Borophene: Synthesis, Properties and Experimental H2 Evolution Potential Applications
Abstract
1. Introduction
2. The Phases of Borophene Predicted Theoretically and Obtained Experimentally
3. Synthesis Methods for Borophene
3.1. Bottom–Up Synthesis
3.1.1. Molecular Beam Epitaxy (MBE)
3.1.2. Chemical Vapor Deposition (CVD)
3.2. Top–Down Synthesis
3.2.1. Liquid-Phase Sonochemical Exfoliation (LPE)
3.2.2. Chemical Etching (CE)
4. Structural and Chemical Properties of Borophene
4.1. Structural Properties
4.1.1. β12 Phase
4.1.2. χ3 Phase
4.1.3. α Phase
4.2. Chemical Properties
4.2.1. β12 Phase Characteristics
4.2.2. χ3 Phase Characteristics
4.2.3. α Phase Characteristics
4.3. Stabilization of the Synthesized Borophene Sheets
- Substrate engineering: Selective choice of substrate helps strong interactions between borophene through charge transfer and epitaxial locking. Further, macroscopic single-phase borophene has been achieved using this strategy by choosing Ir (111) [86].
- Hydrogenation: To make a long-term stable borophene, hydrogenation to produce borophene can be induced [87].
- Functionalization: Via molecular adsorption, borophene can be passivated in its reactive sites. For instance, borophene oxide sheets can be produced by oxidation-assited exfoliation [88].
- Control of the growth parameter: As previously discussed, studies on the synthesis of borophene have demonstrated that the precise tuning of temperature, pressure, and deposition rates allows for the synthesis of selective borophene phases and, therefore, controlled defects can be achieve to stabilize the nanosheet [89,90].
- Defect engineering: Introduction of specific defects such as line defects in χ3 borophene can enhance the stability of this phase [91].
5. Borophene Applications for H2 Evolution Reaction and H2 Storage
5.1. Borophene Applied in Electrocatalysis HER
5.2. Borophene Applied in Electrocatalysis OER
5.3. Borophene for H2 Storage
6. Challenges and Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mannix, A.J.; Zhou, X.-F.; Kiraly, B.; Wood, J.D.; Alducin, D.; Myers, B.D.; Liu, X.; Fisher, B.L.; Santiago, U.; Guest, J.R.; et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568. [Google Scholar] [CrossRef]
- Forte, G.; La Magna, A.; Deretzis, I.; Pucci, R. Ab Initio Prediction of Boron Compounds Arising from Borozene: Structural and Electronic Properties. Nanoscale Res. Lett. 2009, 5, 158. [Google Scholar] [CrossRef]
- Li, W.-H.; Chen, L.; Wu, K.-H. Experimental synthesis of borophene. Acta Phys. Sin. 2022, 71, 108104. [Google Scholar] [CrossRef]
- Xie, Z.; Meng, X.; Li, X.; Liang, W.; Huang, W.; Chen, K.; Chen, J.; Xing, C.; Qiu, M.; Zhang, B.; et al. Two-Dimensional Borophene: Properties, fabrication, and promising applications. Research 2020, 2020, 2624617. [Google Scholar] [CrossRef]
- Yadav, S.; Sadique, M.A.; Ranjan, P.; Sathish, N.; Khan, R. Structural units of bulk boron crystal and 2D boron nanostructures. In 2D Boron Nanosheets; Engineering Materials; Springer: Singapore, 2024; pp. 1–20. [Google Scholar] [CrossRef]
- Šoškić, B.N.; Bekaert, J.; Sevik, C.; Milošević, M.V. Enhanced superconductivity of hydrogenated β12 borophene. Nano Lett. 2024, 24, 12650–12657. [Google Scholar] [CrossRef]
- Sha, Z.-D.; Pei, Q.-X.; Zhou, K.; Dong, Z.; Zhang, Y.-W. Temperature and strain-rate dependent mechanical properties of single-layer borophene. Extrem. Mech. Lett. 2017, 19, 39–45. [Google Scholar] [CrossRef]
- Steglenko, D.V.; Gribanova, T.N.; Minyaev, R.M.; Minkin, V.I. Sodium-Stabilized Hexagonal Borophene: Structure, stability, and electronic and mechanical properties. Russ. J. Inorg. Chem. 2023, 68, 60–68. [Google Scholar] [CrossRef]
- Zhong, H.; Huang, K.; Yu, G.; Yuan, S. Electronic and mechanical properties of few-layer borophene. Phys. Rev. B 2018, 98, 054104. [Google Scholar] [CrossRef]
- Le, M.Q.; Mortazavi, B.; Rabczuk, T. Mechanical properties of borophene films: A reactive molecular dynamics investigation. Nanotechnology 2016, 27, 445709. [Google Scholar] [CrossRef]
- Wang, X.; Wu, R.; Xu, T.; Gao, Y. Mechanical and electrical properties of borophene and its band structure modulation via strain and electric fields: A first-principles study. Mater. Res. Express 2021, 8, 065003. [Google Scholar] [CrossRef]
- Boustani, I. Systematic ab initio investigation of bare boron clusters:mDetermination of the geometryand electronic structures ofBn (n = 2–14). Phys. Rev. B 1997, 55, 16426–16438. [Google Scholar] [CrossRef]
- Xu, S.-G.; Li, X.-T.; Zhao, Y.-J.; Liao, J.-H.; Xu, W.-P.; Yang, X.-B.; Xu, H. Two-Dimensional semiconducting boron monolayers. J. Am. Chem. Soc. 2017, 139, 17233–17236. [Google Scholar] [CrossRef]
- Zope, R.R.; Baruah, T. Snub boron nanostructures: Chiral fullerenes, nanotubes and planar sheet. Chem. Phys. Lett. 2010, 501, 193–196. [Google Scholar] [CrossRef]
- Ou, M.; Wang, X.; Yu, L.; Liu, C.; Tao, W.; Ji, X.; Mei, L. The emergence and evolution of Borophene. Adv. Sci. 2021, 8, 2001801. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-F.; Dong, X.; Oganov, A.R.; Zhu, Q.; Tian, Y.; Wang, H.-T. Semimetallic Two-Dimensional Boron Allotrope with Massless Dirac Fermions. Phys. Rev. Lett. 2014, 112, 085502. [Google Scholar] [CrossRef]
- Singla, A.; Singh, I.; Mahajan, A. The effect of transition metal ion implantation on the structural and optical properties of few-layered borophene. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2024, 553, 165417. [Google Scholar] [CrossRef]
- Pu, Z.; Amiinu, I.S.; Cheng, R.; Wang, P.; Zhang, C.; Mu, S.; Zhao, W.; Su, F.; Zhang, G.; Liao, S.; et al. Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent advances and future perspectives. Nano-Micro Lett. 2020, 12, 12. [Google Scholar] [CrossRef]
- Wang, H.; Gao, L. Recent developments in electrochemical hydrogen evolution reaction. Curr. Opin. Electrochem. 2017, 7, 7–14. [Google Scholar] [CrossRef]
- Singh, Y.; Back, S.; Jung, Y. Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts. Phys. Chem. Chem. Phys. 2018, 20, 21095–21104. [Google Scholar] [CrossRef] [PubMed]
- Tvaronavičienė, M.; Baublys, J.; Raudeliūnienė, J.; Jatautaitė, D. Global energy consumption peculiarities and energy sources. In Energy Transformation Towards Sustainability; Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–49. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, Y.; Liu, Y.; Song, C.; Li, Q.; Wang, D.; Li, Y. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem. Int. Ed. 2020, 59, 20794–20812. [Google Scholar] [CrossRef] [PubMed]
- Ruqia, B.; Choi, S. Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts. ChemSusChem 2018, 11, 2643–2653. [Google Scholar] [CrossRef]
- Bai, S.; Wang, C.; Deng, M.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. Surface polarization matters: Enhancing the Hydrogen-Evolution reaction by shrinking PT shells in PT–PD–Graphene stack structures. Angew. Chem. Int. Ed. 2014, 53, 12120–12124. [Google Scholar] [CrossRef]
- Qian, X.; Hang, T.; Shanmugam, S.; Li, M. Decoration of Micro-/Nanoscale Noble metal particles on 3D porous nickel using electrodeposition technique as electrocatalyst for hydrogen evolution reaction in alkaline electrolyte. ACS Appl. Mater. Interfaces 2015, 7, 15716–15725. [Google Scholar] [CrossRef]
- Sarkar, S.; Peter, S.C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 2018, 5, 2060–2080. [Google Scholar] [CrossRef]
- Li, C.; Baek, J.-B. Recent advances in noble Metal (PT, RU, and IR)-Based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 2019, 5, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Han, G.; Noh, H.; Ahmad, I.; Jeon, I.; Baek, J. Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. Adv. Mater. 2018, 30, e1803676. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, X.; Liu, Y.; Zhao, X.; Liu, Y.; Wu, R.; Wang, J. Designed Single Atom Bifunctional Electrocatalysts for Overall Water Splitting: 3d Transition Metal Atoms Doped Borophene Nanosheets. ChemPhysChem 2020, 21, 2651–2659. [Google Scholar] [CrossRef]
- Liu, C.; Dai, Z.; Zhang, J.; Jin, Y.; Li, D.; Sun, C. Two-Dimensional boron sheets as Metal-Free catalysts for hydrogen evolution reaction. J. Phys. Chem. C 2018, 122, 19051–19055. [Google Scholar] [CrossRef]
- Ledwaba, K.; Karimzadeh, S.; Jen, T.-C. Emerging borophene two-dimensional nanomaterials for hydrogen storage. Mater. Today Sustain. 2023, 22, 100412. [Google Scholar] [CrossRef]
- Ajmal, S.; Huang, J.; Singh, M.; Kumar, A.; Guo, J.; Tabish, M.; Mushtaq, M.A.; Alam, M.M.; Song, X.; Yasin, G. Realizing Electrochemical Energy Conversion and Storage with Borophene: Science, Engineering, Obstacles, and Future Opportunities. Small 2025, 21, e2411311. [Google Scholar] [CrossRef]
- Yildiz, O.G.; Can, A.C.; Peighambardoust, N.S.; Aydemir, U. From synthesis to functionality: Borophene’s transformative potential in Next—Generation electrocatalysis and battery applications. Small Struct. 2025, 2025. [Google Scholar] [CrossRef]
- Pratihar, B.; Jana, A.; De, A.K.; De, S. 2D boron nanosheets for photo- and electrocatalytic applications. ChemCatChem 2024, 16, e202301527. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Penev, E.S.; Yakobson, B.I. Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 2017, 27, 1605059. [Google Scholar] [CrossRef]
- Lherbier, A.; Botello-Méndez, A.R.; Charlier, J.-C. Electronic and optical properties of pristine and oxidized borophene. 2D Mater. 2016, 3, 045006. [Google Scholar] [CrossRef]
- Piazza, Z.A.; Hu, H.-S.; Li, W.-L.; Zhao, Y.-F.; Li, J.; Wang, L.-S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Gao, G.; Yakobson, B.I. Two-Dimensional boron monolayers mediated by metal substrates. Angew. Chem. Int. Ed. 2015, 54, 13022–13026. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, P.; Sahu, T.K.; Bhushan, R.; Yamijala, S.S.; Late, D.J.; Kumar, P.; Vinu, A. Freestanding Borophene and its hybrids. Adv. Mater. 2019, 31, e1900353. [Google Scholar] [CrossRef]
- Mazaheri, A.; Javadi, M.; Abdi, Y. Chemical vapor deposition of Two-Dimensional boron sheets by thermal decomposition of diborane. ACS Appl. Mater. Interfaces 2021, 13, 8844–8850. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Kong, L.; Gou, J.; Li, W.; Sheng, S.; Yang, S.; Cheng, P.; Li, H.; Wu, K.; Chen, L. Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 2017, 1, 021001. [Google Scholar] [CrossRef]
- Li, W.; Kong, L.; Chen, C.; Gou, J.; Sheng, S.; Zhang, W.; Li, H.; Chen, L.; Cheng, P.; Wu, K. Experimental realization of honeycomb borophene. Sci. Bull. 2018, 63, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, N.A.; Lyalin, A.; Taketsugu, T.; Vinogradov, A.S.; Preobrajenski, A. Single-Phase Borophene on Ir(111): Formation, Structure, and Decoupling from the Support. ACS Nano 2019, 13, 14511–14518. [Google Scholar] [CrossRef]
- Tai, G.; Hu, T.; Zhou, Y.; Wang, X.; Kong, J.; Zeng, T.; You, Y.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem. Int. Ed. 2015, 54, 15473–15477. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Quiceno, J.C.; Schleder, G.R.; Marinho, E.; Fazzio, A. Adsorption of 3d, 4d, and 5dtransition metal atoms onβ12—Borophene. J. Phys. Condens. Matter 2017, 29, 305302. [Google Scholar] [CrossRef]
- Wang, X.; Wu, R.; Tian, P.; Yan, Y.; Gao, Y.; Xuan, F. Borophene nanoribbons via strain Engineering for the Hydrogen Evolution Reaction: A First-Principles Study. J. Phys. Chem. C 2021, 125, 16955–16962. [Google Scholar] [CrossRef]
- Kordkheili, S.A.H.; Moshrefzadeh-Sani, H. Mechanical properties of double-layered graphene sheets. Comput. Mater. Sci. 2013, 69, 335–343. [Google Scholar] [CrossRef]
- Wang, H.; Li, Q.; Gao, Y.; Miao, F.; Zhou, X.-F.; Wan, X.G. Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability. New J. Phys. 2016, 18, 073016. [Google Scholar] [CrossRef]
- Zhou, H.; Cai, Y.; Zhang, G.; Zhang, Y.-W. Superior lattice thermal conductance of single-layer borophene. npj 2D Mater. Appl. 2017, 1, 14. [Google Scholar] [CrossRef]
- Liu, G.; Wang, H.; Gao, Y.; Zhou, J.; Wang, H. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations. Phys. Chem. Chem. Phys. 2016, 19, 2843–2849. [Google Scholar] [CrossRef]
- S Sun, H.; Li, Q.; Wan, X.G. First-principles study of thermal properties of borophene. Phys. Chem. Chem. Phys. 2016, 18, 14927–14932. [Google Scholar] [CrossRef]
- Xiao, H.; Cao, W.; Ouyang, T.; Guo, S.; He, C.; Zhong, J. Lattice thermal conductivity of borophene from first principle calculation. Sci. Rep. 2017, 7, srep45986. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; He, J.; Tang, Q.; Zhong, C.; Ding, G. Review of thermal transport and electronic properties of borophene. Chin. Phys. B 2018, 27, 036303. [Google Scholar] [CrossRef]
- Chand, H.; Kumar, A.; Krishnan, V. Borophene and Boron—Based Nanosheets: Recent advances in synthesis strategies and applications in the field of environment and energy. Adv. Mater. Interfaces 2021, 8, 2100045. [Google Scholar] [CrossRef]
- Li, C.; Tareen, A.K.; Long, J.; Iqbal, M.; Ahmad, W.; Khan, M.F.; Sun, J.; Ye, Z.; Khan, U.; Nairan, A.; et al. Two dimensional borophene nanomaterials: Recent developments for novel renewable energy storage applications. Prog. Solid State Chem. 2023, 71, 100416. [Google Scholar] [CrossRef]
- Preobrajenski, A.B.; Lyalin, A.; Taketsugu, T.; Vinogradov, N.A.; Vinogradov, A.S. Honeycomb boron on Al(111): From the concept of borophene to the Two-Dimensional boride. ACS Nano 2021, 15, 15153–15165. [Google Scholar] [CrossRef]
- Shao, L.; Li, Y.; Yuan, Q.; Li, M.; Du, Y.; Zeng, F.; Ding, P.; Ye, H. Effects of strain on mechanical and electronic properties of borophene. Mater. Res. Express 2017, 4, 045020. [Google Scholar] [CrossRef]
- Kiraly, B.; Liu, X.; Wang, L.; Zhang, Z.; Mannix, A.J.; Fisher, B.L.; Yakobson, B.I.; Hersam, M.C.; Guisinger, N.P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816–3822. [Google Scholar] [CrossRef]
- Tai, G.; Xu, M.; Hou, C.; Liu, R.; Liang, X.; Wu, Z. Borophene Nanosheets as High-Efficiency Catalysts for the Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2021, 13, 60987–60994. [Google Scholar] [CrossRef]
- Abdi, Y.; Mazaheri, A.; Hajibaba, S.; Darbari, S.; Rezvani, S.J.; Di Cicco, A.; Paparoni, F.; Rahighi, R.; Gholipour, S.; Rashidi, A.; et al. A Two-Dimensional Borophene Supercapacitor. ACS Mater. Lett. 2022, 4, 1929–1936. [Google Scholar] [CrossRef]
- Guo, Z.; Lin, H.; Zhang, H.; Tian, Y.; Chen, Y.; Chen, J.; Deng, S.; Liu, F. Low-Pressure CVD Synthesis of Tetragonal Borophene Single-Crystalline Sheets with High Ambient Stability. Cryst. Growth Des. 2023, 23, 4506–4513. [Google Scholar] [CrossRef]
- Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R.Y.; Tsang, S.H.; Teo, E.H.T. Scalable production of Few-Layer boron sheets by Liquid-Phase exfoliation and their superior supercapacitive performance. ACS Nano 2018, 12, 1262–1272. [Google Scholar] [CrossRef]
- Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.; Asadi, M.; Tuschel, D.; Indacochea, J.E.; Klie, R.F.; Salehi-Khojin, A. High-Quality Black Phosphorus atomic layers by Liquid-Phase exfoliation. Adv. Mater. 2015, 27, 1887–1892. [Google Scholar] [CrossRef]
- Ji, X.; Kong, N.; Wang, J.; Li, W.; Xiao, Y.; Gan, S.T.; Zhang, Y.; Li, Y.; Song, X.; Xiong, Q.; et al. A novel Top-Down synthesis of ultrathin 2D boron nanosheets for multimodal Imaging-Guided cancer therapy. Adv. Mater. 2018, 30, e1803031. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.; Liu, C.; Xu, Y.; Tareen, A.K.; Khan, K.; Wageh, S.; Al-Hartomy, O.A.; Al-Sehemi, A.G.; Zhang, H.; et al. Borophene-based mixed-dimensional van der waals heterojunctions for high-performance self-powered photodetector. Appl. Surf. Sci. 2022, 611, 155668. [Google Scholar] [CrossRef]
- Xie, Z.; Duo, Y.; Fan, T.; Zhu, Y.; Feng, S.; Li, C.; Guo, H.; Ge, Y.; Ahmed, S.; Huang, W.; et al. Light-induced tumor theranostics based on chemical-exfoliated borophene. Light Sci. Appl. 2022, 11, 324. [Google Scholar] [CrossRef]
- Ayodhya, D.; Veerabhadram, G. A brief review on synthesis, properties and lithium-ion battery applications of borophene. FlatChem 2019, 19, 100150. [Google Scholar] [CrossRef]
- Omidvar, A. Borophene: A novel boron sheet with a hexagonal vacancy offering high sensitivity for hydrogen cyanide detection. Comput. Theor. Chem. 2017, 1115, 179–184. [Google Scholar] [CrossRef]
- Ranjan, P.; Lee, J.M.; Kumar, P.; Vinu, A. Borophene: New sensation in Flatland. Adv. Mater. 2020, 32, 2000531. [Google Scholar] [CrossRef]
- Yadav, G.M.; Bajre, W.K.; Mayilswamy, N.; Kandasubramanian, B. Alkali/transition metal decorated borophene in hydrogen storage through adsorption: A review. Hybrid Adv. 2024, 5, 100149. [Google Scholar] [CrossRef]
- Sarma, N.; Das, H.; Saikia, P. Borophene: The frontier of Next-Generation sensor applications. ACS Sens. 2025, 10, 622–641. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Ma, Z.; Bian, B.; Liao, B. Electronic and optical properties of MoSSe/borophene heterojunctions with the modulation of electric field and vacancy defects. Mater. Sci. Eng. B 2023, 300, 117137. [Google Scholar] [CrossRef]
- Li, Z.; Pandey, G.; Bandyopadhyay, A.; Awasthi, K.; Kennedy, J.V.; Kumar, P.; Vinu, A. Cryo-Exfoliation Synthesis of Borophene and its Application in Wearable Electronics. Adv. Sci. 2025, 12, e2502257. [Google Scholar] [CrossRef]
- Hwang, J.; Jhe, W. Advanced progress on tip-enhanced Raman spectroscopy and its applications. Jpn. J. Appl. Phys. 2025, 64, 040801. [Google Scholar] [CrossRef]
- Madapu, K.K.; Bhuyan, C.A.; Dhara, S. Probing near-field heating effects on monolayer MoS2 photoluminescence via tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 2025, 126, 123101. [Google Scholar] [CrossRef]
- Sheng, S.; Wu, J.-B.; Cong, X.; Zhong, Q.; Li, W.; Hu, W.; Gou, J.; Cheng, P.; Tan, P.-H.; Chen, L.; et al. Raman Spectroscopy of Two-Dimensional Borophene Sheets. ACS Nano 2019, 13, 4133–4139. [Google Scholar] [CrossRef]
- Tang, H.; Ismail-Beigi, S. Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures. Phys. Rev. B 2009, 80, 134113. [Google Scholar] [CrossRef]
- Bi, T.; Zhang, J.; Wang, M.; Wang, L.; Chen, J.; Hu, S.; Chen, C.; Wang, H. Nickel foam deposited with borophene sheets used as a self-supporting binder-free anode for lithium-ion batteries. CrystEngComm 2023, 25, 3391–3402. [Google Scholar] [CrossRef]
- Lv, Z.Q.; Zhang, R.H.; Dong, F.; Wang, B.; Wang, Z.H.; Fu, W.T. Atomistic study on phase stability and electronic structures of Z phase CrNbNx (x=1, 2, 3). J. Alloys Compd. 2014, 598, 89–94. [Google Scholar] [CrossRef]
- Faghihnasiri, M.; Jafari, H.; Ramazani, A.; Shabani, M.; Estalaki, S.M.; Larson, R.G. Nonlinear elastic behavior and anisotropic electronic properties of two-dimensional borophene. J. Appl. Phys. 2019, 125, 145107. [Google Scholar] [CrossRef]
- Yan, X.; Wang, S.; Sun, Y.; Liu, Y.; Wang, Y.; Yang, G. Semiconducting Bilayer Borophene with High Carrier Mobility. J. Phys. Chem. Lett. 2023, 14, 9698–9704. [Google Scholar] [CrossRef]
- Yang, M.; Jin, H.; Gui, R. Ag+-doped boron quantum dots with enhanced stability and fluorescence enabling versatile practicality in visual detection, sensing, imaging and photocatalytic degradation. J. Colloid Interface Sci. 2023, 639, 49–58. [Google Scholar] [CrossRef]
- Qureshi, A.H.; Wang, L.; Niu, X.; Yao, X.; Wang, B.; Zhang, X. Structures and Stabilities of Two-Dimensional Boron Sheets with Point Defects. J. Phys. Chem. C 2024, 128, 7669–7678. [Google Scholar] [CrossRef]
- Jugovac, M.; Cojocariu, I.; Brondin, C.A.; Crotti, A.; Petrović, M.; Bonetti, S.; Locatelli, A.; Menteş, T.O. Coupling borophene to graphene in Air-Stable heterostructures. Adv. Electron. Mater. 2023, 9, 2300136. [Google Scholar] [CrossRef]
- Radatović, B.; Jadriško, V.; Kamal, S.; Kralj, M.; Novko, D.; Vujičić, N.; Petrović, M. Macroscopic Single-Phase monolayer borophene on arbitrary substrates. ACS Appl. Mater. Interfaces 2022, 14, 21727–21737. [Google Scholar] [CrossRef]
- Li, Q.; Kolluru, V.S.C.; Rahn, M.S.; Schwenker, E.; Li, S.; Hennig, R.G.; Darancet, P.; Chan, M.K.Y.; Hersam, M.C. Synthesis of borophane polymorphs through hydrogenation of borophene. Science 2021, 371, 1143–1148. [Google Scholar] [CrossRef]
- Gu, Q.; Lin, H.; Si, C.; Wang, Z.; Wang, A.; Liu, F.; Li, B.; Yang, B. Tuning the Active Oxygen Species of Two-Dimensional Borophene Oxide toward Advanced Metal-Free Catalysis. ACS Nano 2024, 18, 30574–30583. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Uddin, M.M.K.; Shuvho, M.B.A.; Rana, M.; Hossain, N. A novel temperature dependent method for borophene synthesis. Appl. Surf. Sci. Adv. 2022, 11, 100308. [Google Scholar] [CrossRef]
- Omambac, K.M.; Petrović, M.; Bampoulis, P.; Brand, C.; Kriegel, M.A.; Dreher, P.; Janoschka, D.; Hagemann, U.; Hartmann, N.; Valerius, P.; et al. Segregation-Enhanced epitaxy of borophene on IR(111) by thermal decomposition of borazine. ACS Nano 2021, 15, 7421–7429. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, J.; Yang, Z.; Xu, L.-C.; Xue, L.; Liu, R.; Liu, X. Theoretical study of the line defect in χ3-borophene: Structures, electronic properties, direct-current and alternating-current transport properties. Appl. Surf. Sci. 2022, 608, 155033. [Google Scholar] [CrossRef]
- Sundén, B. Hydrogen, Batteries and Fuel Cells; Academic Press: Cambridge, MA, USA, 2019; pp. 1–13. [Google Scholar]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Serrano, E.; Rus, G.; García-Martínez, J. Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 2009, 13, 2373–2384. [Google Scholar] [CrossRef]
- Wang, K.; Choyal, S.; Schultz, J.F.; McKenzie, J.; Li, L.; Liu, X.; Jiang, N. Borophene: Synthesis, Chemistry, and electronic Properties. ChemPlusChem 2024, 89, e202400333. [Google Scholar] [CrossRef]
- Li, X.; Kutana, A.; Penev, E.S.; Yakobson, B.I. Limits of Hydrogen-Boosted superconductivity in Borophene. J. Phys. Chem. C 2023, 128, 483–488. [Google Scholar] [CrossRef]
- Can, S.; Kuru, D.; Kuru, C. Hydrogen evolution reaction activity of electrochemically exfoliated borophene. J. Nanoparticle Res. 2024, 26, 183. [Google Scholar] [CrossRef]
- Siddharthan, E.E.; Ghosh, S.; Thapa, R. Bond Exchange Mechanism: Unveiling the Volmer–Tafel pathway and an electronic descriptor for predicting hydrogen evolution reaction activity of borophene. ACS Appl. Energy Mater. 2023, 6, 8941–8948. [Google Scholar] [CrossRef]
- Yu, E.; Pan, Y. Catalytic properties of borophene/MoS2 heterojunctions for hydrogen evolution reaction under different stacking conditions. J. Mater. Chem. A 2022, 10, 24866–24876. [Google Scholar] [CrossRef]
- Vishnoi, P.; Pramoda, K.; Gupta, U.; Chhetri, M.; Balakrishna, R.G.; Rao, C.N.R. Covalently Linked Heterostructures of Phosphorene with MoS2/MoSe2 and Their Remarkable Hydrogen Evolution Reaction Activity. ACS Appl. Mater. Interfaces 2019, 11, 27780–27787. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Vorob’ev, A.S. Electronic and mechanical properties of silicene after nuclear transmutation doping with phosphorus. J. Mater. Sci. 2020, 55, 11367–11381. [Google Scholar] [CrossRef]
- Saad, A.; Liu, D.; Wu, Y.; Song, Z.; Li, Y.; Najam, T.; Zong, K.; Tsiakaras, P.; Cai, X. Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B Environ. 2021, 298, 120529. [Google Scholar] [CrossRef]
- Zeng, X.; Jing, Y.; Gao, S.; Zhang, W.; Zhang, Y.; Liu, H.; Liang, C.; Ji, C.; Rao, Y.; Wu, J.; et al. Hydrogenated borophene enabled synthesis of multielement intermetallic catalysts. Nat. Commun. 2023, 14, 7414. [Google Scholar] [CrossRef]
- Wenelska, K.; Dymerska, A.; Mijowska, E. Promotion of borophene/NiO-based electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2023, 476, 146714. [Google Scholar] [CrossRef]
- Zielinkiewicz, K.; Leniec, G.; Mijowska, E. Porous borophene/NiO with lattice defects as a superior electrocatalyst for the oxygen evolution reaction. Int. J. Hydrogen Energy 2025, 123, 11–22. [Google Scholar] [CrossRef]
- Maślana, K.; Chen, X.; Mijowska, E. Highly active and robust electrocatalyst based on nickel phosphide supported by Borophene for oxygen evolution reaction. ACS Appl. Energy Mater. 2024, 7, 8321–8332. [Google Scholar] [CrossRef]
- Dymerska, A.G.; Leniec, G.; Mijowska, E. Electrocatalytic water splitting by bifunctional Zircon-doped borophene. Appl. Surf. Sci. 2024, 684, 161851. [Google Scholar] [CrossRef]
- Yu, F.-Y.; Lang, Z.-L.; Yin, L.-Y.; Feng, K.; Xia, Y.-J.; Tan, H.-Q.; Zhu, H.-T.; Zhong, J.; Kang, Z.-H.; Li, Y.-G. Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat. Commun. 2020, 11, 490. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, L.; Zhang, W.; Zhang, J.; Yuan, Y. Ca-decorated borophene as potential candidates for hydrogen storage: A first-principle study. Int. J. Hydrogen Energy 2017, 42, 20036–20045. [Google Scholar] [CrossRef]
- Ji, Y.; Dong, H.; Li, Y. Theoretical predictions on Li-Decorated borophenes as promising hydrogen storage materials. ChemistrySelect 2017, 2, 10304–10309. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Du, H.; Yuan, Y.; Qu, H.; Zou, M. First-principles investigation on hydrogen storage performance of Li, Na and K decorated borophene. Appl. Surf. Sci. 2017, 427, 1030–1037. [Google Scholar] [CrossRef]
- Dong, H.; Hou, T.; Lee, S.-T.; Li, Y. New Ti-decorated B40 fullerene as a promising hydrogen storage material. Sci. Rep. 2015, 5, srep09952. [Google Scholar] [CrossRef]
- Er, S.; De Wijs, G.A.; Brocks, G. DFT study of Planar Boron Sheets: A new template for hydrogen Storage. J. Phys. Chem. C 2009, 113, 18962–18967. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Yang, G. Ultrahigh-Capacity molecular hydrogen storage of a Lithium-Decorated boron monolayer. J. Phys. Chem. C 2015, 119, 19681–19688. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Wang, H.; Zhang, M.; Yuan, L.; Zhang, C. Li-Decorated Β12-Borophene as Potential Candidates for Hydrogen Storage: A First-Principle Study. Materials 2017, 10, 1399. [Google Scholar] [CrossRef]
- Wang, J.; Du, Y.; Sun, L. Ca-decorated novel boron sheet: A potential hydrogen storage medium. Int. J. Hydrogen Energy 2016, 41, 5276–5283. [Google Scholar] [CrossRef]
- Tang, X.; Gu, Y.; Kou, L. Theoretical investigation of calcium-decorated β12 boron sheet for hydrogen storage. Chem. Phys. Lett. 2018, 695, 211–215. [Google Scholar] [CrossRef]
- Baraiya, B.A.; Som, N.N.; Mankad, V.; Wu, G.; Wang, J.; Jha, P.K. Nitrogen-decorated borophene: An empowering contestant for hydrogen storage. Appl. Surf. Sci. 2020, 527, 146852. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, X. Hydrogen adsorption property of Na-decorated boron monolayer: A first principles investigation. Phys. E Low-Dimens. Syst. Struct. 2018, 107, 170–176. [Google Scholar] [CrossRef]
- Wen, T.Z.; Xie, A.Z.; Li, J.L.; Yang, Y.H. Novel Ti-decorated borophene χ3 as potential high-performance for hydrogen storage medium. Int. J. Hydrogen Energy 2020, 45, 29059–29069. [Google Scholar] [CrossRef]
- Hou, C.; Tai, G.; Wu, Z.; Hao, J. Borophene: Current status, challenges and opportunities. ChemPlusChem 2020, 85, 2186–2196. [Google Scholar] [CrossRef]
Precursor | Substrate/Medium | Synthesis Time | T [°C] | Phase | BP Size (Thickness and Size) | ||
---|---|---|---|---|---|---|---|
Bottom–Up Methods | MBE | [1] B | Ag (111) | N/A | 550 | 2-Pmmn | thk = 0.38 nm l = 100 nm |
[2] B | Ag (111) | N/A | 300 | β12 and χ3 | thk = 0.44 nm l = 20 nm | ||
[40] B | Al (111) | N/A | 230 | Honeycomb | thk = 230 pm l = 100 nm | ||
[59] B | Au (111) | 3 h | 550 | ν1/12 | thk= 0.44 nm l = 5 nm | ||
CVD | [60] NaBH4 | C cloth | 30 min | 700 | α’ | N/A | |
[61] B2H6 | Al-coated Si | 1 h | 560 | χ3 and β12 | thk = N/A A2 = 6 μm2 | ||
[62] B/B2O3 | Cu foil | 1 h | 1000 | tetragonal | thk = 15 nm l = 1 μm | ||
Top–Down Methods | LPE | [63] B | DMF | 4 h | RT | β-rhombohedral | thk =1.8 nm l = 200 nm |
[65] B | NMP/EtOH | 5 h | RT | β-rhombohedral | thk = 3 nm l = 100 nm | ||
[66] B | NMP | 76 h | 10 | β-rhombohedral | thk = 5 nm l = 5 nm | ||
CE | [67] AlB2 | HCl | N/A | RT | β12 and χ3 | thk = 4 nm l = 600 nm |
Material | HER Activity Prediction and Advances |
---|---|
Borophene | Theoretically predicted to be active; experimental studies revealed intrinsic activity and enhanced electrocatalytic activity. |
Graphene | Due to its inert surface, HER activity is limited and can be carried out by using the 2D material as a support or by doping [99]. |
MoS2 | Although presented as a promising HER catalyst, for applicability combination with other materials must be performed [100]. |
Phosphorene | Poor HER activity that has only been reported by the formation of heterostructures [100]. |
Silicene | Lack of studies oriented to HER, although modification by doping or surface modification has demonstrated to modify its electronic and structural properties [101]. |
Metal Added | Borophene Phase | Adsorption Energy | Hydrogen Storage Capacity |
---|---|---|---|
eV/H2 | wt.% | ||
Li | α [113] | 0.11 | 10.75 |
2pmmn [114] | 0.15 | 6.8 | |
χ3 [110] | 10.39 | 10.79 | |
β12 [115] | 0.22 | 10.85 | |
Ca | α [116] | 0.19 | 12.68 |
2pmmn [109] | 0.11 | 7.6 | |
χ3 [113] | 0.23 | 7.2 | |
β12 [117] | 0.24 | 9.5 | |
N | α [118] | 0 | 6.22 |
Na | α [111] | 0.11 | 9 |
2pmmn [119] | 0.007 | 8.36 | |
K | α [111] | 0.06 | 2.36 |
Ti | χ3 [120] | 0.199 | 15.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Vázquez, E.F.; Hernández-Rodríguez, Y.M.; Solorza-Feria, O.; Cigarroa-Mayorga, O.E. Borophene: Synthesis, Properties and Experimental H2 Evolution Potential Applications. Crystals 2025, 15, 753. https://doi.org/10.3390/cryst15090753
Vázquez-Vázquez EF, Hernández-Rodríguez YM, Solorza-Feria O, Cigarroa-Mayorga OE. Borophene: Synthesis, Properties and Experimental H2 Evolution Potential Applications. Crystals. 2025; 15(9):753. https://doi.org/10.3390/cryst15090753
Chicago/Turabian StyleVázquez-Vázquez, Eric Fernando, Yazmín Mariela Hernández-Rodríguez, Omar Solorza-Feria, and Oscar Eduardo Cigarroa-Mayorga. 2025. "Borophene: Synthesis, Properties and Experimental H2 Evolution Potential Applications" Crystals 15, no. 9: 753. https://doi.org/10.3390/cryst15090753
APA StyleVázquez-Vázquez, E. F., Hernández-Rodríguez, Y. M., Solorza-Feria, O., & Cigarroa-Mayorga, O. E. (2025). Borophene: Synthesis, Properties and Experimental H2 Evolution Potential Applications. Crystals, 15(9), 753. https://doi.org/10.3390/cryst15090753