Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,927)

Search Parameters:
Keywords = compositional characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 417 KB  
Article
Ultrasonography of the Vagus Nerve in Parkinson’s Disease: Links to Clinical Profile and Autonomic Dysfunction
by Ovidijus Laucius, Justinas Drūteika, Tadas Vanagas, Renata Balnytė, Andrius Radžiūnas and Antanas Vaitkus
Biomedicines 2025, 13(9), 2070; https://doi.org/10.3390/biomedicines13092070 (registering DOI) - 25 Aug 2025
Abstract
Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms, including autonomic dysfunction. Structural alterations in the vagus nerve (VN) may contribute to PD pathophysiology, though existing data remain inconsistent. Objective: This study aimed to evaluate morphological [...] Read more.
Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms, including autonomic dysfunction. Structural alterations in the vagus nerve (VN) may contribute to PD pathophysiology, though existing data remain inconsistent. Objective: This study aimed to evaluate morphological changes in the VN using high-resolution ultrasound (USVN) and to investigate associations with autonomic symptoms, heart rate variability (HRV), and clinical characteristics in PD patients. Methods: A cross-sectional study was conducted involving 60 PD patients and 60 age- and sex-matched healthy controls. USVN was performed to assess VN cross-sectional area (CSA), echogenicity, and homogeneity bilaterally. Autonomic symptoms were measured using the Composite Autonomic Symptom Scale 31 (COMPASS-31). HRV parameters—SDNN, RMSSD, and pNN50—were obtained via 24 h Holter monitoring. Additional clinical data included Unified Parkinson’s Disease Rating Scale (UPDRS) scores, transcranial sonography findings, and third ventricle width. Results: PD patients showed significantly reduced VN CSA compared to controls (right: 1.90 ± 0.19 mm2 vs. 2.07 ± 0.18 mm2; left: 1.74 ± 0.21 mm2 vs. 1.87 ± 0.22 mm2; p < 0.001 and p < 0.02). Altered echogenicity and decreased homogeneity were also observed. Right VN CSA correlated with body weight, third ventricle size, and COMPASS-31 scores. Left VN CSA was associated with body size parameters and negatively correlated with RMSSD (p = 0.025, r = −0.21), indicating reduced vagal tone. Conclusions: USVN detects structural VN changes in PD, correlating with autonomic dysfunction. These findings support its potential as a non-invasive biomarker for early autonomic involvement in PD. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
13 pages, 14298 KB  
Article
Simultaneous Improvement of Glass-Forming Ability and Ductility in Co-Based BMGs Through Si/Fe Microalloying
by Xinlong Quan, Liming Xu, Yong Zhao, Xuecheng Tang, Qing Liu, Bo Zhang and Wei-Hua Wang
Metals 2025, 15(9), 943; https://doi.org/10.3390/met15090943 (registering DOI) - 25 Aug 2025
Abstract
Cobalt-based bulk metallic glasses (Co-based BMGs) offer a combination of high strength, corrosion resistance, and soft magnetic properties, yet their limited glass-forming ability (GFA) and poor room-temperature ductility restrict broader application. In this study, a microalloying strategy was applied to the Co61 [...] Read more.
Cobalt-based bulk metallic glasses (Co-based BMGs) offer a combination of high strength, corrosion resistance, and soft magnetic properties, yet their limited glass-forming ability (GFA) and poor room-temperature ductility restrict broader application. In this study, a microalloying strategy was applied to the Co61Nb8B31 base composition to develop Co-Nb-B-Si and Co-Fe-Nb-B-Si systems. The effects of Si addition and Fe substitution on GFA, thermal stability, and mechanical properties were systematically investigated. Si doping combined with Co/B ratio tuning broadened the supercooled liquid region and increased the critical glass-forming diameter from 1 mm to 3 mm. Further addition of 5 at.% Fe expanded the supercooled liquid region and enabled the fabrication of a fully amorphous plate with 1 mm thickness. The optimized Co63Nb8B27Si2 alloy exhibited a compressive strength of 5.18 GPa and a plastic strain of 3.81%. Fracture surface analysis revealed ductile fracture features in the Si-containing alloy and brittle characteristics in Fe-rich compositions. These results demonstrate that microalloying is effective in optimizing the balance between GFA and mechanical performance of Co-based BMGs, offering guidance for composition and processing design. Full article
24 pages, 4590 KB  
Article
Study on the Emission Characteristics of Pollutants During the Waste-to-Energy Process of Landfill Waste and Municipal Solid Waste
by Zongao Zhen, Xianchao Xiang and Xiaodong Li
Energies 2025, 18(17), 4515; https://doi.org/10.3390/en18174515 (registering DOI) - 25 Aug 2025
Abstract
As landfill mining becomes more widely applied, growing attention is being paid to the waste-to-energy conversion of landfill waste. Co-disposal of landfill waste with municipal solid waste represents one of the primary strategies for achieving energy recovery of landfill waste. In this paper, [...] Read more.
As landfill mining becomes more widely applied, growing attention is being paid to the waste-to-energy conversion of landfill waste. Co-disposal of landfill waste with municipal solid waste represents one of the primary strategies for achieving energy recovery of landfill waste. In this paper, the emission characteristics of pollutants were systematically analyzed during the co-disposal of landfill waste and municipal solid waste in a full-scale municipal solid waste incineration. The study investigated the formation patterns of toxic PCDD/Fs and gaseous pollutants under different co-disposal ratios of landfill waste (0%, 15%, 25%, 35%, and 45%). In total, 136 PCDD/Fs were analyzed to investigate the influence of co-disposal ratios on PCDD/F formation in both flue gas and fly ash. The influence of varying co-disposal ratios on the phase and elemental composition of fly ash was also investigated. Co-disposal led to a significant reduction in the toxic PCDD/F concentration at the boiler outlet, mainly attributed to the higher sulfur content of LW compared to MSW. With increasing co-disposal ratios, the annual emission amounts of toxic PCDD/Fs in fly ash significantly increased. The ∑PCDD/∑PCDF ratio in both flue gas of boiler outlet and fly ash also increased, indicating an enhancement of the precursor formation pathway, while the de novo synthesis pathway was relatively suppressed. The fly ash exhibited a high proportion of highly chlorinated dioxins (degree of chlorination: 7.19–7.23), likely due to their low saturated vapor pressure. According to the Hagenmaier congener distribution, high co-disposal ratios (25–45%) suppressed the chlorination of DD/DF in fly ash but promoted the formation of gas-phase PCDFs. Different co-disposal ratios significantly influenced both the emission concentrations and removal efficiencies of air pollutants, including NOx, SO2, and HCl. Although co-disposal did not alter the crystalline phase composition of fly ash, it led to an increased content of heavy metals such as Cu, Hg, and Pb. Full article
(This article belongs to the Special Issue Studies on Clean and Sustainable Energy Utilization)
23 pages, 1632 KB  
Review
Borophene: Synthesis, Properties and Experimental H2 Evolution Potential Applications
by Eric Fernando Vázquez-Vázquez, Yazmín Mariela Hernández-Rodríguez, Omar Solorza-Feria and Oscar Eduardo Cigarroa-Mayorga
Crystals 2025, 15(9), 753; https://doi.org/10.3390/cryst15090753 (registering DOI) - 25 Aug 2025
Abstract
Borophene, a two-dimensional (2D) allotrope of boron, has emerged as a highly promising material owing to its exceptional mechanical strength, electronic conductivity, and diverse structural phases. Unlike graphene and other 2D materials, borophene exhibits inherent anisotropy, flexibility, and metallicity, offering unique opportunities for [...] Read more.
Borophene, a two-dimensional (2D) allotrope of boron, has emerged as a highly promising material owing to its exceptional mechanical strength, electronic conductivity, and diverse structural phases. Unlike graphene and other 2D materials, borophene exhibits inherent anisotropy, flexibility, and metallicity, offering unique opportunities for advanced nanotechnological applications. This review presents a comprehensive summary of recent progress in borophene synthesis methods, highlighting both bottom–up strategies such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE), and top–down approaches, including liquid-phase exfoliation and sonochemical techniques. A key challenge discussed is the stabilization of borophene’s polymorphs, as bulk boron’s non-layered structure complicates exfoliation. The influence of substrates and doping strategies on structural stability and phase control is also explored. Moreover, the intrinsic physicochemical properties of borophene, including its high flexibility, oxidation resistance, and anisotropic charge transport, were examined in relation to their implications for electronic, catalytic, and sensing devices. Particular attention was given to borophene’s performance in hydrogen storage and hydrogen evolution reactions (HERs), where functionalization with alkali and transition metals significantly enhances H2 adsorption energy and storage capacity. Studies demonstrate that certain borophene–metal composites, such as Ti- or Li-decorated borophene, can achieve hydrogen storage capacities exceeding 10 wt.%, surpassing the U.S. Department of Energy targets for hydrogen storage materials. Despite these promising characteristics, large-scale synthesis, long-term stability, and integration into practical systems remain open challenges. This review identifies current research gaps and proposes future directions to facilitate the development of borophene-based energy solutions. The findings support borophene’s strong potential as a next-generation material for clean energy applications, particularly in hydrogen production and storage systems. Full article
(This article belongs to the Special Issue Advances in Nanocomposites: Structure, Properties and Applications)
Show Figures

Figure 1

21 pages, 11476 KB  
Article
Effect of Ultrasonic Treatment on Chemical Stripping Behavior of Aluminum Coating on K6509 Co-Based Superalloy
by Yuanyuan Jin, Cheng Xie, Ke Sun, Zehuan Li, Xin Wang, Xin Ma, Hui Wang, Rongrong Shang, Xuxian Zhou, Yidi Li and Yunping Li
Materials 2025, 18(17), 3979; https://doi.org/10.3390/ma18173979 (registering DOI) - 25 Aug 2025
Abstract
In this study, 10% nitric acid was employed to remove the aluminum coating on the cobalt-based superalloy K6509, with a focus on elucidating the corrosion mechanism and evaluating the effect of ultrasonic on the removal process. The results shows that ultrasonic treatment (40 [...] Read more.
In this study, 10% nitric acid was employed to remove the aluminum coating on the cobalt-based superalloy K6509, with a focus on elucidating the corrosion mechanism and evaluating the effect of ultrasonic on the removal process. The results shows that ultrasonic treatment (40 kHz) significantly improves coating removal efficiency, increasing the maximum corrosion rate by 46.49% from 2.5413 × 10−7 g·s−1·mm−2 to 4.7488 × 10−7 g·s−1·mm−2 and reducing removal time from 10 min to 6 min. This enhancement is attributed to cavitation effect of ultrasonic bubbles and the shockwave-accelerated ion diffusion, which together facilitate more efficient coating degradation and results in a smoother surface. In terms of corrosion behavior, the difference in phase composition between the outer layer and the interdiffusion zone (IDZ) plays a decisive role. The outer layer is primarily composed of β-(Co,Ni)Al phase, which is thermodynamically less stable in acidic environments and thus readily dissolves in 10% HNO3. In contrast, the IDZ mainly consists of Cr23C6, which exhibit high chemical stability and a strong tendency to passivate. These characteristics render the IDZ highly resistant to nitric acid attack, thereby forming a protective barrier that limits acid penetration and helps maintain the integrity of the substrate. Full article
Show Figures

Figure 1

17 pages, 2754 KB  
Article
Effect of Relaxation Properties on the Bonding Durability of Polyisobutylene Pressure-Sensitive Adhesives
by Anna V. Vlasova, Nina M. Smirnova, Viktoria Y. Melekhina, Sergey V. Antonov and Sergey O. Ilyin
Polymers 2025, 17(17), 2297; https://doi.org/10.3390/polym17172297 (registering DOI) - 25 Aug 2025
Abstract
Pressure-sensitive adhesion arises at a specific rheological behavior of polymer systems, which should correlate with their relaxation properties, making them potentially useful for predicting and altering adhesive performance. This work systematically studied the rheology of eco-friendly pressure-sensitive adhesives based on non-crosslinked polyisobutylene ternary [...] Read more.
Pressure-sensitive adhesion arises at a specific rheological behavior of polymer systems, which should correlate with their relaxation properties, making them potentially useful for predicting and altering adhesive performance. This work systematically studied the rheology of eco-friendly pressure-sensitive adhesives based on non-crosslinked polyisobutylene ternary blends free of solvents and byproducts, which serve for reversible adhesive bonding. The ratio between individual polymer components differing in molecular weight affected the rheological, relaxation, and adhesion properties of the constituted adhesive blends, allowing for their tuning. The viscosity and viscoelasticity of the adhesives were studied using rotational rheometry, while their adhesive bonds with steel were examined by probe tack and shear lap tests at different temperatures. The adhesive bond durability at shear and pull-off detachments depended on the adhesive composition, temperature, and contact time under pressure. The double differentiation of the continuous relaxation spectra of the adhesives enabled the accurate determination of their characteristic relaxation times, which controlled the durability of the adhesive bonds. A universal linear correlation between the reduced failure time of adhesive bonds and their reduced formation time enabled the prediction of their durability with high precision (Pearson correlation coefficient = 0.958, p-value < 0.001) over at least a four-order-of-magnitude time range. The reduction in the formation/failure times of adhesive bonds was most accurately achieved using the longest relaxation time of the adhesives, associated with their highest-molecular-weight polyisobutylene component. Thus, the highest-molecular-weight polymer played a dominant role in adhesive performance, determining both the stress relaxation during the formation of adhesive bonds and their durability under applied load. In turn, this finding enables the prediction and improvement of adhesive bond durability by increasing the bond formation time (a durability rise by up to 10–100 times) and extending the adhesive’s longest relaxation time through elevating the molecular weight or proportion of its highest-molecular-weight component (a durability rise by 100–350%). Full article
Show Figures

Figure 1

14 pages, 1950 KB  
Article
Tailoring Microwave Absorption via Ferromagnetic Resonance and Quarter-Wave Effects in Carbonaceous Ternary FeCoCr Alloy/PVDF Polymer Composites
by Rajeev Kumar, Harish Kumar Choudhary, Shital P. Pawar, Manjunatha Mushtagatte and Balaram Sahoo
Microwave 2025, 1(2), 8; https://doi.org/10.3390/microwave1020008 (registering DOI) - 25 Aug 2025
Abstract
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of [...] Read more.
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of the carbon nanotubes, while a small fraction exists as isolated core–shell, carbon-coated spherical particles. Overall, the synthesized material predominantly exhibits a nanotubular carbon morphology. High-resolution transmission electron microscopy (HRTEM) confirms that the encapsulated nanoparticles are quasi-spherical in shape, with an average size ranging from approximately 25 to 40 nm. The polymeric composite was synthesized via solution casting, ensuring homogenous dispersion of filler constituent. Electromagnetic interference (EMI) shielding performance and reflection loss characteristics were evaluated in the X-band frequency range. Experimental results reveal a significant reflection loss exceeding −20 dB at a matching thickness of 2.5 mm, with peak absorption shifting across frequencies with thickness variation. The comparative analysis, supported by quarter-wave theory and FMR resonance conditions, indicates that the absorption mechanism transitions between magnetic resonance and interference-based cancellation depending on the material configuration and thickness. This work provides experimental validation of loss mechanism dominance in magnetic alloy/polymer composites and proposes design principles for tailoring broadband microwave absorbers. Full article
Show Figures

Figure 1

19 pages, 5930 KB  
Article
rGO Decorated with ZnO Synthesized Using Clitoria ternatea Flower Extract—Characterization, In Vitro and In Vivo Biocompatibility, and Textile Dye Remediation
by Tanvitha Guttapalli, Naven Kumar RK, Harini RM and Koyeli Girigoswami
J. Compos. Sci. 2025, 9(9), 454; https://doi.org/10.3390/jcs9090454 (registering DOI) - 25 Aug 2025
Abstract
This study explores a green synthesis approach for creating a nanocomposite material consisting of zinc oxide (ZnO) nanoparticles decorated with reduced graphene oxide (rGO), utilizing Clitoria ternatea flower extract as a biogenic reducing agent. The objective was to leverage the phytochemicals present in [...] Read more.
This study explores a green synthesis approach for creating a nanocomposite material consisting of zinc oxide (ZnO) nanoparticles decorated with reduced graphene oxide (rGO), utilizing Clitoria ternatea flower extract as a biogenic reducing agent. The objective was to leverage the phytochemicals present in the flower extract to form ZnO nanoparticles, enhance their properties through rGO integration, and evaluate their structural and photocatalytic characteristics. The nanocomposite was characterized using a comprehensive suite of techniques, including XRD, FTIR, UV–Vis spectroscopy, DLS, zeta potential, SEM, and EDAX. To assess the in vitro biocompatibility, an MTT assay was performed on the normal fibroblast cell line 3T3L1. The nanocomposite exhibited minimal cytotoxicity with over 86% cell viability at concentrations up to 320 μg/mL. Additionally, hemolysis assays demonstrated that the nanocomposite induced less than 5% hemolysis, indicating excellent hemocompatibility. In an in vivo evaluation, zebrafish embryos exhibited no deformities, and the cumulative hatchability was also not affected up to a dose of 50 μg/mL. The exploration of environmental remediation was studied using bromophenol dye degradation, which showed a 65% dye degradation within 30 min of exposure to the composite and sunlight. The outcome of the study showed successful formation of ZnO and its composite with rGO (CT-rGO-ZnO), exhibiting excellent biocompatibility and improved photocatalytic properties. The material demonstrates promise for applications in environmental remediation and energy-related fields. The environmentally friendly nature of the synthesis approach also makes it a valuable contribution toward sustainable nanotechnology. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

17 pages, 2167 KB  
Article
Characteristics of Soil Nutrients and Microorganisms at the Grassland–Farmland Interface in the Songnen Agro-Pastoral Ecotone of Northeast China
by Haotian Li, Jiahong Li, Zhihao Han, Wenbo Zhu, Zhaoming Liu, Xuetong Sun, Chuhan Fu, Huichuan Xiao, Ligang Qin and Linlin Mei
Agronomy 2025, 15(9), 2032; https://doi.org/10.3390/agronomy15092032 (registering DOI) - 25 Aug 2025
Abstract
The ecological interface between grasslands and farmlands forms a critical landscape component, significantly contributing to the stability and functioning of ecosystems within the agro-pastoral transition zone of northern China. Nevertheless, the variation patterns and interactions between soil physicochemical attributes and microbial community diversity [...] Read more.
The ecological interface between grasslands and farmlands forms a critical landscape component, significantly contributing to the stability and functioning of ecosystems within the agro-pastoral transition zone of northern China. Nevertheless, the variation patterns and interactions between soil physicochemical attributes and microbial community diversity at this interface remain poorly understood. In this study, we investigated nine sites located within 50 m of the grassland–farmland boundary in the Songnen Plain, northeastern China. We assessed the soil’s physicochemical properties and the composition of bacterial and fungal communities across these sites. Results indicated a declining gradient in soil physicochemical characteristics from grassland to farmland, except for pH and total phosphorus (TP). The composition of bacterial and fungal communities differed notably in response to contrasting land-use types across the ecological interface. Soil environmental variables were closely aligned with shifts observed in bacterial and fungal assemblages. Concentrations of total nitrogen (TN), available phosphorus (AP), alkali-hydrolyzable nitrogen (AN), and available potassium (AK) exhibited inverse correlations with both bacterial and fungal populations. Alterations in microbial community composition were significantly linked to TN, TP, total potassium (TK), AN, AP, AK, and soil pH levels. Variability in soil properties, as well as microbial biomass and diversity, was evident across the grassland–cropland boundary. Long-term utilization and conversion of grassland into cultivated land altered the soil’s physicochemical environment, thereby indirectly shaping the structure of microbial communities, including both bacteria and fungi. These findings provide a valuable basis for understanding the ecological implications of land-use transitions and inform microbial-based indicators for assessing soil health in agro-pastoral ecotones. Full article
(This article belongs to the Special Issue Microbial Carbon and Its Role in Soil Carbon Sequestration)
Show Figures

Figure 1

16 pages, 887 KB  
Article
Effects of Dietary Resveratrol Supplementation on Fermentation Characteristics, Microbial Diversity, and Community Composition of Feces in Hu Sheep
by Dan Luo, Lin Li, Chengjing Cui, Kehui Ouyang, Mingren Qu and Qinghua Qiu
Animals 2025, 15(17), 2494; https://doi.org/10.3390/ani15172494 (registering DOI) - 25 Aug 2025
Abstract
This study aimed to investigate the effects of dietary resveratrol supplementation on fermentation characteristics, microbial diversity, and community composition of feces from Hu sheep. A total of 20 three-month-old Hu sheep with similar body weights (20.62 ± 0.51 kg) were randomly divided into [...] Read more.
This study aimed to investigate the effects of dietary resveratrol supplementation on fermentation characteristics, microbial diversity, and community composition of feces from Hu sheep. A total of 20 three-month-old Hu sheep with similar body weights (20.62 ± 0.51 kg) were randomly divided into the control group (fed a basal diet, CON) and the treatment group (fed a basal diet supplemented with resveratrol at 100 mg/kg of feed, RES), with 10 sheep in each group, and lasted for 75 days. Feces were collected from each sheep at twenty-four time points for fecal fermentation characteristics determination and microbial analysis. The results showed that the pH value was higher in the RES group than in the CON group (p < 0.05), while the concentration of ammonia nitrogen was lower, showing a 10.6% reduction compared to the CON group (p = 0.013). The richness, Shannon index, and inverse Simpson index of fecal microbiota were higher in the CON group than in the RES group (p < 0.05). The relative abundances of Planctomycetota, Bacteroides, Alistipes, and NK4A214 group were higher in the CON group than in the RES group (p < 0.05). Additionally, the relative abundance of the glycan biosynthesis and metabolism pathway was higher in the CON group (p < 0.05). The relative abundance of Prevotella was lower in the CON group than in the RES group (p < 0.05). Principal co-ordinate analysis (PCoA) revealed no overlap between the two groups, and analysis of similarities (ANOSIM) showed significant differences between the CON and RES groups (R = 0.4560, p = 0.012). Linear discriminant analysis effect size (LEfSe) analysis identified 27 microbial biomarkers, with the RES group having more beneficial bacteria and the CON group having more potentially harmful bacteria. The study demonstrated that dietary resveratrol supplementation reduced the concentration of ammonia nitrogen in feces, decreased microbial diversity, and increased the abundance of beneficial bacteria. The findings of this research provide a post-digestion perspective for evaluating the application of resveratrol in ruminant production. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

16 pages, 3147 KB  
Article
Thermal Modulation of Musalais Wine Characteristics: Volatile Profiles and Chemical Composition at Different Brix Levels
by Buhailiqiemu Abudureheman, Minqiang Guo, Jianlin Zhang, Lin Chen, Qian Li, Tiantian Long, Zhuanzhuan Lv, Junli Huang, Dandan Fang, Luxi Jiang, Xingqian Ye and Haibo Pan
Foods 2025, 14(17), 2956; https://doi.org/10.3390/foods14172956 (registering DOI) - 25 Aug 2025
Abstract
This study investigated the effects of fermentation temperatures (22 °C, 25 °C, 28 °C) and concentrations of grape juice Brix (26 °, 29 °, 32 °) on the physicochemical and aroma profiles of Musalais wine, a traditional fermented alcoholic beverage from Xinjiang, China. [...] Read more.
This study investigated the effects of fermentation temperatures (22 °C, 25 °C, 28 °C) and concentrations of grape juice Brix (26 °, 29 °, 32 °) on the physicochemical and aroma profiles of Musalais wine, a traditional fermented alcoholic beverage from Xinjiang, China. The results indicated that higher fermentation temperatures (28 °C) increased total acidity (TA) and residual sugar content (RSC), whereas lower temperatures (22 °C) resulted in higher pH, phenolic content, and anthocyanin content. Ethanol content reached its peak at 25 °C, particularly in Musalais wines produced from 29 Brix of concentrated grape juice. GC-IMS analysis identified 50 volatile organic compounds (VOCs), with esters (30%), alcohols (22%), and ketones (12%) dominating the aroma profile. Wines fermented at 22 °C exhibited the most complex VOC profiles, characterized by fruity esters (ethyl propanoate) and caramel-like ketones (4-methyl-2-pentanone). In contrast, fermentation at 28 °C produced simpler alcohol-dominated aroma profiles. Multivariate analysis (PCA and PLS-DA) confirmed distinct clustering based on temperature, with 19 key markers (ethyl 2-methylpentanoate, 3-octanone) differentiating the Musalais wines. Correlation analysis revealed strong relationships between ethanol, TA, RSC, and specific VOCs. Hierarchical clustering grouped the wines into two categories: those fermented at 22 °C (fruity and rich in complexity) and those fermented at 25–28 °C (alcoholic and simpler profiles). These findings demonstrate that fermentation temperature significantly impacts Musalais wine quality, with 22 °C being optimal for aroma complexity, while 25 °C provided a balance between ethanol production and antioxidant retention. Brix levels of concentrated grape juice modulated acidity and sweetness. This study offers practical insights for optimizing Musalais wine production through controlled fermentation conditions. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

17 pages, 663 KB  
Review
Gut Microbiota in Acute Myeloid Leukemia: From Biomarkers to Interventions
by Meifen Ji, Meixia Ji, Yebo Zhong and Lewen Shao
Metabolites 2025, 15(9), 568; https://doi.org/10.3390/metabo15090568 - 25 Aug 2025
Abstract
Acute myeloid leukemia (AML), the most common acute leukemia among adults, poses significant therapeutic challenges due to diagnostic limitations and the frequent development of treatment resistance. While genomics-based approaches have advanced, DNA aberrations do not always reflect the expression levels of genes and [...] Read more.
Acute myeloid leukemia (AML), the most common acute leukemia among adults, poses significant therapeutic challenges due to diagnostic limitations and the frequent development of treatment resistance. While genomics-based approaches have advanced, DNA aberrations do not always reflect the expression levels of genes and proteins, which are more tightly connected to disease phenotypes. Recently, the role of the gut microbiota in AML has gained increasing attention. AML patients often exhibit gut microbiota dysbiosis, which is linked to disease progression and heightened infection risk. Mounting evidence indicates that gut microbiota metabolism influences hematopoiesis and immune function via the “gut-bone marrow axis,” with microbiota composition and diversity significantly affecting treatment outcomes and prognosis. High-throughput sequencing and metabolomics have identified correlations between gut microbiota composition and its metabolic products with AML clinical characteristics, paving the way for new biomarkers in diagnosis and prognosis. Additionally, treatments such as fecal microbiota transplantation (FMT) show promise in enhancing chemotherapy efficacy and improving patient outcomes. This review highlights recent advances in understanding the role of the gut microbiota in AML and explores new perspectives for its diagnosis and treatment. Full article
Show Figures

Figure 1

14 pages, 2228 KB  
Article
Silver Nanoparticles@Zeolite Composites: Preparation, Characterization and Antibacterial Properties
by Gospodinka Gicheva, Marinela Panayotova, Orlin Gemishev, Sergei A. Kulinich and Neli Mintcheva
Materials 2025, 18(17), 3964; https://doi.org/10.3390/ma18173964 - 24 Aug 2025
Abstract
The presence of various Ag species (Ag+ ions, Ag clusters, and Ag nanoparticles (NPs)) in Ag-zeolite nanocomposites strongly influences their catalytic, photocatalytic, and antibacterial properties. To tailor materials for specific applications, it is essential to employ strategies that control the redox processes [...] Read more.
The presence of various Ag species (Ag+ ions, Ag clusters, and Ag nanoparticles (NPs)) in Ag-zeolite nanocomposites strongly influences their catalytic, photocatalytic, and antibacterial properties. To tailor materials for specific applications, it is essential to employ strategies that control the redox processes between Ag+ and Ag0 and facilitate the formation of active Ag-containing composites. In this study, we present a comparative analysis of Ag-zeolite nanocomposites, focusing on their synthesis methods, structural characteristics, and antibacterial activity against Escherichia coli. Ag NPs were synthesized using three approaches: solid-state thermal reduction, chemical reduction in aqueous solutions with a mild reducing agent (sodium citrate, Na3Cit), and chemical reduction with a strong reducing agent (sodium borohydride, NaBH4). The resulting materials were characterized by X-ray diffraction (XRD), diffuse reflectance UV–Vis spectroscopy (DR UV–Vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), while antibacterial activity was assessed using biological assays. Microscopic and spectroscopic analyses confirmed the formation of Ag NPs and the co-existence of immobilized Ag+ ions within the zeolite framework. The specific influence of the treatment method of Ag+-zeolite on the presence of silver species in the nanocomposites and their role in antibacterial properties were evaluated. The highest antibacterial efficiency was observed in the nanocomposite produced by thermal treatment of Ag-exchanged zeolite. Thus, the crucial function of Ag+ ions in the mechanism of bacteria cell death was suggested. Full article
Show Figures

Figure 1

28 pages, 44995 KB  
Article
Constitutive Modeling of Coal Gangue Concrete with Integrated Global–Local Explainable AI and Finite Element Validation
by Xuehong Dong, Guanghong Xiong, Xiao Guan and Chenghua Zhang
Buildings 2025, 15(17), 3007; https://doi.org/10.3390/buildings15173007 - 24 Aug 2025
Abstract
Coal gangue concrete (CGC), a recycled cementitious material derived from industrial solid waste, presents both opportunities and challenges for structural applications due to its heterogeneous composition and variable mechanical behavior. This study develops an ensemble learning framework—incorporating XGBoost, LightGBM, and CatBoost—to predict four [...] Read more.
Coal gangue concrete (CGC), a recycled cementitious material derived from industrial solid waste, presents both opportunities and challenges for structural applications due to its heterogeneous composition and variable mechanical behavior. This study develops an ensemble learning framework—incorporating XGBoost, LightGBM, and CatBoost—to predict four key constitutive parameters based on experimental data. The predicted parameters are subsequently incorporated into an ABAQUS finite element model to simulate the compressive–bending response of CGC columns, with simulation results aligning well with experimental observations in terms of failure mode, load development, and deformation characteristics. To enhance model interpretability, a hybrid approach is adopted, combining permutation-based global feature importance analysis with SHAP (SHapley Additive exPlanations)-derived local explanations. This joint framework captures both the overall influence of each feature and its context-dependent effects, revealing a three-stage stiffness evolution pattern—brittle, quasi-ductile, and re-brittle—governed by gangue replacement levels and consistent with micromechanical mechanisms and numerical responses. Coupled feature interactions, such as between gangue content and crush index, are shown to exacerbate stiffness loss through interfacial weakening and pore development. This integrated approach delivers both predictive accuracy and mechanistic transparency, providing a reference for developing physically interpretable, data-driven constitutive models and offering guidance for tailoring CGC toward ductile, energy-absorbing structural materials in seismic and sustainability-focused engineering. Full article
Show Figures

Figure 1

21 pages, 4087 KB  
Article
Influence of Composite Amendments on the Characteristics of Sandy Soil
by Xinrui Sui, Lingyan Wang, Xinyao Lv, Yanan Liu, Yuqi Zhu, Lingyun Fan and Hanxi Wang
Sustainability 2025, 17(17), 7619; https://doi.org/10.3390/su17177619 - 23 Aug 2025
Viewed by 64
Abstract
Soil desertification control is a global challenge, and the barrenness of sandy soil limits the growth of plants. To enhance the vegetation growth capacity of sandy soils, the preparation of soil amendments and the experiment of improving desertified soil were conducted. The soil [...] Read more.
Soil desertification control is a global challenge, and the barrenness of sandy soil limits the growth of plants. To enhance the vegetation growth capacity of sandy soils, the preparation of soil amendments and the experiment of improving desertified soil were conducted. The soil amendment is prepared by mixing polyacrylamide (2.7%), biochar (16.2%), sodium bentonite (16.2%), straw fibers (5.4%), corn straw (2.7%), sheep manure organic fertilizer (54.1%), and composite microbial agents (2.7%). The laboratory experiment was conducted to investigate the effects of varying rates (0, 1.5%, 3%, 4.5%, 6%) of composite soil amendments on the properties of sandy soil and the Lolium perenne L. with a growth period of 30–60 days. The results indicated that the application of composite amendments at different rates maintained the soil pH between 7.0 and 7.5, increased the electrical conductivity, and significantly improved the soil moisture content, soil organic carbon (SOC), total nitrogen (TN), and total phosphorus contents. Under the condition of 3% amendment, the soil TN content increased from 0.74 to 1.83 g·kg⁻¹. The composite amendments remarkably promoted L. perenne growth, as evidenced by increased plant height, dry weight, and nitrogen and phosphorus nutrient content, while the SOC content increased by 1–4 times. The application of composite amendments, prepared by mixing materials such as biochar, organic fertilizer, crop straw, microbial agents, bentonite, and water-retaining agents, enhanced the physicochemical properties of sandy soil and promoted L. perenne growth, and 3% was the most suitable application rate. These findings are expected to advance desertification-controlling technologies and enhance soil carbon sequestration capacity. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Back to TopTop