Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,220)

Search Parameters:
Keywords = composite modulus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14199 KB  
Article
Synthesis and Fabrication of Dialdehyde Cellulose/PVA Films Incorporating Carbon Quantum Dots for Active Packaging Applications
by Tanpong Chaiwarit, Rangsan Panyathip, Sastra Yuantrakul, Kwanjit Duangsonk, Pattaraporn Panraksa, Pornchai Rachtanapun, Kittisak Jantanasakulwong and Pensak Jantrawut
Polymers 2025, 17(17), 2370; https://doi.org/10.3390/polym17172370 (registering DOI) - 30 Aug 2025
Abstract
Active packaging supports sustainable development by extending food shelf life and reducing spoilage, contributing to global food security. In this study, cellulose dialdehyde was synthesized and blended with polyvinyl alcohol in varying ratios to produce composite films. The incorporation of dialdehyde cellulose into [...] Read more.
Active packaging supports sustainable development by extending food shelf life and reducing spoilage, contributing to global food security. In this study, cellulose dialdehyde was synthesized and blended with polyvinyl alcohol in varying ratios to produce composite films. The incorporation of dialdehyde cellulose into films tended to increase puncture strength and Young’s modulus, decrease elongation, reduce water solubility, and enhance resistance to water vapor transmission because of crosslinking. Carbon quantum dots were subsequently incorporated into composite films to enhance their antibacterial property. This represents a novel combination of a natural bio-based crosslinker and fluorescent nanomaterials in a single packaging system. Carbon quantum dots were synthesized by an electrochemical method and incorporated as functional agents. The addition of carbon quantum dots influenced the mechanical properties of the films due to interactions between polymers and carbon quantum dots. This interaction also slightly reduced the antibacterial effectiveness of the films, consisting of dialdehyde cellulose and PVA in ratios of 3:1 and 4:0. Nevertheless, the composite films maintained sufficient antimicrobial activity against common foodborne bacteria, including Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium. Overall, the findings demonstrate that multifunctional material made from dialdehyde cellulose, polyvinyl alcohol, and carbon quantum dots are a promising alternative to conventional plastic packaging. Full article
(This article belongs to the Section Polymer Applications)
16 pages, 2040 KB  
Article
Acoustic Emission and Infrared Radiation Temperature Characteristics of Coal with Varying Bedding Planes Under Uniaxial Compression
by Yang Wu, Bin Liu, Shirui Wang and Bo Pang
Appl. Sci. 2025, 15(17), 9554; https://doi.org/10.3390/app15179554 (registering DOI) - 30 Aug 2025
Abstract
As a core structure in coal mine underground reservoirs, the coal pillar dams’ stability is susceptible to the orientation of coal bedding planes. This study examines the deformation characteristics, acoustic emission (AE) evolution, and infrared radiation temperature (IRT) response of coal specimens with [...] Read more.
As a core structure in coal mine underground reservoirs, the coal pillar dams’ stability is susceptible to the orientation of coal bedding planes. This study examines the deformation characteristics, acoustic emission (AE) evolution, and infrared radiation temperature (IRT) response of coal specimens with varying bedding angles (0°, 30°, 60°, 90°), investigating microscopic failure mechanisms and AE-IRT correlations. The results show that compressive strength and elastic modulus follow a V-shaped trend with increasing bedding angle, initially decreasing before rising. The proportion of low-amplitude events (40–60 dB) increases, while the higher-amplitude (>60 dB) AE signals decrease with the bedding angle. The AE b-values increase with the bedding angles. Mean IRT temperatures exhibit an overall increasing trend with significant fluctuations, and fluctuation amplitudes display an N-shaped pattern. Microscopically, all specimens undergo tensile–shear composite failure, but shear failure contribution varies markedly: 30° specimens show the highest shear proportion, while 60° specimens show the lowest. There is a positive correlation between AE and IRT. The correlation coefficient (γ) is relatively low at 0°, but it is higher at 30°, 60°, and 90°. This research provides a theoretical underpinning for optimizing the design and stability evaluation of coal mine underground reservoirs. Full article
(This article belongs to the Section Acoustics and Vibrations)
22 pages, 4840 KB  
Article
Machine Learning-Enhanced Nanoindentation for Characterizing Micromechanical Properties and Mineral Control Mechanisms of Conglomerate
by Yong Guo, Wenbo Zhang, Pengfei Li, Yuxuan Zhao, Zongjie Mu and Zhehua Yang
Appl. Sci. 2025, 15(17), 9541; https://doi.org/10.3390/app15179541 (registering DOI) - 29 Aug 2025
Abstract
Conglomerate reservoirs present significant technical challenges during drilling operations due to their complex mineral composition and heterogeneous characteristics, yet the quantitative relationships between mineral composition and microscopic mechanical behavior remain poorly understood. To elucidate the variation patterns of conglomerate micromechanical properties and their [...] Read more.
Conglomerate reservoirs present significant technical challenges during drilling operations due to their complex mineral composition and heterogeneous characteristics, yet the quantitative relationships between mineral composition and microscopic mechanical behavior remain poorly understood. To elucidate the variation patterns of conglomerate micromechanical properties and their mineralogical control mechanisms, this study develops a novel multi-scale characterization methodology. This approach uniquely couples nanoindentation technology, micro-zone X-ray diffraction analysis, and machine learning algorithms to systematically investigate micromechanical properties of conglomerate samples from different regions. Hierarchical clustering algorithms successfully classified conglomerate micro-regions into three lithofacies categories with distinct mechanical differences: hard (elastic modulus: 81.90 GPa, hardness: 7.83 GPa), medium-hard (elastic modulus: 54.97 GPa, hardness: 3.87 GPa), and soft lithofacies (elastic modulus: 25.21 GPa, hardness: 1.15 GPa). Correlation analysis reveals that quartz (SiO2) content shows significant positive correlation with elastic modulus (r = 0.52) and hardness (r = 0.51), while clay minerals (r = −0.37) and plagioclase content (r = −0.48) exhibit negative correlations with elastic modulus. Mineral phase spatial distribution patterns control the heterogeneous characteristics of conglomerate micromechanical properties. Additionally, a random forest regression model successfully predicts mineral content based on hardness and elastic modulus measurements with high accuracy. These findings bridge the gap between microscopic mineral properties and macroscopic drilling performance, enabling real-time formation strength assessment and providing scientific foundation for optimizing drilling strategies in heterogeneous conglomerate formations. Full article
(This article belongs to the Section Energy Science and Technology)
15 pages, 1474 KB  
Article
Multiscale Structural Engineering of Cellulose Foams: Performance Characterization and Fiber Imaging
by Patricija Pevec, Urška Kavčič, Aleš Hladnik and Diana Gregor-Svetec
Polymers 2025, 17(17), 2355; https://doi.org/10.3390/polym17172355 - 29 Aug 2025
Abstract
The paper industry is always looking for possible solutions for new fiber-based products, such as protective and cushioning materials. These materials must be carefully designed to provide effective cushioning while also being lightweight to reduce transportation costs. Additionally, they need to offer protection [...] Read more.
The paper industry is always looking for possible solutions for new fiber-based products, such as protective and cushioning materials. These materials must be carefully designed to provide effective cushioning while also being lightweight to reduce transportation costs. Additionally, they need to offer protection from environmental and mechanical damage, besides having good processability to ensure proper buffering. The widely used protective and cushioning materials, such as plastic foams and expanded or extruded polystyrene, create significant disposal challenges. Therefore, there is increasing demand for biodegradable and sustainable materials for cushioning applications. The focus of our research was to develop fiber-based foams and investigate the influence of different compositions (hardwood and softwood) of cellulose fibers on the basic (mass, thickness, density) and mechanical properties (three-point bend test, tensile properties). Foams made entirely from short eucalyptus fibers (100S) exhibited the highest density (28.0 ± 0.34 kg/m3) and lowest thickness (38.82 ± 4.21 mm), resulting in superior tensile strength and elastic modulus but lower strain at break. In contrast, foams composed of long spruce fibers (100L) had the lowest density (19.0 ± 0.27 kg/m3) and highest thickness (58.52 ± 1.50 mm), with lower strength and stiffness but much higher ductility and porosity (confirmed by ~30% higher air permeability compared to 100S). Blended formulations demonstrated intermediate behavior, with the 50S50L foam showing a favorable balance of strength, stiffness, and flexibility. Visual analysis confirmed heterogeneous fiber distribution with localized agglomerates and compaction at the bottom layer due to casting. To further interpret the complex relationships within the dataset and uncover patterns, Principal Component Analysis (PCA) was applied to all experimental results. The findings of the research contribute to the broader understanding of how different fiber types and blends impact the performance of sustainable cellulose-based foams, with potential implications for the development of biodegradable packaging and lightweight construction materials. Full article
14 pages, 2959 KB  
Article
Research on Polyurethane-Stabilized Soils and Development of Quantitative Indicators for Integration into BIM-Based Project Planning
by Alina Zvierieva, Olga Borziak, Oleksii Dudin, Sergii Panchenko and Teresa Rucińska
Sustainability 2025, 17(17), 7781; https://doi.org/10.3390/su17177781 - 29 Aug 2025
Abstract
This research presents the results of studies on the physical and mechanical properties of the soil–polymer composites developed by the Scientific and Production Company “Special Polymer Technologies” SPT® by injecting polyurethane material into clay soils to strengthen the foundations of erected structures. [...] Read more.
This research presents the results of studies on the physical and mechanical properties of the soil–polymer composites developed by the Scientific and Production Company “Special Polymer Technologies” SPT® by injecting polyurethane material into clay soils to strengthen the foundations of erected structures. A novel method is proposed to determine the strain characteristics of these composites, embracing the preparation of model specimens in cylindrical containers with subsequent static and dynamic load testing. The results of static tests showed a significant increase in the strain modulus in comparison to that of the soil, resulting in soil stabilization due to a decrease in the initial content of moisture squeezed out of the modified soil. A coefficient of increase in the deformation modulus (KE) is introduced to quantitatively assess the soil stabilization efficiency. An original technique is also proposed for assessing composite durability, and it is based on analyzing the mass loss after cyclic wetting and drying. The proposed soil stabilization approach promotes and improves digital construction technologies such as Building Information Modeling (BIM) by enabling the accurate simulation and prediction of the behavior of loaded soil in foundation systems. The introduced quantifiable metrics can be integrated into Digital Twin- or BIM-based project planning tools, contributing to sustainability, safety, and reliability in modern construction practices. Full article
Show Figures

Figure 1

18 pages, 3388 KB  
Article
Analysis of Interfacial Properties in Flax Yarn-Reinforced Epoxy Resin Composites
by Xinlong Wang, Hongjun Li, Duncan Camilleri, B. Y. R. Surnam, Zhenyu Wu, Xiaoying Cheng, Lin Shi and Wenqi Lu
Fibers 2025, 13(9), 118; https://doi.org/10.3390/fib13090118 - 29 Aug 2025
Abstract
With the increasing demand for green materials, natural fiber-reinforced composites have garnered significant attention due to their environmental benefits and cost-effectiveness. However, the weak interfacial bonding between flax fibers and resin matrices limits their broader application. This study systematically investigates the interfacial properties [...] Read more.
With the increasing demand for green materials, natural fiber-reinforced composites have garnered significant attention due to their environmental benefits and cost-effectiveness. However, the weak interfacial bonding between flax fibers and resin matrices limits their broader application. This study systematically investigates the interfacial properties of single-ply and double-ply flax yarn-reinforced epoxy resin composites, focusing on interfacial shear strength (IFSS) and its influencing factors. Pull-out tests were conducted to evaluate the mechanical behavior of yarns under varying embedded lengths, while scanning electron microscopy (SEM) was employed to characterize interfacial failure modes. Critical embedded lengths were determined as 1.49 mm for single-ply and 2.71 mm for double-ply configurations. Results demonstrate that the tensile strength and elastic modulus of flax yarns decrease significantly with increasing gauge length. Single-ply yarns exhibit higher IFSS (30.90–32.03 MPa) compared to double-ply yarns (20.61–25.21 MPa), attributed to their tightly aligned fibers and larger interfacial contact area. Single-ply composites predominantly fail through interfacial debonding, whereas double-ply composites exhibit a hybrid failure mechanism involving interfacial separation, fiber slippage, and matrix fracture, caused by stress inhomogeneity from their multi-strand twisted structure. The study reveals that interfacial failure originates from the incompatibility between hydrophilic fibers and hydrophobic resin, coupled with stress concentration effects induced by the yarn’s multi-level hierarchical structure. These findings provide theoretical guidance for optimizing interfacial design in flax fiber composites to enhance load-transfer efficiency, advancing their application in lightweight, eco-friendly materials. Full article
Show Figures

Figure 1

25 pages, 4830 KB  
Article
Ecofriendly PEF- and PBF-Based Blends with Epoxidized Natural Rubber: Unraveling the Structure–Property Relationship
by Sandra Paszkiewicz, Konrad Walkowiak, Izabela Irska, Jakub Śmigielski, Elżbieta Piesowicz, Aleksander Hejna, Beata Dudziec and Mateusz Barczewski
Materials 2025, 18(17), 4040; https://doi.org/10.3390/ma18174040 - 28 Aug 2025
Abstract
Two series of environmentally friendly polymer blends of bio-based poly(ethylene 2,5 furanoate) (PEF) and poly(butylene 2,5 furanoate) (PBF) with epoxidized natural rubber (epNR) have been prepared. Both bio-based polyesters were synthesized from dimethyl furan-2,5-dicarboxylate (DMFDC) and 1,2-ethylene glycol (EG) or 1,4-butylene glycol (BG) [...] Read more.
Two series of environmentally friendly polymer blends of bio-based poly(ethylene 2,5 furanoate) (PEF) and poly(butylene 2,5 furanoate) (PBF) with epoxidized natural rubber (epNR) have been prepared. Both bio-based polyesters were synthesized from dimethyl furan-2,5-dicarboxylate (DMFDC) and 1,2-ethylene glycol (EG) or 1,4-butylene glycol (BG) by a two-stage melt polycondensation process. The miscibility of the components in the blend was assessed using calculations based on Hoy’s method. The chemical interactions, presence of functional groups, miscibility, and possible reactions or cross-linking between polyesters and epNR were analyzed by Fourier Transform Infrared Spectroscopy (FTIR). A significant influence of epNR addition on the melt flow index (MFI), limited viscosity number (LVN), and apparent cross-link density values was also demonstrated. Phase transition temperatures and associated thermal phenomena in polyester/epNR blends were evaluated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Oxidation onset temperature (OOT) tests were performed to obtain valuable information about the thermal-oxidative stability of the blends. Tensile tests revealed that the addition of epNR to PEF increases flexibility but at the same time reduces stiffness and tensile strength, especially at higher contents of epNR. In the case of PBF, a gradual decrease in tensile strength and elastic modulus is observed with increasing epNR content. Additionally, hardness tests showed that the addition of epNR leads to a decrease in hardness for both PEF- and PBF-based compositions. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

26 pages, 6652 KB  
Article
Advancing the Capability of Additively Manufactured Continuous Fibre-Reinforced Polymers for Structural Applications: The Effect of Nitrogen-Purging and Post-Annealing on the Tensile Performance
by Zizhao Peng, Jiahui Li, Yvonne Durandet, Antonella Sola, Adrian Trinchi, Phuong Tran, Wei Gao, Xuemei Liu and Dong Ruan
Polymers 2025, 17(17), 2314; https://doi.org/10.3390/polym17172314 - 27 Aug 2025
Viewed by 221
Abstract
Additively manufactured continuous fibre-reinforced polymers (CFRPs) offer promising mechanical properties for engineering applications, including aerospace and automotive load-bearing structures. However, challenges such as weak interlayer bonding and low strength compared to traditional composites remain. This paper presents an experimental investigation into the effects [...] Read more.
Additively manufactured continuous fibre-reinforced polymers (CFRPs) offer promising mechanical properties for engineering applications, including aerospace and automotive load-bearing structures. However, challenges such as weak interlayer bonding and low strength compared to traditional composites remain. This paper presents an experimental investigation into the effects of nitrogen (N2) purging during printing and thermal annealing after printing on the tensile performance of additively manufactured CFRPs. Tensile tests were conducted on Onyx specimens produced by material extrusion and reinforced with continuous carbon fibre filaments (CFF), glass fibre filaments (GFF), or Kevlar fibre filaments (KFF). Results showed that N2-purging and post-annealing had different effects on the tensile properties of various CFRPs. Particularly, N2-purging, post-annealing, and their combination enhanced both the Young’s modulus and ultimate tensile strength (UTS) of KFF/Onyx specimens. For GFF/Onyx specimens, both treatments had a minor effect on the Young’s modulus but enhanced UTS. CFF/Onyx specimens exhibited improved Young’s modulus with N2-purging, while both treatments reduced UTS. The different response of the CFRPs was associated with diverse governing failure mechanisms, as proved by microstructural and fracture surface inspection. Additionally, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses also revealed the thermal behaviour and crystal structures that influence the mechanical properties of CFRPs. Full article
Show Figures

Figure 1

14 pages, 5648 KB  
Article
Design and Fabrication of High-Temperature-Resistant Poly(4-methyl-1-pentene) Loaded with Tungsten and Boron Carbide Particles Against Neutron and Gamma Rays
by Ming Yu, Fan Luo, Xiaoling Li, Xianglei Chen and Zhirong Guo
Polymers 2025, 17(17), 2306; https://doi.org/10.3390/polym17172306 - 26 Aug 2025
Viewed by 273
Abstract
A novel high-temperature-resistant W-B4C-poly(4-methyl-1-pentene) (PMP) composite shielding material against neutron and gamma rays was developed and fabricated. Firstly, utilizing the 235U-induced fission spectrum as the source term, the compositional ratio of the W-B4C-PMP ternary composite was optimized using [...] Read more.
A novel high-temperature-resistant W-B4C-poly(4-methyl-1-pentene) (PMP) composite shielding material against neutron and gamma rays was developed and fabricated. Firstly, utilizing the 235U-induced fission spectrum as the source term, the compositional ratio of the W-B4C-PMP ternary composite was optimized using the genetic algorithm-based GENOCOPIII program coupled with MCNP simulations. Then, the composite was fabricated through coupling agent modification, melt mixing, and hot pressing. Finally, the effects of coupling modification and tungsten content on the thermomechanical properties of the composite were investigated. Results demonstrated that functional groups from the silane coupling agent KH550 were successfully grafted onto the filler surfaces. For composites containing 30 wt% modified B4C and 40 wt% modified W in the PMP matrix, the heat deflection temperature (HDT) increased by 18.5% and 19.1%, respectively, compared to their unmodified counterparts. The impact strength also improved by 31.6% and 5.0%, respectively. The variation trend of the composite’s modulus approximately followed the classical Einstein model, while its tensile strength and flexural strength conformed precisely to the model: σcσm=0.88Vf0.02. Thermal analysis indicated that the composites possessed a melting point exceeding 230 °C, and their thermal stability improved with increasing filler content. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 19785 KB  
Article
Generation of Randomly Inclined Fibers in the Representative Volume Element for Predicting the Elastic Modulus of Fiber-Reinforced Polymer Composites
by Menglong Shao and Songling Xue
Polymers 2025, 17(17), 2300; https://doi.org/10.3390/polym17172300 - 25 Aug 2025
Viewed by 746
Abstract
The representative volume element (RVE) is frequently used to forecast the mechanical properties of composites, where the distribution of fibers plays a significant role. This paper proposes a new RVE modeling method for unidirectional fiber-reinforced polymer (UD-FRP) composites, which takes into account the [...] Read more.
The representative volume element (RVE) is frequently used to forecast the mechanical properties of composites, where the distribution of fibers plays a significant role. This paper proposes a new RVE modeling method for unidirectional fiber-reinforced polymer (UD-FRP) composites, which takes into account the random distribution of fiber positions and inclinations. The fiber inclination in the RVE is normally or uniformly distributed. The suggested RVE model was validated using static tests and the fiber structure observed by micro-computed tomography (CT). The effects of fiber volume fraction and maximum fiber inclination on the elastic properties were investigated based on the proposed RVE model. The results indicate that the prediction of transverse properties is considerably impacted by fiber inclination in RVE, with uniformly distributed inclination having a more significant influence than normally distributed inclination. For the transverse Young’s modulus of UD-FRP, the predicted results of the proposed model and the models in the literature differed from the experimental results by 0.30% and 11.45%, respectively. For the in-plane shear modulus of UD-FRP, the predicted results of the proposed model and the models in the literature differed from the experimental results by 1.65% and 8.44%, respectively. Moreover, the fiber volume fraction has a significant effect on the elastic properties, and the maximum inclination of the fibers has a significant effect on the elastic properties except for the longitudinal Poisson’s ratio. The proposed RVE model in this paper can predict the elastic properties of composites more accurately. Full article
(This article belongs to the Special Issue Mechanical Behavior of Polymer Composites)
Show Figures

Graphical abstract

20 pages, 4388 KB  
Article
Investigation of Cryogenic Mechanical Performance of Epoxy Resin and Carbon Fibre-Reinforced Polymer Composites for Cryo-Compressed Hydrogen Storage Onboard Gas Vessels
by Liangliang Qi, Keqing Wang, Zhoutian Ge, Zhuangzhuang Cao, Peiyu Hu, Yuhang He, Sohail Yasin and Jianfeng Shi
Polymers 2025, 17(17), 2296; https://doi.org/10.3390/polym17172296 - 25 Aug 2025
Viewed by 367
Abstract
To address the brittle matrix failure frequently observed in filament-wound composite layers of onboard pressure vessels operating under cryogenic and high-pressure conditions, we studied a bisphenol-A epoxy resin (DGEBA) system modified with polyetheramine (T5000) and 3,4-Epoxycyclohexylmethyl 3′,4′-epoxycyclohexanecarboxylate (CY179). The curing and rheological behavior [...] Read more.
To address the brittle matrix failure frequently observed in filament-wound composite layers of onboard pressure vessels operating under cryogenic and high-pressure conditions, we studied a bisphenol-A epoxy resin (DGEBA) system modified with polyetheramine (T5000) and 3,4-Epoxycyclohexylmethyl 3′,4′-epoxycyclohexanecarboxylate (CY179). The curing and rheological behavior of the modified resin were first evaluated, revealing a favorable processing, with viscosity suitable for wet-filament winding. Subsequently, its coefficient of thermal expansion (CTE) and tensile properties were characterized over the 300 K–90 K range, demonstrating a linear increase in elastic modulus and tensile strength with decreasing temperature. Carbon fibre-reinforced polymer composites (CFRP) were then fabricated using this resin system, and both longitudinal and transverse tensile tests, along with microscopic fracture surface analyses, were conducted. The results showed that CFRP-0° specimens exhibited an initial increase followed by a decrease in elastic modulus with decreasing temperature, whereas CFRP-90° specimens demonstrated pronounced cryogenic strengthening, with tensile strength and modulus enhanced by 52.2% and 82.4%, respectively. The findings provide comprehensive properties for the studied resin system and its CFRP under room temperature (RT) to cryogenic conditions, offering a basis for the design and engineering of cryo-compressed hydrogen storage vessels. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

12 pages, 5061 KB  
Article
A Programmable Soft Electrothermal Actuator Based on a Functionally Graded Structure for Multiple Deformations
by Fan Bu, Feng Zhu, Zhengyan Zhang and Hanbin Xiao
Polymers 2025, 17(17), 2288; https://doi.org/10.3390/polym17172288 - 24 Aug 2025
Viewed by 367
Abstract
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, [...] Read more.
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, restricting their long-term stability and actuation versatility. In this study, we present a programmable soft electrothermal actuator based on a functionally graded structure composed of polydimethylsiloxane (PDMS)/multiwalled carbon nanotube (MWCNTs) composite material and an embedded EGaIn conductive circuit. Rheological and mechanical characterization confirms the enhancement of viscosity, modulus, and tensile strength with increasing MWCNTs content, confirming that the gradient structure improves mechanical performance. The device shows excellent actuation performance (bending angle up to 117°), fast response (8 s), and durability (100 cycles). The actuator achieves L-shaped, U-shaped, and V-shaped bending deformations through circuit pattern design, demonstrating precise programmability and reconfigurability. This work provides a new strategy for realizing programmable, multimodal deformation in soft systems and offers promising applications in adaptive robotics, smart devices, and human–machine interfaces. Full article
Show Figures

Figure 1

21 pages, 4351 KB  
Article
Sustainable PLA Composites Filled with Poaceae Fibers: Thermal, Structural, and Mechanical Properties
by Natalia Kubiak, Bogna Sztorch, Magdalena Kustosz, Miłosz Frydrych, Daria Pakuła, Marek Jałbrzykowski, Tobias Hartmann, Camilo Zopp, Lothar Kroll and Robert E. Przekop
Materials 2025, 18(17), 3952; https://doi.org/10.3390/ma18173952 - 23 Aug 2025
Viewed by 511
Abstract
The present study investigates the manufacturing and characterization of poly(lactic acid) (PLA)-based composites with raw and treated Poaceae, with loadings of 5, 10, and 20% wt. Before composite fabrication, the lignocellulosic fillers were analyzed using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), [...] Read more.
The present study investigates the manufacturing and characterization of poly(lactic acid) (PLA)-based composites with raw and treated Poaceae, with loadings of 5, 10, and 20% wt. Before composite fabrication, the lignocellulosic fillers were analyzed using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and microscopy to assess their chemical composition, thermal stability, and morphological features. Composites were prepared by melting PLA in a molten state with fillers, followed by injection molding. Comprehensive characterization of the obtained composites included microscopic analysis, melt flow index (MFI) testing, and differential scanning calorimetry (DSC), as well as mechanical tests (tensile and bending tests, impact test). The addition of Poaceae fibers to the PLA matrix significantly affected the mechanical and rheological properties of the composites. Incorporating 5% of cooked or alkalized fibers increased the flexural strength by 57% and 54%, respectively, compared to neat PLA. The modulus of elasticity for the composite with 20% alkalized fibers increased by as much as 35%. The fibers acted as nucleating agents, reducing the cold crystallization temperature (Tcc) by up to 15.6 °C, while alkaline residues contributed to an increased melt flow index (MFI). The conducted research provides a valuable basis and insights into the design of sustainable bio-based composites. Full article
(This article belongs to the Special Issue Mechanical Properties and Modeling of Structural Composites)
Show Figures

Figure 1

30 pages, 9001 KB  
Article
Laser-Induced Graphene on Biocompatible PDMS/PEG Composites for Limb Motion Sensing
by Anđela Gavran, Marija V. Pergal, Teodora Vićentić, Milena Rašljić Rafajilović, Igor A. Pašti, Marko V. Bošković and Marko Spasenović
Sensors 2025, 25(17), 5238; https://doi.org/10.3390/s25175238 - 22 Aug 2025
Viewed by 593
Abstract
The advancement of laser-induced graphene (LIG) has significantly enhanced the development of wearable and flexible electronic devices. Due to its exceptional physical, chemical, and electronic properties, LIG has emerged as a highly effective active material for wearable sensors. However, despite the wide range [...] Read more.
The advancement of laser-induced graphene (LIG) has significantly enhanced the development of wearable and flexible electronic devices. Due to its exceptional physical, chemical, and electronic properties, LIG has emerged as a highly effective active material for wearable sensors. However, despite the wide range of materials suitable as precursors for LIG, the scarcity of stretchable and biocompatible polymers amenable to laser graphenization has remained a persistent challenge. In this study, laser-induced graphene (LIG) was fabricated directly on biocompatible and flexible cross-linked PDMS/PEG (with Mn (PEG) = 400 g/mol) composites for the first time, enabling their application in wearable sensors. The addition of PEG compensates for the low carbon content in PDMS, enabling efficient laser graphenization. Laser parameters were systematically optimized to achieve high-quality graphene, and a comprehensive characterization with varying PEG content (10–40 wt.%) was conducted using multiple analytical techniques. Tensile tests revealed that incorporating PEG significantly enhanced elongation at break, reaching 237% for PDMS/40 wt.% PEG while reducing Young’s modulus to 0.25 MPa, highlighting the excellent flexibility of the substrate material. Surface analysis using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy demonstrated the formation of high-quality few-layer graphene with the fewest defects in PDMS/40 wt.% PEG composites. Nevertheless, the adhesion of electrical contacts to LIG that was directly induced on PDMS/PEG proved to be challenging. To overcome this challenge, we produced devices by means of laser induction on polyimide and transfer to PDMS/PEG. We demonstrate the practical utility of such devices by applying them to monitor limb motion in real time. The sensor showed a stable and repeatable piezoresistive response under multiple bending cycles. These results provide valuable insights into the fabrication of biocompatible LIG-based flexible sensors, paving the way for their broader implementation in medical and sports technologies. Full article
(This article belongs to the Special Issue Materials and Devices for Flexible Electronics in Sensor Applications)
Show Figures

Figure 1

27 pages, 3575 KB  
Article
Preparation of High-Strength and High-Rigidity Carbon Layer on Si/C Material Surface Using Solid–Liquid Coating Method
by Xiaoguang Zhang, Wei Wang and Juan Zhang
Nanomaterials 2025, 15(17), 1300; https://doi.org/10.3390/nano15171300 - 22 Aug 2025
Viewed by 392
Abstract
The application of silicon–carbon (Si/C) composite materials in lithium-ion batteries faces problems regarding volume expansion and surface defects. Although coating is a popular modification scheme in the market, the influence of carbon layer quality on the electrochemical performance of Si/C still needs to [...] Read more.
The application of silicon–carbon (Si/C) composite materials in lithium-ion batteries faces problems regarding volume expansion and surface defects. Although coating is a popular modification scheme in the market, the influence of carbon layer quality on the electrochemical performance of Si/C still needs to be studied. By comparing the carbon layers produced by solid-phase and liquid-phase coating methods, an innovative solid–liquid coating technology was proposed to prepare high-strength and high-stiffness carbon layers, and the effects of different coating processes on the physical, mechanical, and electrochemical properties of the materials were systematically studied. Through physical properties and electrochemical testing, it was found that the solid–liquid coating method (Si/C@Pitch+RGFQ) can form a carbon layer with the least defects and the highest density. Compared with solid-phase coating and liquid-phase coating, its specific surface area (SSA) and carbon increment are the lowest, and the surface carbon content and oxygen content are significantly reduced after solid–liquid coating. Mechanical performance tests show that the Young’s modulus of the carbon layer prepared by this method reaches 30.3 GPa, demonstrating excellent structural strength and elastic deformation ability. The first coulombic efficiency (ICE) of Si/C@Pitch+RGFQ reached 88.17%, the interface impedance (23.2 Ω) was the lowest, and the lithium-ion diffusion coefficient was significantly improved. At a rate of 0.1 C to 2 C, the capacity retention rate is excellent. After one hundred and a half-cell cycles, the remaining capacity is 1420.5 mAh/g, and the capacity retention rate reaches 92.4%. The full-cell test further proves that the material has a capacity retention rate of 82.3% and 81.3% after 1000 cycles at room temperature and high temperature (45 °C), respectively. At the same time, it has good rate performance and high-/low-temperature performance, demonstrating good commercial application potential. The research results provide a key basis for the optimized preparation of the surface carbon layer of Si/C composite materials and promote the practical application of high-performance silicon-based negative electrode materials. Full article
Show Figures

Figure 1

Back to TopTop