoparticles on the Colour of Pectin Films
3.4. The Effect of Zinc Oxide Nanoparticles on the Transparency of Pectin Films
3.5. The Effect of Zinc Oxide Nanoparticles on Water Vapour Sorption Kinetics
3.6. The Effect of Zinc Oxide Nanoparticles on the Water Vapour Sorption Isotherms
3.7. The Effect of Zinc Oxide Nanoparticles on the Water Contact Angle
3.8. The Effect of Zinc Oxide Nanoparticles on the Water Vapour Permeability of Pectin Films
3.9. The Effect of Zinc Oxide Nanoparticles on the Chemical Structure of Pectin Films
3.10. The Effect of Zinc Oxide Nanoparticles on the Thermal Properties of Pectin Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahmud, M.Z.A.; Mobarak, M.H.; Hossain, N. Emerging trends in biomaterials for sustainable food packaging: A comprehensive review. Heliyon 2024, 10, e24122. [Google Scholar] [CrossRef]
- Li, D.; Xue, R. Nanostructured materials for smart food packaging: Integrating preservation and antimicrobial properties. Alex. Eng. J. 2025, 124, 446–461. [Google Scholar] [CrossRef]
- Nian, L.; Wang, M.; Sun, X.; Zeng, Y.; Xie, Y.; Cheng, S.; Cao, C. Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2024, 64, 2304–2339. [Google Scholar] [CrossRef] [PubMed]
- Karwacka, M.; Ciurzyńska, A.; Galus, S.; Janowicz, M. The Effect of Storage Time and Temperature on Quality Changes in Freeze-Dried Snacks Obtained with Fruit Pomace and Pectin Powders as a Sustainable Approach for New Product Development. Sustainability 2024, 16, 4736. [Google Scholar] [CrossRef]
- Ribeiro, I.S.; Maciel, G.M.; Bortolini, D.G.; Fernandes, I.d.A.A.; Maroldi, W.V.; Pedro, A.C.; Rubio, F.T.V.; Haminiuk, C.W.I. Sustainable innovations in edible films and coatings: An overview. Trends Food Sci. Technol. 2024, 143, 104272. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag. Shelf Life 2022, 33, 100892. [Google Scholar] [CrossRef]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.; García, M. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef]
- Freitas, C.M.P.; Coimbra, J.S.R.; Souza, V.G.L.; Sousa, R.C.S. Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. Coatings 2021, 11, 922. [Google Scholar] [CrossRef]
- Corrêa-Filho, L.; Junior, J.; Ramos, A.; Martinazzo, A.; Habert, A.; Carvalho, C.; Soares, A.; Tonon, R.; Cabral, L. Chitosan-based nanocomposite films with carnauba wax, rosin resin, and zinc oxide nanoparticles. Food Res. Int. 2024, 188, 114475. [Google Scholar] [CrossRef]
- Alasalvar, H.; Yildirim, Z.; Yildirim, M. Development and characterization of sustainable active pectin films: The role of choline chloride/glycerol-based natural deep eutectic solvent and lavender extracts. Heliyon 2023, 9, e21756. [Google Scholar] [CrossRef]
- Syarifuddin, A.; Muflih, M.H.; Izzah, N.; Fadillah, U.; Ainani, A.F.; Dirpan, A. Pectin-based edible films and coatings: From extraction to application on food packaging towards circular economy—A review. Carbohydr. Polym. Technol. Appl. 2025, 9, 100680. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Z.; Hu, L.; Li, G.; Yao, Q.; Hu, Y. Pectin-based active packaging: A critical review on preparation, physical properties and novel application in food preservation. Trends Food Sci. Technol. 2021, 118, 167–178. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Pakulska, A.; Bartosiewicz, E.; Galus, S. The Potential of Apple and Blackcurrant Pomace Powders as the Components of Pectin Packaging Films. Coatings 2023, 13, 1409. [Google Scholar] [CrossRef]
- Galus, S.; Arik Kibar, E.A.; Gniewosz, M.; Kraśniewska, K. Novel Materials in the Preparation of Edible Films and Coatings—A Review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
- Avramescu, S.M.; Butean, C.; Popa, C.V.; Ortan, A.; Moraru, I.; Temocico, G. Edible and Functionalized Films/Coatings—Performances and Perspectives. Coatings 2020, 10, 687. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef] [PubMed]
- Mikus, M.; Galus, S. Biopolymer active materials for food. Food Sci. Technol. Qual. 2023, 30, 18–32. [Google Scholar] [CrossRef]
- Mikus, M.; Galus, S. The Effect of Phenolic Acids on the Sorption and Wetting Properties of Apple Pectin-Based Packaging Films. Molecules 2025, 30, 1960. [Google Scholar] [CrossRef]
- Rezaei, B.; Yari, P.; Sanders, S.M.; Wang, H.; Chugh, V.K.; Liang, S.; Mostufa, S.; Xu, K.; Wang, J.-P.; Gómez-Pastora, J.; et al. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. Small 2024, 20, 2304848. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Alves, M.M.; Santos, C.F.; Ribeiro, I.A.C.; Rodrigues, C.; Coelhoso, I.; Fernando, A.L. Biodegradable Chitosan Films with ZnO Nanoparticles Synthesized Using Food Industry By-Products—Production and Characterization. Coatings 2021, 11, 646. [Google Scholar] [CrossRef]
- Mousazadeh, S.; Ehsani, A.; Moghaddas Kia, E.; Ghasempour, Z. Zinc oxide nanoparticles and periodate oxidation in developing pH-sensitive packaging film based on modified gelatin. Food Packag. Shelf Life 2021, 28, 100654. [Google Scholar] [CrossRef]
- El Habbasha, E.S.; Abouzeid, R.; Ibrahim, F.M.; Youssef, A.M.; Mahdy, S.Z.A.; El-Liethy, M.A. Developing a novel, low-cost, antimicrobial, and biodegradable pectin/HEC/ZnO biofilm for edible food packaging applications. Biomass Convers. Biorefinery 2024, 15, 6377–6388. [Google Scholar] [CrossRef]
- Al-Naamani, L.; Dobretsov, S.; Dutta, J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov. Food Sci. Emerg. Technol. 2016, 38, 231–237. [Google Scholar] [CrossRef]
- Souza, V.; Alves, M.; Santos, C.; Fernando, A.; Coelhoso, I. Polymer–nano-ZnO composites for food packaging. In Micro and Nano Technologies, Nanostructured Materials for Food Packaging Applications; Jissy, J.I.C., Sabu, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 263–293. [Google Scholar]
- El Fawal, G.; Hong, H.; Song, X.; Wu, J.; Sun, M.; He, C.; Mo, X.; Jiang, Y.; Wang, H. Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packag. Shelf Life 2020, 23, 100462. [Google Scholar] [CrossRef]
- Fujihara, J.; Nishimoto, N. Review of Zinc Oxide Nanoparticles: Toxicokinetics, Tissue Distribution for Various Exposure Routes, Toxicological Effects, Toxicity Mechanism in Mammals, and an Approach for Toxicity Reduction. Biol. Trace Elem. Res. 2024, 202, 9–23. [Google Scholar] [CrossRef]
- Dwivedi, L.M.; Baranwal, K.; Gupta, S.; Mishra, M.; Sundaram, S.; Singh, V. Antibacterial nanostructures derived from oxidized sodium alginate-ZnO. Int. J. Biol. Macromol. 2020, 149, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Alrumman, S.A. Influence of nanoparticles on food: An analytical assessment. J. King Saud Univ. Sci. 2021, 33, 101530. [Google Scholar] [CrossRef]
- Ngo, T.M.P.; Dang, T.M.Q.; Tran, T.X.; Rachtanapun, P. Effects of Zinc Oxide Nanoparticles on the Properties of Pectin/Alginate Edible Films. Int. J. Polym. Sci. 2018, 2018, 5645797. [Google Scholar] [CrossRef]
- Malik, G.; Mitra, J. Zinc Oxide Nanoparticle Synthesis, Characterization, and Their Effect on Mechanical, Barrier, and Optical Properties of HPMC-Based Edible Film. Food Bioprocess Technol. 2021, 14, 441–456. [Google Scholar] [CrossRef]
- Singh, V.; Dwivedi, L.; Baranwal, K.; Asthana, S.; Sundaram, S. Oxidized guar gum–ZnO hybrid nanostructures: Synthesis, characterization and antibacterial activity. Appl. Nanosci. 2018, 8, 1149–1160. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Mello, I.P.; Khalid, O.; Pires, J.R.A.; Rodrigues, C.; Alves, M.M.; Santos, C.; Fernando, A.L.; Coelhoso, I. Strategies to Improve the Barrier and Mechanical Properties of Pectin Films for Food Packaging: Comparing Nanocomposites with Bilayers. Coatings 2022, 12, 108. [Google Scholar] [CrossRef]
- Vijayaram, S.; Razafindralambo, H.; Sun, Y.Z.; Vasantharaj, S.; Ghafarifarsani, H.; Hoseinifar, S.H.; Raeeszadeh, M. Applications of Green Synthesized Metal Nanoparticles—A Review. Biol. Trace Elem. Res. 2024, 202, 360–386. [Google Scholar] [CrossRef] [PubMed]
- Przybyszewska, A.; Galus, S. Green Approach for Biopolymer-Based Food Packaging Films Enhanced by Zinc Oxide Nanoparticles. In Biopolymeric Nanoparticles for Agricultural Applications; Abd-Elsalam, K.A., Hashim, A.F., Ahmed, F.K., Thomas, S., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 319–342. [Google Scholar]
- Zhou, X.-Q.; Hayat, Z.; Zhang, D.-D.; Li, M.-Y.; Hu, S.; Wu, Q.; Cao, Y.-F.; Yuan, Y. Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture. Processes 2023, 11, 1193. [Google Scholar] [CrossRef]
- Przybyszewska, A.; Barbosa, C.H.; Pires, F.; Pires, J.R.A.; Rodrigues, C.; Galus, S.; Souza, V.G.L.; Alves, M.M.; Santos, C.F.; Coelhoso, I.; et al. Packaging of Fresh Poultry Meat with Innovative and Sustainable ZnO/Pectin Bionanocomposite Films—A Contribution to the Bio and Circular Economy. Coatings 2023, 13, 1208. [Google Scholar] [CrossRef]
- Sobral, P.; Santos, J.; García, F. Effect of protein and plasticizer concentrations in film forming solutions on physical properties of edible films based on muscle proteins of a Thai Tilapia. J. Food Eng. 2005, 70, 93–100. [Google Scholar] [CrossRef]
- Janowicz, M.; Rybak, K.; Ciurzyńska, A.; Galus, S. Effect of interactions of locust bean gum and rosehip juice on the physical properties of gum tragacanth composite films. J. Food Process. Preserv. 2022, 46, e16898. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: London, UK, 1975. [Google Scholar]
- Debeaufort, F.; Martin-Polo, M.; Voilley, A. Polarity Homogeneity and Structure Affect Water Vapor Permeability of Model Edible Films. J. Food Sci. 1993, 58, 426–429. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, R.; Ding, C.; Gong, T.; Sun, J.J.; Li, F.; Zhang, C.; Wang, X.Y.; Guo, Y.; Zhong, T.; et al. Fabraction of edible bio-nanocomposite coatings from pectin-containing lignocellulosic nanofibers isolated from apple pomace. Int. J. Biol. Macromol. 2024, 279, 135030. [Google Scholar] [CrossRef]
- Nesic, A.; Meseldzija, S.; Cabrera-Barjas, G.; Onjia, A. Novel Biocomposite Films Based on High Methoxyl Pectin Reinforced with Zeolite Y for Food Packaging Applications. Foods 2022, 11, 360. [Google Scholar] [CrossRef]
- Knijnenburg, J.T.N.; Kasemsiri, P.; Amornrantanaworn, K.; Suwanree, S.; Iamamornphan, W.; Chindaprasirt, P.; Jetsrisuparb, K. Entrapment of nano-ZnO into alginate/polyvinyl alcohol beads with different crosslinking ions for fertilizer applications. Int. J. Biol. Macromol. 2021, 181, 349–356. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.-D.; Andronescu, E.; Holban, A.M. Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil—A Novel Antimicrobial Structure. Pharmaceutics 2021, 13, 1020. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Peighambardoust, S.H.; Pournasir, N.; Mohammadzadeh Pakdel, P. Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packag. Shelf Life 2019, 22, 100420. [Google Scholar] [CrossRef]
- Mirjalili, F.; Yassini Ardekani, A. Preparation and characterization of starch film accompanied with ZnO nanoparticles. J. Food Process Eng. 2017, 40, e12561. [Google Scholar] [CrossRef]
- Shahabi-Ghahfarrokhi, I.; Khodaiyan, F.; Mousavi, M.; Yousefi, H. Preparation of UV-protective kefiran/nano-ZnO nanocomposites: Physical and mechanical properties. Int. J. Biol. Macromol. 2015, 72, 41–46. [Google Scholar] [CrossRef]
- do Nascimento, W.J.; da Costa, J.C.M.; Alves, E.S.; de Oliveira, M.C.; Monteiro, J.P.; Souza, P.R.; Martins, A.F.; Bonafe, E.G. Zinc oxide nanoparticle-reinforced pectin/starch functionalized films: A sustainable solution for biodegradable packaging. Int. J. Biol. Macromol. 2024, 257, 128461. [Google Scholar] [CrossRef] [PubMed]
- Sharaby, M.R.; Soliman, E.A.; Abdel-Rahman, A.B.; Osman, A.; Khalil, R. Novel pectin-based nanocomposite film for active food packaging applications. Sci. Rep. 2022, 12, 20673. [Google Scholar] [CrossRef]
- Kurek, M.; Ščetar, M.; Nuskol, M.; Janči, T.; Tanksoić, M.; Klepac, D.; Čakić Semenčić, M.; Galić, K. Assessment of Chitosan/Gelatin Blend Enriched with Natural Antioxidants for Antioxidant Packaging of Fish Oil. Antioxidants 2024, 13, 707. [Google Scholar] [CrossRef] [PubMed]
- Kchaou, H.; Jridi, M.; Nasri, M.; Debeaufort, F. Design of Gelatin Pouches for the Preservation of Flaxseed Oil during Storage. Coatings 2020, 10, 150. [Google Scholar] [CrossRef]
- Pirsa, S.; Shamusi, T. Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Mater. Sci. Eng. C 2019, 102, 798–809. [Google Scholar] [CrossRef]
- Salem, A.; Jridi, M.; Abdelhedi, O.; Fakhfakh, N.; Nasri, M.; Debeaufort, F.; Zouari, N. Development and characterization of fish gelatin-based biodegradable film enriched with Lepidium sativum extract as active packaging for cheese preservation. Heliyon 2021, 7, e08099. [Google Scholar] [CrossRef]
- Kim, S.; Song, K.B. Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms. Int. J. Food Sci. Technol. 2018, 53, 1549–1557. [Google Scholar] [CrossRef]
- Hari, K.D.; Garcia, C.V.; Shin, G.-H.; Kim, J.-T. Improvement of the UV Barrier and Antibacterial Properties of Crosslinked Pectin/Zinc Oxide Bionanocomposite Films. Polymers 2021, 13, 2403. [Google Scholar] [CrossRef]
- Mellinas, A.C.; Jiménez, A.; Garrigós, M.C. Pectin-Based Films with Cocoa Bean Shell Waste Extract and ZnO/Zn-NPs with Enhanced Oxygen Barrier, Ultraviolet Screen and Photocatalytic Properties. Foods 2020, 9, 1572. [Google Scholar] [CrossRef] [PubMed]
- Galus, S.; Lenart, A. Effect of fat emulsion on the optical properties of whey films. Acta Agrophysica 2012, 19, 29–36. [Google Scholar]
- Li, X.; Ren, Z.; Wang, R.; Liu, L.; Zhang, J.; Ma, F.; Khan, M.Z.; Zhao, D.; Liu, X.-H. Characterization and antibacterial activity of edible films based on carboxymethyl cellulose, Dioscorea opposita mucilage, glycerol and ZnO nanoparticles. Food Chem. 2021, 349, 129208. [Google Scholar] [CrossRef]
- Gökkaya Erdem, B.; Dıblan, S.; Kaya, S. A Comprehensive Study on Sorption, Water Barrier, and Physicochemical Properties of Some Protein- and Carbohydrate-Based Edible Films. Food Bioprocess Technol. 2021, 14, 2161–2179. [Google Scholar] [CrossRef]
- Nazreen, A.Z.; Jai, J.; Ali, S.A.; Manshor, N.M. Moisture Adsorption Isotherm Model for Edible Food Film Packaging—A review. Sci. Res. J. 2020, 17, 221–245. [Google Scholar] [CrossRef]
- Galus, S. Functional properties of soy protein isolate edible films as affected by rapeseed oil concentration. Food Hydrocoll. 2018, 85, 233–241. [Google Scholar] [CrossRef]
- Rivera-Hernández, L.; Chavarría-Hernández, N.; López Cuellar, M.D.R.; Martínez-Juárez, V.M.; Rodríguez-Hernández, A.I. Pectin-gellan films intended for active food packaging: Release kinetics of nisin and physico-mechanical characterization. J. Food Sci. Technol. 2021, 58, 2973–2981. [Google Scholar] [CrossRef]
- Agnieszka, C.; Andrzej, L. Rehydration and sorption properties of osmotically pretreated freeze-dried strawberries. J. Food Eng. 2010, 97, 267–274, Erratum in J. Food Eng. 2012, 113, 361. [Google Scholar] [CrossRef]
- Ouaabou, R.; Ennahli, S.; Hssaini, L.; Nabil, B.; Idlimam, A.; Lamharrar, A.; Mahrouz, M.; Hanine, H.; Bozkurt, H. Moisture Sorption Isotherms of Sweet Cherry (Prunus Avium L.): Comparative Study of Kinetics and Thermodynamic Modeling of Five Varieties. Int. J. Food Sci. 2022, 2022, 6786590. [Google Scholar] [CrossRef]
- Galus, S.; Turska, A.; Lenart, A. Sorption and wetting properties of pectin edible films. Czech J. Food Sci. 2012, 30, 446–455. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Galus, S.; Karwacka, M.; Janowicz, M. The sorption properties, structure and shrinkage of freeze-dried multi-vegetable snack bars in the aspect of the environmental water activity. LWT 2022, 171, 114090. [Google Scholar] [CrossRef]
- Castel, A.P.D.; Kaufmann, A.I.; Endres, C.M.; Robazza, W.D.S.; Paulino, A.T. Water sorption isotherms on lyophilized jabuticaba (Myrciaria cauliflora) peel: Potential byproduct for the production of dehydrated foods. J. Food Sci. Technol. 2023, 60, 419–428. [Google Scholar] [CrossRef]
- Sistla, Y.S.; Mehraj, S. Molecular Simulations to Understand the Moisture, Carbon Dioxide, and Oxygen Barrier Properties of Pectin Films. J. Mol. Model. 2022, 28, 83. [Google Scholar] [CrossRef]
- Norizan, M.N.; Shazleen, S.S.; Alias, A.H.; Sabaruddin, F.A.; Asyraf, M.R.M.; Zainudin, E.S.; Abdullah, N.; Samsudin, M.S.; Kamarudin, S.H.; Norrrahim, M.N.F. Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review. Nanomaterials 2022, 12, 3483. [Google Scholar] [CrossRef]
- Wang, P.; Fei, P.; Zhou, C.; Hong, P. Stearic acid esterified pectin: Preparation, characterization, and application in edible hydrophobic pectin/chitosan composite films. Int. J. Biol. Macromol. 2021, 186, 528–534. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, J.S.; Cagnin, C.; de Freitas, B.S.M.; da Silva, R.M.; de Jesus, G.B.L.; Belisário, C.M.; Egea, M.B.; de Oliveira Filho, J.G.; Plácido, G.R. Nanocomposite Coatings of Pectin and Oxide Zinc Nanoparticles to Increase Papaya Shelf Life. Coatings 2024, 14, 990. [Google Scholar] [CrossRef]
- Eslami, Z.; Elkoun, S.; Robert, M.; Adjallé, K. A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films. Molecules 2023, 28, 6637. [Google Scholar] [CrossRef]
- Reinas, I.; Oliveira, J.; Pereira, J.; Mahajan, P.; Poças, F. A quantitative approach to assess the contribution of seals to the permeability of water vapour and oxygen in thermosealed packages. Food Packag. Shelf Life 2016, 7, 34–40. [Google Scholar] [CrossRef]
- Pola, C.C.; Medeiros, E.A.A.; Pereira, O.L.; Souza, V.G.L.; Otoni, C.G.; Camilloto, G.P.; Soares, N.F.F. Cellulose acetate active films incorporated with oregano (Origanum vulgare) essential oil and organophilic montmorillonite clay control the growth of phytopathogenic fungi. Food Packag. Shelf Life 2016, 9, 69–78. [Google Scholar] [CrossRef]
- Altuner, E.E.; Gulbagca, F.; Tiri, R.N.E.; Aygun, A.; Sen, F. Highly efficient palladium-zinc oxide nanoparticles synthesized by biogenic methods: Characterization, hydrogen production and photocatalytic activities. Chem. Eng. J. Adv. 2023, 14, 100465. [Google Scholar] [CrossRef]
- Kaningini, A.; Azizi, S.; Sintwa, N.; Mokalane, K.; Mohale, K.; Mudau, F.; Maaza, M. Effect of Optimized Precursor Concentration, Temperature, and Doping on Optical Properties of ZnO Nanoparticles Synthesized via a Green Route Using Bush Tea (Athrixia phylicoides DC.) Leaf Extracts. ACS Omega 2022, 7, 31658–31666. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Mujumdar, A.; Wang, D.; Ma, Y. Novel multilayer chitosan/emulsion-loaded syringic acid grafted apple pectin film with sustained control release for active food packaging. Food Hydrocoll. 2023, 142, 108823. [Google Scholar] [CrossRef]
- Andrade Martins, Y.A.; Ferreira, S.V.; Silva, N.M.; Sandre, M.F.B.; Filho, J.G.O.; Leão, P.V.T.; Leão, K.M.; Nicolau, E.S.; Plácido, G.R.; Egea, M.B.; et al. Edible Films of Whey and Cassava Starch: Physical, Thermal, and Microstructural Characterization. Coatings 2020, 10, 1059. [Google Scholar] [CrossRef]
- Homthawornchoo, W.; Kaewprachu, P.; Pinijsuwan, S.; Romruen, O.; Rawdkuen, S. Enhancing the UV-Light Barrier, Thermal Stability, Tensile Strength, and Antimicrobial Properties of Rice Starch–Gelatin Composite Films through the Incorporation of Zinc Oxide Nanoparticles. Polymers 2022, 14, 2505. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, V.M.; Borges, S.V.; Marconcini, J.M.; Yoshida, M.I.; Neto, A.R.S.; Pereira, T.C.; Pereira, C.F.G. Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydr. Polym. 2017, 157, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Vafaei, E.; Hasani, M.; Salehi, N.; Sabbagh, F.; Hasani, S. Enhancement of Biopolymer Film Properties Using Spermidine, Zinc Oxide, and Graphene Oxide Nanoparticles: A Study of Physical, Thermal, and Mechanical Characteristics. Materials 2025, 18, 225. [Google Scholar] [CrossRef]
- da Silva Bruni, A.R.; de Souza Alves Friedrichsen, J.; de Jesus, G.A.M.; da Silva Alves, E.; da Costa, J.C.M.; Souza, P.R.; de Oliveira Santos Junior, O.; Bonafe, E.G. Characterization and application of active films based on commercial polysaccharides incorporating ZnONPs. Int. J. Biol. Macromol. 2023, 224, 1322–1336. [Google Scholar] [CrossRef]
- Oun, A.A.; Rhim, J.-W. Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll. 2017, 67, 45–53. [Google Scholar] [CrossRef]
- Shankar, S.; Wang, L.-F.; Rhim, J.-W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater. Sci. Eng. C 2018, 93, 289–298. [Google Scholar] [CrossRef] [PubMed]
Film | L* | a* | b* | ΔE | T600 (a.u./mm) |
---|---|---|---|---|---|
AP | 89.03 ± 0.52 c | (−0.72) ± 0.02 a | 7.67 ± 0.88 a | - | 1.55 ± 0.08 a |
AP-ZnO-C NPs | 86.30 ± 0.25 a | (−0.33) ± 0.03 c | 11.66 ± 0.55 d | 3.38 ± 0.60 b | 2.18 ± 0.15 c |
AP-ZnO-P NPs | 86.88 ± 0.35 b | (−0.38) ± 0.05 b | 9.45 ± 0.65 b | 1.64 ± 0.49 a | 1.62 ± 0.11 a |
AP-ZnO-T NPs | 86.84 ± 0.33 b | (−0.37) ± 0.04 b | 10.40 ± 0.45 c | 2.08 ± 0.55 b | 1.89 ± 0.14 b |
Film | Film Side | Θ (°) | |||
---|---|---|---|---|---|
0 s | 15 s | 30 s | 60 s | ||
AP | air | 57.3 ± 3.9 a,D | 31.3 ± 3.2 ab,C | 23.6 ±1.6 a,B | 14.6 ± 2.1 a,A |
support | 68.9 ± 6.9 bc,C | 51.5 ± 3.6 e,B | 46.3 ± 2.1 e,B | 35.6 ± 3.8 b,A | |
AP-ZnO-C NPs | air | 59.2 ± 4.3 ab,B | 36.7 ± 6.1 bc,A | 34.2 ± 7.5 bcd,A | 31.4 ± 4.9 b,A |
support | 81.3 ± 4.7 d,D | 48.9 ± 7.1 de,C | 41.5 ± 5.8 de,B | 34.1 ± 3.8 b,A | |
AP-ZnO-P NPs | air | 58.8 ± 8.6 ab,B | 25.7 ± 8.1 a,A | 23.1 ± 5.5 a,A | - |
support | 73.6 ± 8.3 cd,B | 34.6 ± 5.6 abc,A | 27.5 ± 7.5 abc,A | - | |
AP-ZnO-T NPs | air | 58.3 ± 9.4 ab,C | 42.1 ± 6.5 cd,B | 25.9 ± 4.9 ab,A | - |
support | 65.9 ±10.5 abc,C | 50.8 ± 6.9 de,B | 35.6 ± 8.9 cd,A | - |
Film | WVP (·10−10 g/m·s·Pa) |
---|---|
AP | 6.35 ± 0.34 a |
AP-ZnO-C NPs | 9.85 ± 0.26 b |
AP-ZnO-P NPs | 12.07 ± 0.54 c |
AP-ZnO-T NPs | 11.99 ± 0.17 c |
Film | First Stage 0–90 °C | Second Stage 90–210 °C | Third Stage 210–600 °C | |||
---|---|---|---|---|---|---|
Temperature (°) | Weight Loss (%) | Temperature (°) | Weight Loss (%) | Temperature (°) | Weight Loss (%) | |
AP | 60.73 | 3.32 | 177.13 | 24.39 | 225.23 | 46.73 |
AP-ZnO-C NPs | 59.01 | 3.54 | 172.26 | 21.92 | 241.63 | 44.09 |
AP-ZnO-P NPs | 65.44 | 3.53 | 175.57 | 21.67 | 238.68 | 44.75 |
AP-ZnO-T NPs | 60.41 | 3.54 | 181.18 | 28.34 | 236.50 | 40.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galus, S.; Przybyszewska, A.; Barbosa, C.H.; Rodrigues, C.; Souza, V.G.L.; Alves, M.M.; Santos, C.F.; Coelhoso, I.; Fernando, A.L. Sustainable Zinc Oxide Nanoparticles as Active Compounds for Pectin Packaging Films. Coatings 2025, 15, 1024. https://doi.org/10.3390/coatings15091024
Galus S, Przybyszewska A, Barbosa CH, Rodrigues C, Souza VGL, Alves MM, Santos CF, Coelhoso I, Fernando AL. Sustainable Zinc Oxide Nanoparticles as Active Compounds for Pectin Packaging Films. Coatings. 2025; 15(9):1024. https://doi.org/10.3390/coatings15091024
Chicago/Turabian StyleGalus, Sabina, Adrianna Przybyszewska, Cássia H. Barbosa, Carolina Rodrigues, Victor Gomes Lauriano Souza, Marta M. Alves, Catarina F. Santos, Isabel Coelhoso, and Ana Luisa Fernando. 2025. "Sustainable Zinc Oxide Nanoparticles as Active Compounds for Pectin Packaging Films" Coatings 15, no. 9: 1024. https://doi.org/10.3390/coatings15091024
APA StyleGalus, S., Przybyszewska, A., Barbosa, C. H., Rodrigues, C., Souza, V. G. L., Alves, M. M., Santos, C. F., Coelhoso, I., & Fernando, A. L. (2025). Sustainable Zinc Oxide Nanoparticles as Active Compounds for Pectin Packaging Films. Coatings, 15(9), 1024. https://doi.org/10.3390/coatings15091024