Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,109)

Search Parameters:
Keywords = compound additives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3761 KB  
Article
Comparative Analysis of Two Autophagy-Enhancing Small Molecules (AUTEN-67 and -99) in a Drosophila Model of Spinocerebellar Ataxia Type 1
by Tímea Burján, Maryam Aslam, Fanni Keresztes, Tímea Sigmond, Viktor A. Billes, Norbert Bencsik, Katalin Schlett, Tibor Vellai and Tibor Kovács
Int. J. Mol. Sci. 2025, 26(21), 10443; https://doi.org/10.3390/ijms262110443 (registering DOI) - 27 Oct 2025
Abstract
Autophagy is a lysosome-mediated self-degradation process of eukaryotic cells which is critical for the elimination of cellular damage. Its capacity progressively declines with age, and this change can lead to the development of various neurodegenerative pathologies including Spinocerebellar ataxia type 1 (SCA1). SCA1 [...] Read more.
Autophagy is a lysosome-mediated self-degradation process of eukaryotic cells which is critical for the elimination of cellular damage. Its capacity progressively declines with age, and this change can lead to the development of various neurodegenerative pathologies including Spinocerebellar ataxia type 1 (SCA1). SCA1 is mainly caused by mutations in the polyglutamine region of Ataxin 1 protein. In patients affected by the disease, Purkinje neurons of the cerebellum frequently undergo demise and eventually become lost. Here we tested whether two well-characterized autophagy-enhancing small molecules, AUTEN-67 and -99, which antagonize the autophagy complex Vps34 through blocking the myotubularin-related lipid phosphatase MTMR14/EDTP, have the capacity to ameliorate SCA1 symptoms. We found that in a Drosophila model of SCA1, only AUTEN-67 exerts positive effects including improvement in climbing ability and extending life span. Based on these results, we hypothesized that the two compounds influence autophagy in the brain in a neuron-specific manner. Indeed, according to data we obtained, AUTEN-67 and -99 exhibit shared and unique functional domains in the Drosophila brain. AUTENs enhance autophagy in GABAergic and dopaminergic neurons. In addition, AUTEN-67 also affect autophagy in cholinergic neurons, while AUTEN-99 trigger the process in glutaminergic neurons and motoneurons. We also observed varying efficiencies between the two AUTENs among different subtypes of cultured hippocampal neurons of mice. These data suggest that the two compounds display neuron-specific differences in exerting autophagy-enhancing effects, and may lead to a better understanding of which types of neurons autophagy could potentially be activated to treat SCA1 in human patients. Full article
28 pages, 2041 KB  
Article
Sustainable Recycling of Used Cooking Oils Through the Production of Biodegradable Antimicrobial Soaps
by Mirel Glevitzky, Mihai-Teopent Corcheş, Sorina Gabriela Şerban, Maria-Laura Strugariu, Imre Kiss and Mihaela Laura Vică
Appl. Sci. 2025, 15(21), 11472; https://doi.org/10.3390/app152111472 (registering DOI) - 27 Oct 2025
Abstract
The valorization of waste materials is essential for sustainability, with used cooking oils (UCOs) offering potential for transformation into valuable functional products. The study investigates the oxidative stability of sunflower and olive oils subjected to high temperatures (160–200 °C) and frying on their [...] Read more.
The valorization of waste materials is essential for sustainability, with used cooking oils (UCOs) offering potential for transformation into valuable functional products. The study investigates the oxidative stability of sunflower and olive oils subjected to high temperatures (160–200 °C) and frying on their physico-chemical properties (acidity, peroxide and iodine value, total polar compounds). Significant deterioration occurred above 180 °C, with increased peroxide and polar compounds and reduced iodine values. A technological process for the purification and saponification of UCOs (sunflower, olive, and palm oils) was developed, demonstrating the potential to transform pollutant waste into a valuable and sustainable product—soap. The incorporation of oregano and thyme essential oils (EOs), identified by GC-FID as rich sources of carvacrol, thymol, p-cymene, and limonene, improved the functional properties of the soaps. The antimicrobial activity of soaps largely relates to their alkaline pH, while the incorporation of EOs contributes to additional antimicrobial effects, obtaining zones of inhibition of up to 10.8 mm against Staphylococcus aureus and up to 7.6 mm against Escherichia coli for palm oil. The study highlights a sustainable approach that transforms waste oils into functional soaps with EOs for added antimicrobial benefits. Full article
Show Figures

Figure 1

17 pages, 15551 KB  
Article
Composition Optimization and Microstructure-Property Investigation of Al-3.0Ce-xCa-yMn Alloy Exhibiting High Hot Tearing Resistance
by Xiaoxiao Wei, Suhui Zhang, Xiaofei Wang, Yulin Teng, Wanwen Zhang and Mengmeng Wang
Metals 2025, 15(11), 1195; https://doi.org/10.3390/met15111195 (registering DOI) - 27 Oct 2025
Abstract
This study employs a combined approach of theoretical calculations and experimental validation to systematically optimize the alloy composition, aiming to mitigate the hot cracking susceptibility of an Al-3.0Ce-xCa-yMn alloy in laser powder bed fusion (LPBF) processing. Through advanced characterization techniques such as electron [...] Read more.
This study employs a combined approach of theoretical calculations and experimental validation to systematically optimize the alloy composition, aiming to mitigate the hot cracking susceptibility of an Al-3.0Ce-xCa-yMn alloy in laser powder bed fusion (LPBF) processing. Through advanced characterization techniques such as electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and mechanical property testing, the intrinsic relationship between microstructure and mechanical performance was thoroughly elucidated. Computational results revealed that the addition of Ca significantly lowered the eutectic precipitation temperature, thereby effectively reducing the hot cracking tendency while maintaining a stable volume fraction of the Al11(Ce, Ca)3 phase. The optimal mass fractions of calcium (Ca) and manganese (Mn) were determined to be 0.8% and 1.9%, respectively. Microstructural characterization indicates that the alloy consisted of an α-Al matrix embedded with Al-Ce-Ca ternary eutectic compounds, and nanoscale Al6Mn spherical precipitates were uniformly distributed within the matrix. Mechanical property evaluations demonstrated that the Al-3Ce-0.8Ca-1.9Mn alloy exhibited an outstanding balance of strength and ductility at both room and elevated temperatures, with room temperature yield strength, tensile strength, and elongation values of 321 ± 15 MPa, 429 ± 8 MPa, and 10.9 ± 2.3%, respectively. This exceptional performance was attributed to a synergistic combination of multiple strengthening mechanisms including eutectic structure-induced strengthening, grain boundary strengthening due to ultrafine grains, and dislocation pinning strengthening caused by nano-sized Al6Mn precipitates. Full article
Show Figures

Figure 1

14 pages, 1642 KB  
Review
Biochar-Assisted Agriculture: From Healthy Soil to Healthy Plants
by Cheng Liu, Chao Wang, Shijie Shang, Jingyu Ma, Shengdao Shan, Qian Yue, Lianqing Li and Genxing Pan
Plants 2025, 14(21), 3273; https://doi.org/10.3390/plants14213273 (registering DOI) - 27 Oct 2025
Abstract
Land application of biochar appears to be the most promising tool for managing soil and plant health in agriculture for food production. Biochar induces plant resistance and root growth, deactivates fungitoxic compounds, supports better habituation of beneficial microorganisms, and alters soil properties to [...] Read more.
Land application of biochar appears to be the most promising tool for managing soil and plant health in agriculture for food production. Biochar induces plant resistance and root growth, deactivates fungitoxic compounds, supports better habituation of beneficial microorganisms, and alters soil properties to facilitate moisture and nutrient availability. This review assimilates lessons from the authors’ experience with biochar application in agriculture, in addition to the previous literature, to elucidate the role of biochar in crop production, from soil health to plant health (root growth, disease control, yield, and quality), and its link to food health. This review provides bottom–up evidence for developing biochar-assisted agriculture in the context of ONE Health applied to soil–plant–food, contributing to achieving the United Nations Sustainable Development Goals (UNSDGs). Full article
(This article belongs to the Special Issue Plants 2025—from Seeds to Food Security)
Show Figures

Figure 1

14 pages, 2798 KB  
Article
Comparative Genomic Analysis of Brevibacillus brevis: Insights into Pan-Genome Diversity and Biocontrol Potential
by Wenbo Yang, Qiang Bao, Yuanjiang Wang, Lei Xiao, Zexuan Zeng, Lingyun Zhou and Hui Yang
Microorganisms 2025, 13(11), 2456; https://doi.org/10.3390/microorganisms13112456 (registering DOI) - 27 Oct 2025
Abstract
The promising biocontrol agent Brevibacillus brevis is a broadly dispersed bacterium exhibiting significant antibacterial properties against plant diseases. This study conducted a comprehensive comparative genomic analysis of 25 B. brevis strains to examine their taxonomic classification, genetic diversity, and biocontrol potential. The genome [...] Read more.
The promising biocontrol agent Brevibacillus brevis is a broadly dispersed bacterium exhibiting significant antibacterial properties against plant diseases. This study conducted a comprehensive comparative genomic analysis of 25 B. brevis strains to examine their taxonomic classification, genetic diversity, and biocontrol potential. The genome sizes, excluding strain NEB573, varied from 5.95 to 6.73 Mb, with GC content between 47.0% and 47.5%. Notably, strain NEB573 exhibited distinct genomic characteristics based on Average Nucleotide Identity (ANI), digital DNA-DNA hybridisation (dDDH), and phylogenetic analyses, suggesting it may represent a novel Brevibacillus species pending additional phenotypic confirmation. The remaining 24 strains were grouped into six phylogenetic clades. The pan-genome study demonstrated significant genomic flexibility, demonstrating an open architecture with 2855 core gene families (33.08%) and 1699 distinct genes. Functional annotations indicated that unique genes were enriched in tasks related to DNA repair and environmental adaptation, while core genes predominantly participated in amino acid metabolism and transcription. The examination of biosynthetic gene clusters (BGCs) identified multiple antimicrobial compounds, such as gramicidin and tyrocidine, which have been reported to exhibit both antibacterial and antifungal activities, thereby underscoring the broad-spectrum biocontrol potential of B. brevis. These findings endorse the application of biocontrol in sustainable plant disease management and offer novel perspectives on its genetic basis in B. brevis. Future investigations of its metabolic repertoire may unveil novel agro-biotechnological applications. Full article
Show Figures

Figure 1

15 pages, 1477 KB  
Article
Microwave-Assisted Syntheses of 1-Acetyl 2-Methylbenzimidazole Sodium Bisulfate pH-Responsive Ionic Draw Solute for Forward Osmosis Applications
by Ahmed A. Bhran, Abdelrahman G. Gadallah, Hanaa M. Ali, Sahar S. Ali, Hanaa Gadallah and Rania Sabry
Membranes 2025, 15(11), 325; https://doi.org/10.3390/membranes15110325 (registering DOI) - 26 Oct 2025
Abstract
This work is related to the development of a highly efficient pH-responsive ionic draw solute for forward osmosis applications utilizing microwave-assisted fast heating. This solute is classified as an ionic compound, a sodium salt originating from imidazole, with the scientific acronym 1-acetyl-2-methylbenzimidazole sodium [...] Read more.
This work is related to the development of a highly efficient pH-responsive ionic draw solute for forward osmosis applications utilizing microwave-assisted fast heating. This solute is classified as an ionic compound, a sodium salt originating from imidazole, with the scientific acronym 1-acetyl-2-methylbenzimidazole sodium bisulfate (AMBIM-Na). The synthesized compound was analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as additional physical characteristics. The baseline performance was initially evaluated at various molar concentrations against distilled water as the feed solution (FS). The results indicated that the produced solute exhibits elevated osmotic pressure, resulting in a water flux of up to 130 LMH for a 1 M concentration, coupled with the absence of reverse salt flux. The synthesized AMBIM-Na at a concentration of 1 M was utilized as a draw solution (DS) against synthetic brackish water. The water flux declined progressively with the increase in FS concentration, decreasing from 130 LMH with distilled water to 99, 70, and 41 LMH at NaCl concentrations of 5, 10, and 15 g/L, respectively. The regeneration of the draw solute was assessed using pH adjustment, revealing that 100% regeneration occurs by reducing the pH to 2. Full article
Show Figures

Figure 1

17 pages, 2925 KB  
Article
Potentiometric Studies of the Complexation Properties of Selected Lanthanide Ions with Schiff Base Ligand
by Julia Barańska, Katarzyna Koroniak-Szejn, Michał Zabiszak, Anita Grześkiewicz, Monika Skrobanska, Martyna Nowak, Renata Jastrzab and Małgorzata T. Kaczmarek
Int. J. Mol. Sci. 2025, 26(21), 10379; https://doi.org/10.3390/ijms262110379 (registering DOI) - 25 Oct 2025
Viewed by 75
Abstract
The synthesis, characterization, and equilibrium studies of complexes of selected lanthanide ions Eu(III), Gd(III), and Tb(III) with the ligand 1,3-bis(3-bromo-5-chlorosalicylideneamino)-2-propanol (H3L) are reported. It was found that in the solid state, the complexes with the formulas [Eu(H3L)2(NO [...] Read more.
The synthesis, characterization, and equilibrium studies of complexes of selected lanthanide ions Eu(III), Gd(III), and Tb(III) with the ligand 1,3-bis(3-bromo-5-chlorosalicylideneamino)-2-propanol (H3L) are reported. It was found that in the solid state, the complexes with the formulas [Eu(H3L)2(NO3)3], [Gd(H3L)2(NO3)3], and [Tb(H3L)2(NO3)3] are formed. In solution, complexes with stoichiometries of Ln(III):H3L 1:1 and 1:2 were obtained. The ligand H3L was isolated in crystalline form, and its molecular structure and conformation were determined by single-crystal X-ray diffraction analysis. The compounds were further characterized by elemental analysis, infrared spectroscopy, 1H NMR, 13C NMR techniques, and mass spectrometry (ESI), confirming the formation of the Schiff base group. Stability constants of the complexes in solution were determined using potentiometric titration, providing insights into the metal-ligand binding equilibria. In addition, the spectroscopic properties of the ligand and its lanthanide(III) ion complexes were investigated by UV-Vis spectroscopy, which confirmed ligand-to-metal charge transfer interactions, as well as by luminescence measurements. The luminescence studies revealed inefficient energy transfer in [Eu(H3L)2(NO3)3] complexes, while no transfer was observed in [Tb(H3L)2(NO3)3] systems at any pH value. This behavior is attributed to the large energy gap between the ligand triplet state and the lowest resonant levels of the studied lanthanide ions. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

29 pages, 3896 KB  
Review
From Waste to Wealth: Unlocking the Potential of Cellulase Characteristics for Food Processing Waste Management
by Muhammad Hammad Hussain, Kamran Ashraf, Redhwan Ebrahim Abdullah Alqudaimi, Maria Martuscelli, Shao-Yuan Leu, Salim-ur Rehman, Muhammad Shahbaz Aslam, Zhanao Li, Adnan Khaliq, Yingping Zhuang, Meijin Guo and Ali Mohsin
Foods 2025, 14(21), 3639; https://doi.org/10.3390/foods14213639 (registering DOI) - 24 Oct 2025
Viewed by 204
Abstract
A surge in environmental pollution compels society to utilize food processing wastes to produce valuable compounds. Enzymatic technology, specifically cellulase-mediated hydrolysis, provides an eco-friendly and effective approach for treating food processing leftovers. The main objective of this review is to explore the significant [...] Read more.
A surge in environmental pollution compels society to utilize food processing wastes to produce valuable compounds. Enzymatic technology, specifically cellulase-mediated hydrolysis, provides an eco-friendly and effective approach for treating food processing leftovers. The main objective of this review is to explore the significant contributions of cellulase, both in industrial settings and from an environmental perspective. Therefore, this review covers all the aspects of cellulase structural identification, classification, and evolution to its profound applications. The review initially explores cellulases’ structural and functional characteristics based on the catalytic and cellulose-binding domains and discusses cellulases’ evolutionary origin. A thorough understanding of cellulase properties is essential for overcoming the challenges associated with its commercial production for various applications. In this regard, the optimization for cellulase production through several approaches, including rational design, direct evolution, genetic engineering, and fermentation technology, is also reviewed. In addition, it also underscores the significance of agro-industrial biorefineries, which provide scalable and sustainable solutions to meet future demands for food, chemicals, materials, and fuels. Finally, the last sections of the review solely highlight the potential applications of microbial cellulases in bioremediation. In summary, this review outlines the role of cellulase in efficient valorization aimed at producing multiple bioproducts and the enhancement of environmental remediation efforts. Full article
Show Figures

Figure 1

17 pages, 5766 KB  
Article
Wheat–Oat Bread Enriched with Beetroot-Based Additives: Technological and Quality Aspects
by Zuzanna Posadzka-Siupik, Joanna Kaszuba, Ireneusz Tomasz Kapusta and Grażyna Jaworska
Appl. Sci. 2025, 15(21), 11408; https://doi.org/10.3390/app152111408 (registering DOI) - 24 Oct 2025
Viewed by 67
Abstract
Beetroot-based additives are interesting for enriching bread in terms of bioactive compounds. The objective of this study was to determine the effect of the following beetroot-based additives: a beetroot lyophilizate powder (wheat–oat baking mix flour was replaced in proportions of 2.5, 5.0, 7.5, [...] Read more.
Beetroot-based additives are interesting for enriching bread in terms of bioactive compounds. The objective of this study was to determine the effect of the following beetroot-based additives: a beetroot lyophilizate powder (wheat–oat baking mix flour was replaced in proportions of 2.5, 5.0, 7.5, 10%), a beetroot juice (water was replaced with juice in proportions of 25, 50, 75, 100%) and a by-product of beetroot juice production, i.e., pomace (wheat–oat baking mix flour was replaced in proportions of 2.5, 5.0, 7.5, 10%) on the quality of wheat–oat bread and the content of bioactive components in this type of bread. The properties of the dough were also assessed. The type and percentage level of partially replacing wheat–oat baking mix flour or water with beetroot-based additives had a significant impact on water absorption, dough development, and stability time of the tested dough. The beetroot juice (BJ) and powder (BLP) had the most significant impact on the rheological properties of the dough, whereas the pomace (BP) had the smallest effect. Beetroot-based additives, especially powder and juice, reduced the volume of bread (from 199 to 148 cm3/100 g of bread) but did not change oven loss [%] and bread crumb porosity index. Breads with these additives showed higher increased values for dough yield [%] and bread yield [%] (for beetroot powder—by 10% compared to the control sample (133.37% and 113.83%)). Tested additives had an impact on the crust and crumb color of the tested wheat–oat breads. The proposed additives significantly increased the antioxidant activity, total phenolic content, and betalain content in the bread samples. The above results showed that, from a technological point of view, replacing water or flour in the wheat–oat bread recipe with beetroot-based additives with a maximum concentration of 5% for BP or BLP and 50% for BJ allows for obtaining a product of good quality. Full article
Show Figures

Figure 1

15 pages, 716 KB  
Article
The Effect of Enzymatic Disintegration Using Cellulase and Lysozyme on the Efficiency of Methane Fermentation of Sewage Sludge
by Bartłomiej Macherzyński, Małgorzata Wszelaka-Rylik, Anna Marszałek and Elżbieta Popowska-Nowak
Energies 2025, 18(21), 5597; https://doi.org/10.3390/en18215597 (registering DOI) - 24 Oct 2025
Viewed by 67
Abstract
This study presents a novel approach to intensifying the anaerobic digestion of sewage sludge through enzymatic pretreatment using hydrolytic enzymes—cellulase and lysozyme. It aims to determine how enzymatic activation affects the efficiency of methane fermentation, defined as the degree of organic matter decomposition [...] Read more.
This study presents a novel approach to intensifying the anaerobic digestion of sewage sludge through enzymatic pretreatment using hydrolytic enzymes—cellulase and lysozyme. It aims to determine how enzymatic activation affects the efficiency of methane fermentation, defined as the degree of organic matter decomposition and yield and composition of biogas. An experiment was carried out under mesophilic conditions over 20 days, analyzing the physicochemical properties of sludge, biogas production, methane content, and sanitary parameters. The addition of cellulase and lysozyme significantly enhanced process efficiency, increasing both the rate of organic matter degradation and biogas yield. The highest biogas production values (0.73 L·g−1 d.m. for cellulase and 0.72 L·g−1 d.m. for lysozyme) were obtained at a 4% (w/w) enzyme concentration, with a corresponding increase in the degree of organic matter decomposition to 78.7% and 80.0%, respectively. The produced biogas contained 58–61% methane, exceeding the values observed in the control sample, which indicates a positive effect of enzymatic activation on methane selectivity. Enhanced biogas production was attributed to improved hydrolysis of complex organic compounds, resulting in greater substrate bioavailability for methanogenic microorganisms. Moreover, methane fermentation led to the complete elimination of E. coli from all supernatants, confirming the hygienization potential of the process. The results of this study indicate that enzymatic pretreatment may serve as a viable strategy to improve both the energy efficiency and hygienic safety of anaerobic digestion processes, with relevance for future optimization and full-scale wastewater treatment applications. Full article
(This article belongs to the Special Issue Nutrient and Energy Recovery from Municipal and Industrial Wastewater)
Show Figures

Figure 1

16 pages, 1915 KB  
Article
Additive Effects of N-Acetylcysteine and [R4W4] Combination Treatment on Mycobacterium avium
by Kayvan Sasaninia, Iffat Hasnin Era, Nezam Newman, Jesse Melendez, Wajiha Akif, Eashan Sharma, Omid Nikjeh, Ira Glassman, Cristián Jiménez, Navya Sharma, Ama Xu, Maria Lambros, Miou Zhou, Rakesh Tiwari and Vishwanath Venketaraman
Int. J. Mol. Sci. 2025, 26(21), 10361; https://doi.org/10.3390/ijms262110361 (registering DOI) - 24 Oct 2025
Viewed by 145
Abstract
Mycobacterium avium is an opportunistic pathogen and a leading contributor to nontuberculous mycobacterial infections in immunocompromised individuals. However, treatment duration, antibiotic toxicity, and resistance present challenges in the management of mycobacterium infections, prompting the need for novel treatment. N-acetylcysteine (NAC) has demonstrated [...] Read more.
Mycobacterium avium is an opportunistic pathogen and a leading contributor to nontuberculous mycobacterial infections in immunocompromised individuals. However, treatment duration, antibiotic toxicity, and resistance present challenges in the management of mycobacterium infections, prompting the need for novel treatment. N-acetylcysteine (NAC) has demonstrated potent antimycobacterial activity, while antimicrobial peptides such as the cyclic [R4W4] have shown additive effects when combined with first-line antibiotics. This study aimed to investigate the mechanism and efficacy of NAC and [R4W4] combination therapy against M. avium. A membrane depolarization assay was used to evaluate the effects of NAC and [R4W4] on M. avium cell membrane integrity. Antimycobacterial activity was assessed by treating cultures with varying concentrations of NAC, [R4W4], a combination, or a sham treatment. The same regimens were applied to M. avium-infected THP-1-derived macrophages to assess intracellular efficacy. NAC and [R4W4] each disrupted the M. avium membrane potential, with enhanced effects in combination. The combination treatment significantly reduced M. avium survival in both the culture and infected macrophages compared with NAC alone and untreated controls. [R4W4] and NAC also demonstrated potent antibacterial activity, while the lowest MIC and the combination of [R4W4] and NAC displayed additive effects, indicating an improved bacterial inhibition compared to individual treatments. These findings demonstrate the additive activity of NAC and [R4W4] against M. avium in vitro and suggest that combining antioxidant compounds with antimicrobial peptides may represent a promising strategy for treating mycobacterial infections. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

19 pages, 3298 KB  
Article
An Enhancement in the Magnetocaloric Effect in a Composite Powder Based on Lanthanum Manganites
by Fidel Ivan Reyes Patricio, Cristhian Antonio Taboada Moreno, Ana María Bolarín Miró, Claudia Alicia Cortés Escobedo, María Isabel Reyes Valderrama and Félix Sánchez De Jesús
Materials 2025, 18(21), 4869; https://doi.org/10.3390/ma18214869 (registering DOI) - 24 Oct 2025
Viewed by 93
Abstract
This study presents a dual-phase lanthanum manganite ceramic composite based on a mixture of equal weight ratios of La0.7Ca0.2Sr0.1MnO3 and La0.7Ca0.25Sr0.05MnO3 designed to enhance the magnetocaloric effect (MCE) of [...] Read more.
This study presents a dual-phase lanthanum manganite ceramic composite based on a mixture of equal weight ratios of La0.7Ca0.2Sr0.1MnO3 and La0.7Ca0.25Sr0.05MnO3 designed to enhance the magnetocaloric effect (MCE) of individual compounds, under a low magnetic field (≤18 kOe). X-ray diffraction (XRD) analysis revealed the coexistence of two orthorhombic manganite phases corresponding to the individual compounds, with no secondary phases detected. Temperature-dependent magnetization measurements in the composite evidenced two Curie temperatures at 286.8 K and 307.6 K, reflecting the effect of Ca2+ and Sr2+ concentrations. Arrott plots and β parameters confirmed that the phase transition is of second order. Although the maximum magnetic entropy change (ΔSM) of the composite is slightly lower than that of the individual manganite phases, its relative cooling power (RCP) reaches 188.82 J·kg−1, with an extended operational temperature window (OTW) of approximately 85 K, spanning from around 243 K to 328 K. This broad OTW enables efficient operation over a wider temperature range compared to similar materials, such as the individual La0.7Ca0.2Sr0.1MnO3 and La0.7Ca0.25Sr0.05MnO3 compounds, which exhibit an RCP of 55.24 and 65.12 J·kg−1, respectively, under a comparable magnetic field (~18 kOe). The improved magnetocaloric performance is attributed to interfacial exchange coupling and strain-mediated effects that broaden the ΔSM response and generate a non-additive RCP. These results demonstrate that interphase coupling and microstructural tuning effectively broaden the operating temperature range for magnetic refrigeration under moderate fields, making this composite a strong candidate for practical cooling applications. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

33 pages, 1762 KB  
Review
Advances in Oral Drug Delivery Systems for Natural Polyunsaturated Fatty Acids: Enhancing Bioavailability and Therapeutic Potential
by Matheus Felipe Zazula, Roberta Pozzan, Guilherme Anacleto dos Reis, Mônica Maciel, Thomas Horlem, Tayná Nery Banckes, Josilene Lima Serra Pereira, Ceci Sales-Campos, Luiz Claudio Fernandes, Walter José Martinez-Burgos and Katya Naliwaiko
Pharmaceutics 2025, 17(11), 1377; https://doi.org/10.3390/pharmaceutics17111377 (registering DOI) - 24 Oct 2025
Viewed by 300
Abstract
Omega-3 and omega-6 fatty acids play essential roles in human health, being widely used in the prevention and treatment of various conditions, such as cardiovascular diseases, inflammation, and metabolic disorders. However, their oral administration faces significant challenges, including low solubility, rapid oxidation, and [...] Read more.
Omega-3 and omega-6 fatty acids play essential roles in human health, being widely used in the prevention and treatment of various conditions, such as cardiovascular diseases, inflammation, and metabolic disorders. However, their oral administration faces significant challenges, including low solubility, rapid oxidation, and low bioavailability, which limit their therapeutic efficacy. This article explores recent advances in oral drug delivery systems designed for polyunsaturated fatty acids, highlighting how innovative technologies, such as nanoemulsions, liposomes, microencapsulation, and solid lipid nanoparticles (SLNs/NLCs), can improve their stability, absorption and clinical performance. In addition, the main natural sources of these compounds, as well as their extraction and purification methods, and the challenges related to their absorption and metabolism are discussed. This narrative review was based mainly on a comprehensive search of peer-reviewed literature published between 2015 and 2025 in PubMed, Scopus, and Web of Science. The therapeutic benefits of these emerging approaches are analyzed by comparing conventional methods with modern delivery strategies to optimize the use of omega-3 and omega-6 in the body. Finally, the article outlines future perspectives and regulatory challenges associated with these technologies, highlighting their potential to revolutionize the administration of essential fatty acids and broaden their applications in medicine and nutrition. Full article
(This article belongs to the Special Issue Drug Delivery for Natural Extract Applications)
Show Figures

Figure 1

19 pages, 873 KB  
Article
Extended Stability of Ascorbic Acid in Pediatric TPN Admixtures: The Role of Storage Temperature and Emulsion Integrity
by Rafał Chiczewski, Żaneta Sobol, Alicja Pacholska and Dorota Wątróbska-Świetlikowska
Pharmaceutics 2025, 17(11), 1375; https://doi.org/10.3390/pharmaceutics17111375 (registering DOI) - 24 Oct 2025
Viewed by 138
Abstract
Background/Objectives: This study assessed the chemical and physical stability of ascorbic acid in pediatric total parenteral nutrition (TPN) admixtures under conditions reflecting both hospital compounding and home administration. Methods: Two storage protocols were examined: (A) refrigerated storage (15 days, 4 ± 2 °C) [...] Read more.
Background/Objectives: This study assessed the chemical and physical stability of ascorbic acid in pediatric total parenteral nutrition (TPN) admixtures under conditions reflecting both hospital compounding and home administration. Methods: Two storage protocols were examined: (A) refrigerated storage (15 days, 4 ± 2 °C) followed by addition of ascorbic acid and a 24-h period of storage at room temperature, and (B) vitamin supplementation within 24 h after composing and storage at 21 ± 2 °C. A validated high-performance liquid chromatography (HPLC) method was used to quantify ascorbic acid degradation. Physical stability was evaluated via optical microscopy, dynamic light scattering (DLS), laser diffraction (LD), zeta potential, and pH measurement. Results: Ascorbic acid content remained above 90% of the declared value in both protocols, although gradual degradation was observed with increasing storage time and temperature. Emulsion droplet sizes remained within pharmacopeial limits (<500 nm), and no coalescence or phase separation was detected. Zeta potential values (−20 to −40 mV) confirmed kinetic stability, while pH ranged from 5.8 to 6.2, remaining within acceptable safety margins. Conclusions: Vitamin C in pediatric TPN admixtures is stable under refrigerated conditions for up to 15 days. However, the additional 24 h at room temperature resulted in measurable loss of ascorbic acid content, suggesting a need for improved guidance in home-based parenteral nutrition, particularly regarding transport and handling. The study underscores the importance of strict cold-chain maintenance and highlights the role of emulsion matrix and packaging in protecting labile vitamins. This research provides practical implications for hospital pharmacists and caregivers, supporting better formulation practices and patient safety in pediatric home TPN programs. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Graphical abstract

19 pages, 2063 KB  
Review
Biological Evaluation and Potential Applications of Secondary Metabolites from Fungi Belonging to the Cordycipitaceae Family with a Focus on Parengyodontium spp.
by Dylan Marin, Philippe Petit and Ludovic Pruneau
J. Fungi 2025, 11(11), 764; https://doi.org/10.3390/jof11110764 - 24 Oct 2025
Viewed by 258
Abstract
Fungi of the genus Parengyodontium (Ascomycota, Hypocreales, Cordycipitaceae) are emerging as promising sources of secondary metabolites with significant biotechnological potential. While traditionally understudied, species such as Parengyodontium album, Parengyodontium torokii and Parengyodontium americanum have been isolated from diverse and sometimes extreme environments—including [...] Read more.
Fungi of the genus Parengyodontium (Ascomycota, Hypocreales, Cordycipitaceae) are emerging as promising sources of secondary metabolites with significant biotechnological potential. While traditionally understudied, species such as Parengyodontium album, Parengyodontium torokii and Parengyodontium americanum have been isolated from diverse and sometimes extreme environments—including deep-sea sediments, mangroves, and NASA clean rooms—suggesting remarkable ecological adaptability. This review presents a comprehensive synthesis of current knowledge on the chemical diversity, biological activities, and potential industrial applications of secondary metabolites produced by fungi belonging to the genus. A wide variety of compounds have been identified, including polyketides (e.g., engyodontiumones, alternaphenol B2), terpenoids (e.g., cytochalasin K), alkaloids, and torrubielline derivatives. These metabolites exhibit cytotoxic, antibacterial, and antifouling properties, with promising anticancer and antimicrobial activities. In addition, recent evidence points to the genus’s role in bioremediation, particularly through the degradation of polyethylene by P. album. Despite the advances highlighted here, challenges remain in scaling production, elucidating biosynthetic pathways, and confirming in vivo efficacy. This review underscores the value of integrating chemical, genomic, and metabolomic approaches to fully unlock the biotechnological potential of Parengyodontium species. Additionally, we broaden the perspective by comparing trends in secondary metabolites among Cordycipitaceae, highlighting lifestyle-related chemical compounds that serve as a reference for the Parengyodontium profile. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

Back to TopTop