Effect of Buckwheat Husk Addition on Antioxidant Activity, Phenolic Profile, Color, and Sensory Characteristics of Bread
Abstract
1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity and Total Content of Phenolic Compounds
2.2. HPLC Profile of Phenolic Compounds
2.3. Assessment of Color Changes
2.4. Evaluation of Sensory Properties
3. Materials and Methods
3.1. Bread Preparation
3.2. Chemical and Reagents
3.3. Analysis of Antioxidant Activity
3.4. Determination of Total Content of Phenolic Compounds
3.5. Determination of Phenolic Compounds by HPLC
3.6. Color Analysis
3.7. Sensory Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, W.; Hui, Y.H.; De Leyn, I.; Pagani, M.A.; Rosell, C.M.; Selman, J.D.; Therdthai, N. Bakery Products Science and Technology, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; ISBN 9781118792001. [Google Scholar]
- Rosell, C.M. Trends in Science of Doughs and Bread Quality. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2019; pp. 333–343. [Google Scholar]
- Nogueira, A.d.C.; Steel, C.J. Protein Enrichment of Biscuits: A Review. Food Rev. Int. 2018, 34, 796–809. [Google Scholar] [CrossRef]
- Dapčević-Hadnađev, T.; Tomić, J.; Škrobot, D.; Šarić, B.; Hadnađev, M. Processing Strategies to Improve the Breadmaking Potential of Whole-Grain Wheat and Non-Wheat Flours. Discov. Food 2022, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Kaim, U.; Goluch, Z.S. Health Benefits of Bread Fortification: A Systematic Review of Clinical Trials According to the PRISMA Statement. Nutrients 2023, 15, 4459. [Google Scholar] [CrossRef] [PubMed]
- Falsafi, S.R.; Aaliya, B.; Demirkesen, I.; Kemerli-Kalbaran, T.; Dehnad, D.; Şahin, S.; Yildirim-Yalcin, M.; Alarcon-Rojo, A.D. Recent Trends in Fortifying Bread with Nutrients: Comprehensive Insights into Chemical, Physical, Functional, and Nutritional Attributes. Future Foods 2025, 11, 100674. [Google Scholar] [CrossRef]
- Stefoska-Needham, A. Sorghum and Health: An Overview of Potential Protective Health Effects. J. Food Sci. 2024, 89, A30–A41. [Google Scholar] [CrossRef]
- Raj, R.; Pandey, V.; Dash, K.; Singh, P.; Bashir, O. Barley Phytochemicals and Health Promoting Benefits: A Comprehensive Review. J. Agric. Food Res. 2023, 14, 100677. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Goli, A.H.; Barzegar, M.; Sahari, M.A. Antioxidant Activity and Total Phenolic Compounds of Pistachio (Pistachia vera) Hull Extracts. Food Chem. 2005, 92, 521–525. [Google Scholar] [CrossRef]
- Torres, J.L.; Bobet, R. New Flavanol Derivatives from Grape (Vitis vinifera) Byproducts: Antioxidant Aminoethylthio-Flavan-3-ol Conjugates from a Polymeric Waste Fraction Used as a Source of Flavanols. J. Agric. Food Chem. 2001, 49, 4627–4634. [Google Scholar] [CrossRef]
- Bocco, A.; Cuvelier, M.E.; Richard, H.; Berset, C. Antioxidant Activity and Phenolic Composition of Citrus Peel and Seed Extracts. J. Agric. Food Chem. 1998, 46, 2123–2129. [Google Scholar] [CrossRef]
- Pocienė, O.; Šlinkšienė, R. Studies on the Possibilities of Processing Buckwheat Husks and Ash in the Production of Environmentally Friendly Fertilizers. Agriculture 2022, 12, 193. [Google Scholar] [CrossRef]
- Danihelová, M.; Šturdík, E. Antioxidant and Antiproteinase Effects of Buckwheat Hull Extracts. Potravinarstvo 2013, 7, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Zhai, F.H.; Li, X.X.; Cao, J.L.; Han, J.R. Total Phenolic Contents and Antioxidant Properties of Buckwheat Fermented by Three Strains of Agaricus. J. Cereal Sci. 2016, 73, 138–142. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, S.; Yao, L.; Li, C. Free and Bound Phenolics of Buckwheat Varieties: HPLC Characterization, Antioxidant Activity, and Inhibitory Potency Towards α-Glucosidase with Molecular Docking Analysis. Antioxidants 2019, 8, 606. [Google Scholar] [CrossRef]
- Wronkowska, M.; Zieliński, H.; Szmatowicz, B.; Ostaszyk, A.; Lamparski, G.; Majkowska, A. Effect of roasted buckwheat flour and hull enrichment on the sensory qualities, acceptance and safety of innovative mixed rye/wheat and wheat bakery products. J. Food Process. Preserv. 2019, 43, e14025. [Google Scholar] [CrossRef]
- Gutiérrez, Á.L.; Villanueva, M.; Rico, D.; Harasym, J.; Ronda, F.; Martín-Diana, A.; Caballero, P.A. Valorisation of Buckwheat By-Product as a Health-Promoting Ingredient Rich in Fibre for the Formulation of Gluten-Free Bread. Foods 2023, 12, 2781. [Google Scholar] [CrossRef]
- Sun, T.; Ho, C.T. Antioxidant Activities of Buckwheat Extracts. Food Chem. 2005, 90, 743–749. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Borrelli, G.M.; Menga, V.; Giovanniello, V.; Ficco, D.B.M. Antioxidants and Phenolic Acid Composition of Wholemeal and Refined-Flour, and Related Biscuits in Old and Modern Cultivars Belonging to Three Cereal Species. Foods 2023, 12, 2551. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 2011, 76, R6–R15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiao, Y.; Wu, X.; Yao, X.; Chen, Y.; Ho, C.-T.; He, C.; Li, Z.; Wang, Y. Metabolite profiling, antioxidant and α-glucosidase inhibitory activities of buckwheat processed by solid-state fermentation with Eurotium cristatum YL-1. Food Res. Int. 2021, 143, 110262. [Google Scholar] [CrossRef] [PubMed]
- Zargarchi, S.; Hornbacher, J.; Afifi, S.M.; Saremnezhad, S.; Günal-Köroğlu, D.; Capanoglu, E.; Esatbeyoglu, T. Exploring the impact of cold plasma treatment on the antioxidant capacity, ascorbic acid, phenolic profile, and bioaccessibility of fruits and fruit juices. Food Front. 2024, 5, 1108–1125. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Chen, J.; Tang, H.; Wang, C.; Li, Z.; Xiao, Y. Bioprocessing of soybeans (Glycine max L.) by solid-state fermentation with Eurotium cristatum YL-1 improves total phenolic content, isoflavone aglycones, and antioxidant activity. RSC Adv. 2020, 10, 16928–16941. [Google Scholar] [CrossRef]
- Gélinas, P.; McKinnon, C. Effect of Wheat Variety, Farming Site, and Bread-Baking on Total Phenolics. Int. J. Food Sci. Technol. 2005, 41, 329–332. [Google Scholar] [CrossRef]
- Yu, L.; Nanguet, A.-L.; Beta, T. Comparison of Antioxidant Properties of Refined and Whole Wheat Flour and Bread. Antioxidants 2013, 2, 370–383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shahidi, F.; Hossain, A. Importance of Insoluble-Bound Phenolics to the Antioxidant Potential Is Dictated by Source Material. Antioxidants 2023, 12, 203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Su, D.; Zhang, R.; Hou, F.; Zhang, M.; Guo, J.; Huang, F.; Deng, Y.; Wei, Z. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC Complement. Altern. Med. 2014, 14, 9. [Google Scholar] [CrossRef]
- Guo, W.; Beta, T. Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals. Food Res. Int. 2013, 51, 518–525. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, Y.; Chen, Q.; Fu, X.; Huang, Q.; Zhang, B.; Dong, H.; Li, C. Exploring the synergistic benefits of insoluble dietary fiber and bound phenolics: Unveiling the role of bound phenolics in enhancing bioactivities of insoluble dietary fiber. Trends Food Sci. Technol. 2024, 149, 104554. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Vodnar, D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, L.; Beta, T. Identification and Antioxidant Properties of Phenolic Compounds during Production of Bread from Purple Wheat Grains. Molecules 2015, 20, 15525–15549. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ribeiro, M.; de Sousa, T.; Poeta, P.; Bagulho, A.S.; Igrejas, G. Review of Structural Features and Binding Capacity of Polyphenols to Gluten Proteins and Peptides In Vitro: Relevance to Celiac Disease. Antioxidants 2020, 9, 463. [Google Scholar] [CrossRef]
- Czajkowska–González, Y.A.; Alvarez–Parrilla, E.; Martínez–Ruiz, N.d.R.; Vázquez–Flores, A.A.; Gaytán–Martínez, M.; de la Rosa, L.A. Addition of phenolic compounds to bread: Antioxidant benefits and impact on food structure and sensory characteristics. Food Prod. Process. Nutr. 2021, 3, 25. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of Polyphenols with Carbohydrates, Lipids and Proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- Shyu, Y.-S.; Lu, T.-C.; Lin, C.-C. Functional analysis of unfermented and fermented citrus peels and physical properties of citrus peel-added doughs for bread making. J. Food Sci. Technol. 2014, 51, 3803–3811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mehder, A.O.A. Quality Assessment of the Nutritional, Physical and Sensory Characteristics of Pan Bread Using Pomegranate Peels. J. Stud. Res. Spec. Educ. 2017, 3, 484–500. [Google Scholar] [CrossRef]
- Badr, S.A. Quality and Antioxidant Properties of Pan Bread Enriched with Watermelon Rind Powder. Curr. Sci. Int. 2015, 4, 117–126. [Google Scholar]
- Huang, Y.-P.; Lai, H.-M. Bioactive compounds and antioxidative activity of colored rice bran. J. Food Drug Anal. 2016, 24, 564–574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martín, B.; Pasini, F.; Verardo, V.; Gomez, A.M.; Marconi, E.; Caboni, M. Distribution of Free and Bound Phenolic Compounds in Buckwheat Milling Fractions. Foods 2019, 8, 670. [Google Scholar] [CrossRef] [PubMed]
- Różańska, M.B.; Siger, A.; Szwengiel, A.; Dziedzic, K.; Mildner-Szkudlarz, S. Maillard Reaction Products in Gluten-Free Bread Made from Raw and Roasted Buckwheat Flour. Molecules 2021, 26, 1361. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef]
- Miean, K.H.; Mohamed, S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef]
- Bojnanska, T.; Frančáková, H.; Chlebo, P.; Vollmannová, A. Rutin Content in Buckwheat Enriched Bread and Influence of Its Consumption on Plasma Total Antioxidant Status. Czech J. Food Sci. 2018, 27, S236–S240. [Google Scholar] [CrossRef]
- Krejzová, E.; Bittová, M.; Kracmar, S.; Vojtíšková, P.; Kubáň, V.; Golian, J. Effect of Thermal Treatment on Rutin Content in Selected Buckwheat Products Using Calcium as an Internal Tracer. Potravinarstvo 2017, 11, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Vogrincic, M.; Timoracká, M.; Melichacová, S.; Vollmannová, A.; Kreft, I. Degradation of Rutin and Polyphenols during the Preparation of Tartary Buckwheat Bread. J. Agric. Food Chem. 2010, 58, 4883–4887. [Google Scholar] [CrossRef] [PubMed]
- Sakhare, S.D.; Inamdar, A.A.; Soumya, C.; Indrani, D.; Rao, G.V. Effect of flour particle size on microstructural, rheological and physico-sensory characteristics of bread and south Indian parotta. J. Food Sci. Technol. 2014, 51, 4108–4113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wronkowska, M.; Jarmułowicz, A.; Lamparski, G.; Jeliński, T.; Haros, C.M. Oat–Buckwheat Breads—Technological Quality, Staling and Sensory Properties. Ir. J. Agric. Food Res. 2020, 59, 33–41. [Google Scholar] [CrossRef]
- Zielinski, H.; Zielinska, D.; Kostyra, H. Antioxidant Capacity of a New Crispy Type Food Products Determined by 523 Updated Analytical Strategies. Food Chem. 2012, 130, 1098–1104. [Google Scholar] [CrossRef]
- Klepacka, J.; Tonska, E.; Rafałowski, R.; Czarnowska-Kujawska, M.; Opara, B. Tea as a Source of Biologically Active 525 Compounds in the Human Diet. Molecules 2021, 26, 1487. [Google Scholar] [CrossRef]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of Phenolic Acids and Flavonoids of Red Beet and Its Fermentation 527 Products. Does Long-Term Consumption of Fermented Beetroot Juice Affect Phenolics Profile in Human Blood 528 Plasma and Urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Song, W.; Durmus, D. Evaluating Energy Efficiency and Colorimetric Quality of Electric Light Sources Using Alternative Spectral Sensitivity Functions. Buildings 2022, 12, 2220. [Google Scholar] [CrossRef]
- International Organization for Standardization. Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Draszanowska, A.; Kurp, L.; Starowicz, M.; Paszczyk, B.; Czarnowska-Kujawska, M.; Olszewska, M.A. Effect of the Addition of Yellow Mealworm (Tenebrio molitor) on the Physicochemical, Antioxidative, and Sensory Properties of Oatmeal Cookies. Foods 2024, 13, 3166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Tested Samples | ACW (µmol Trolox/g dm) | Changes (%) | ACL (µmol Trolox/g dm) | Changes (%) | PCL (µmol Trolox/g dm) | Changes (%) | TPC (mg/g) | Changes (%) |
---|---|---|---|---|---|---|---|---|
WB 0 | 0.87 ± 0.02 c | 0.59 ± 0.02 d | 1.46 ± 0.00 d | 110.5 ± 6.3 b | ||||
WB 1.5% | 0.79 ± 0.01 d | −9.2% | 1.39 ± 0.01 c | 135.5% | 2.18 ± 0.00 c | 49.3% | 96.3 ± 4.0 c | −12.8% |
WB 3.0% | 1.20 ± 0.00 b | 37.9% | 2.07 ± 0.03 b | 251.6% | 3.26 ± 0.03 b | 123.3% | 128.8 ± 3.9 a | 16.5% |
WB 4.5% | 1.29 ± 0.01 a | 48.3% | 2.73 ± 0.04 a | 362.7% | 4.01 ± 0.03 a | 174.7% | 91.0 ± 5.8 c | −17.6% |
WMB 0 | 1.40 ± 0.04 c | 2.43 ± 0.03 d | 3.84 ± 0.07 d | 97.0 ± 6.1 c | ||||
WMB 1.5% | 1.52 ± 0.02 b | 8.5% | 2.84 ± 0.01 c | 16.8% | 4.36 ± 0.01 c | 13.5% | 111.8 ± 4.3 b | 15.2% |
WMB 3.0% | 1.58 ± 0.03 b | 12.8% | 3.38 ± 0.12 b | 39.0% | 4.95 ± 0.09 b | 28.9% | 127.8 ± 5.6 a | 31.7% |
WMB 4.5% | 1.71 ± 0.03 a | 22.1% | 3.91 ± 0.06 a | 60.9% | 5.62 ± 0.03 a | 46.3% | 131.2 ± 3.1 a | 35.2% |
Wheat Bread | Wholemeal Bread | |||||||
---|---|---|---|---|---|---|---|---|
Addition of Buckwheat Husk | WB 0% | WB 1.5% | WB 3.0% | WB 4.5% | WMB 0% | WMB 1.5% | WMB 3.0% | WMB 4.5% |
phenolic acids (µg/g) | ||||||||
p-hydroxybenzoic acid | 0.018 ± 0.003 b | 0.034 ± 0.003 a | 0.006 ± 0.001 c | 0.003 ± 0.000 c | 0.004 ± 0.000 a | 0.003 ± 0.001 a | 0.005 ± 0.001 a | 0.004 ± 0.001 a |
salicylic acid | 0.002 ± 0.000 c | 0.002 ± 0.000 c | 0.004 ± 0.001 b | 0.007 ± 0.001 a | 0.003 ± 0.001 b | 0.003 ± 0.000 b | 0.005 ± 0.001 b | 0.053 ± 0.004 a |
protocatechuic acid | 0.007 ± 0.002 c | 0.129 ± 0.017 b | 0.349 ± 0.039 a | 0.370 ± 0.070 a | 0.020 ± 0.003 a | 0.018 ± 0.003 a,b | 0.014 ± 0.000 b | 0.018 ± 0.002 b |
gentisic acid | 0.016 ± 0.002 b | 0.015 ± 0.002 b | 0.025 ± 0.004 a | 0.019 ± 0.003 a,b | 0.053 ± 0.009 b | 0.116 ± 0.016 a | 0.053 ± 0.005 b | 0.053 ± 0.002 b |
p-coumaric acid | 0.218 ± 0.029 b | 0.231 ± 0.040 b | 0.406 ± 0.016 a | 0.472 ± 0.052 a | 0.109 ± 0.022 b | 0.115 ± 0.015 b | 0.086 ± 0.014 b | 0.228 ± 0.024 a |
o-coumaric acid | 0.002 ± 0.000 a | 0.002 ± 0.000 a | 0.002 ± 0.000 a | 0.002 ± 0.000 a | 0.001 ± 0.000 b | <0.001 | 0.001 ± 0.000 a,b | 0.001 ± 0.000 a |
vanilic acid | 0.112 ± 0.021 b | 0.204 ± 0.033 b | 0.518 ± 0.038 a | 0.522 ± 0.057 a | 0.234 ± 0.010 c | 0.271 ± 0.045 c | 0.739 ± 0.109 b | 1.045 ± 0.162 a |
hippuric acid | 0.002 ± 0.000 c | 0.007 ± 0.001 b | 0.005 ± 0.001 b,c | 0.017 ± 0.002 a | 0.013 ± 0.001 b | 0.007 ± 0.001 b | 0.025 ± 0.006 a | 0.012 ± 0.002 b |
caffeic acid | 0.007 ± 0.001 b | 0.014 ± 0.003 b | 0.011 ± 0.001 b | 0.061 ± 0.010 a | 0.032 ± 0.003 c | 0.008 ± 0.001 c | 0.076 ± 0.012 b | 0.166 ± 0.023 a |
ferulic acid | 2.170 ± 0.269 b | 0.532 ± 0.071 c | 2.816 ± 0.295 a | 1.782 ± 0.248 b | 4.117 ± 0.323 b | 5.981 ± 0.987 a | 0.613 ± 0.116 c | 0.300 ± 0.050 c |
syringic acid | 1.465 ± 0.282 b | 1.600 ± 0.305 b | 2.306 ± 0.331 b | 3.213 ± 0.376 a | 2.106 ± 0.361 b | 2.534 ± 0.349 b | 2.084 ± 0.196 b | 4.275 ± 0.570 a |
chlorogenic acid | <0.001 | 0.001 ± 0.000 c | 0.003 ± 0.000 b | 0.004 ± 0.001 a | <0.001 | <0.001 | <0.001 | <0.001 |
sinapic acid | 0.101 ± 0.017 a | 0.074 ± 0.009 a | 0.079 ± 0.010 a | 0.026 ± 0.005 b | 0.426 ± 0.045 b | 0.610 ± 0.062 a | 0.626 ± 0.095 a | 0.490 ± 0.047 a,b |
Sum of phenolic acids | 4.12 ± 0.39 b | 2.84 ± 0.32 c | 6.53 ± 0.45 a | 6.50 ± 0.46 a | 7.12 ± 0.49 b | 9.67 ± 1.05 a | 4.33 ± 0.27 d | 6.64 ± 0.6 c |
flavonoids (µg/g) | ||||||||
apigenin | 0.001 ± 0.000 | 0.001 ± 0.000 | 0.001 ± 0.000 | 0.001 ± 0.000 | <0.001 | <0.001 | 0.001 ± 0.000 | 0.001 ± 0.000 |
naringenin | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
kaempferol | 0.002 ± 0.000 | 0.002 ± 0.000 | 0.002 ± 0.000 | 0.002 ± 0.000 | nd | nd | nd | nd |
luteolin | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
catechin | 0.006 ± 0.001 c | 0.015 ± 0.003 b | 0.021 ± 0.004 b | 0.044 ± 0.005 a | 0.008 ± 0.001 b | 0.019 ± 0.003 a | 0.006 ± 0.001 b | 0.005 ± 0.001 b |
quercetin | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
isorhamnetin | <0.001 | <0.001 | 0.001 ± 0.000 | 0.001 ± 0.000 | <0.001 | <0.001 | <0.001 | 0.005 ± 0.001 |
myricetin | 0.001 ± 0.000 c | 0.001 ± 0.000 c | 0.016 ± 0.002 b | 0.030 ± 0.003 a | 0.001 ± 0.000 c | 0.002 ± 0.001 a | 0.002 ± 0.000 b | 0.004 ± 0.000 a |
orienthin | 0.009 ± 0.001 c | 0.036 ± 0.003 c | 0.118 ± 0.012 b | 0.247 ± 0.039 a | 0.007 ± 0.001 c | 0.036 ± 0.006 b,c | 0.081 ± 0.006 b | 0.354 ± 0.034 a |
rutin | nd | 0.001 ± 0.000 c | 0.002 ± 0.000 b | 0.003 ± 0.000 a | nd | <0.001 | 0.001 ± 0.000 | 0.001 ± 0.000 |
vitexin | 0.002 ± 0.000 b,c | 0.001 ± 0.000 c | 0.002 ± 0.000 b | 0.005 ± 0.001 a | 0.002 ± 0.000 b | 0.002 ± 0.000 b | 0.003 ± 0.001 b | 0.024 ± 0.005 a |
Sum of flavonoids | 0.02 ± 0.0 d | 0.06 ± 0.0 c | 0.16 ± 0.01 b | 0.33 ± 0.04 a | 0.02 ± 0.0 d | 0.06 ± 0.01 c | 0.09 ± 0.01 b | 0.39 ± 0.03 a |
Sum of phenolic acids and flavonoids (µg/g) | 4.14 ± 0.39 b | 2.9 ± 0.32 c | 6.69 ± 0.5 a | 6.83 ± 0.46 a | 7.14 ± 0.49 b | 9.73 ± 1.05 a | 4.42 ± 0.27 c | 7.03 ± 0.6 b |
Samples | Browning Index (BI) | Lightness (L*) | Color Saturation (C*) | Hue Angle (h°) | Total Color Difference (ΔE*) |
---|---|---|---|---|---|
WB 0 | 2.98 ± 0.24 c | 75.31 ± 2.24 a | 14.43 ± 0.81 a | 77.62 ± 0.64 a | n.d. |
WB 1.5% | 3.32 ± 0.43 c | 67.95 ± 3.30 b | 10.62 ± 0.27 b | 72.78 ± 2.57 b | 8.43 ± 3.04 b |
WB 3.0% | 4.24 ± 0.16 b | 62.65 ± 1.72 c | 9.59 ± 0.84 b | 67.04 ± 1.78 c | 13.73 ± 1.92 b |
WB 4.5% | 5.26 ± 0.14 a | 59.00 ± 0.40 c | 10.26 ± 0.54 b | 64.78 ± 0.76 c | 17.05 ± 0.49 a |
WMB 0 | 5.74 ± 0.11 b | 73.81 ± 1.34 a | 14.53 ± 0.70 a | 65.72 ± 0.84 a,b | n.d. |
WMB 1.5% | 4.81 ± 0.53 b | 66.67 ± 1.57 b | 10.98 ± 1.56 b | 65.73 ± 0.27 a,b | 7.40 ± 2.12 c |
WMB 3.0% | 5.64 ± 0.33 b | 59.60 ± 0.64 c | 10.71 ± 0.62 b | 63.72 ± 0.33 b | 14.08 ± 0.45 b |
WMB 4.5% | 6.78 ± 0.80 a | 54.32 ± 0.91 d | 12.99 ± 1.62 a,b | 66.32 ± 1.92 a | 18.94 ± 0.75 a |
Type of Bread | Ingredients [g/1000 g] |
---|---|
WB 0 | Wheat bread flour type 650 (600), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water (361.5) |
WB 1.5% | Wheat bread flour type 650 (585), buckwheat husk (15), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water (361.5) |
WB 3.0% | Wheat bread flour type 650 (570), buckwheat husk (30), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water (361.5) |
WB 4.5% | Wheat bread flour type 650 (555), buckwheat husk (45), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water (361.5) |
WMB 0 | Wheat bread flour type 650 (240), wholemeal wheat flour type 2000 (460), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water (261.5) |
WMB 1.5% | Wheat bread flour type 650 (225), wholemeal wheat flour type 2000 (460), buckwheat husk (15), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water (261.5) |
WMB 3.0% | Wheat bread flour type 650 (210), wholemeal wheat flour type 2000 (460), buckwheat husk (30), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water (261.5) |
WMB 4.5% | Wheat bread flour type 650 (195), wholemeal wheat flour type 2000 (460), buckwheat husk (45), baker’s yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10), water (261.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mumtaz, W.; Czarnowska-Kujawska, M.; Klepacka, J. Effect of Buckwheat Husk Addition on Antioxidant Activity, Phenolic Profile, Color, and Sensory Characteristics of Bread. Molecules 2025, 30, 3625. https://doi.org/10.3390/molecules30173625
Mumtaz W, Czarnowska-Kujawska M, Klepacka J. Effect of Buckwheat Husk Addition on Antioxidant Activity, Phenolic Profile, Color, and Sensory Characteristics of Bread. Molecules. 2025; 30(17):3625. https://doi.org/10.3390/molecules30173625
Chicago/Turabian StyleMumtaz, Wajeeha, Marta Czarnowska-Kujawska, and Joanna Klepacka. 2025. "Effect of Buckwheat Husk Addition on Antioxidant Activity, Phenolic Profile, Color, and Sensory Characteristics of Bread" Molecules 30, no. 17: 3625. https://doi.org/10.3390/molecules30173625
APA StyleMumtaz, W., Czarnowska-Kujawska, M., & Klepacka, J. (2025). Effect of Buckwheat Husk Addition on Antioxidant Activity, Phenolic Profile, Color, and Sensory Characteristics of Bread. Molecules, 30(17), 3625. https://doi.org/10.3390/molecules30173625