Generation of Randomly Inclined Fibers in the Representative Volume Element for Predicting the Elastic Modulus of Fiber-Reinforced Polymer Composites
Abstract
1. Introduction
2. Experiment
2.1. Specimen Preparation
2.2. Static Tests
2.3. Microscopic Observation
3. Micromechanical Model Predictions
3.1. Generation of Randomly Inclined Fibers
3.2. Finite Element Model of RVE
4. Results and Discussion
4.1. Prediction of Elastic Properties
4.2. Effect of Fiber Volume Fraction on Elastic Properties
4.3. Effect of Maximum Fiber Inclination on Elastic Properties
4.4. Interactive Effects of Fiber Volume Fractions and Maximum Fiber Inclination on Elastic Properties
5. Conclusions
- (1)
- The developed RVE model can accurately predict the elastic properties of UD-FRP, and the experimental results lie between those predicted by RVE with no fiber inclination and with fiber inclination normally distributed.
- (2)
- The elastic properties E11 and ν12 increase and decrease linearly with fiber volume fraction, respectively. The E22 (E33), G23, and G31 (G21) increase nonlinearly with fiber volume fraction. The ν21 (ν31) decreases and then stays constant with fiber volume fraction. The ν23 increases slightly and then decreases rapidly and linearly with fiber volume fraction.
- (3)
- The elastic properties E11 and ν23 decrease linearly with maximum fiber inclination, while E22 (E33) and ν21 (ν31) increase linearly. The G23 and G31 (G21) increase nonlinearly with maximum fiber inclination. The maximum fiber inclination has no effect on ν12.
- (4)
- Fiber inclination in the RVE has a significantly greater effect on transverse elastic properties than on longitudinal elastic properties. Moreover, for the prediction of elastic properties, uniformly distributed inclination has a more pronounced effect than normally distributed inclination.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RVE | Representative volume element |
CT | Computed tomography |
FRP | Fiber-reinforced polymer |
UD-FRP | Unidirectional FRP |
FE | Finite element |
PBC | Periodic boundary condition |
References
- Khan, F.; Hossain, N.; Mim, J.J.; Rahman, S.M.; Iqbal, M.J.; Billah, M.; Chowdhury, M.A. Advances of Composite Materials in Automobile Applications—A Review. J. Eng. Res. 2024, 13, 1001–1023. [Google Scholar] [CrossRef]
- Ozturk, F.; Cobanoglu, M.; Ece, R.E. Recent Advancements in Thermoplastic Composite Materials in Aerospace Industry. J. Thermoplast. Compos. Mater. 2024, 37, 3084–3116. [Google Scholar] [CrossRef]
- Samareh-Mousavi, S.S.; Taheri-Behrooz, F. A Novel Creep-Fatigue Stiffness Degradation Model for Composite Materials. Compos. Struct. 2020, 237, 111955. [Google Scholar] [CrossRef]
- Fame, C.M.; He, L.; Tam, L.-H.; Wu, C. Fatigue Damage Tolerance of Adhesively Bonded Pultruded GFRP Double-Strap Joints with Adhesion Defects. J. Compos. Constr. 2023, 27, 04022100. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L.-T.; Tam, L.-H.; Yan, L.; He, L. Effect of Bearing Length on Web Crippling Behavior of Pultruded GFRP Channel Section. Compos. Struct. 2020, 253, 112810. [Google Scholar] [CrossRef]
- Fazlali, B.; Lomov, S.V.; Swolfs, Y. Reducing Stress Concentrations in Static and Fatigue Tensile Tests on Unidirectional Composite Materials: A Review. Compos. Part B Eng. 2024, 273, 111215. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, Y. Damage Failure Mechanism of Unidirectional Fiber Reinforced SiCf/SiC Composites under Uniaxial Tension. Compos. Struct. 2023, 307, 116610. [Google Scholar] [CrossRef]
- Jiang, L.; Xiong, H.; Zeng, T.; Wang, J.; Xiao, S.; Yang, L. In-Situ Micro-CT Damage Analysis of Carbon and Carbon/Glass Hybrid Laminates under Tensile Loading by Image Reconstruction and DVC Technology. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107844. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, L.; Liu, F.; Zhang, J. A Micromechanical Model for Longitudinal Compressive Failure in Unidirectional Fiber Reinforced Composite. Results Phys. 2018, 10, 841–848. [Google Scholar] [CrossRef]
- Carraro, P.; Quaresimin, M. A Damage Based Model for Crack Initiation in Unidirectional Composites under Multiaxial Cyclic Loading. Compos. Sci. Technol. 2014, 99, 154–163. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Q.; Jiang, J.; Chatzigeorgiou, G.; Meraghni, F. Adaptive Deep Homogenization Theory for Periodic Heterogeneous Materials. Compos. Struct. 2024, 340, 118171. [Google Scholar] [CrossRef]
- Megnis, M. Micromechanics Based Modeling of Nonlinear Viscoplastic Response of Unidirectional Composite. Compos. Sci. Technol. 2003, 63, 19–31. [Google Scholar] [CrossRef]
- Papanicolaou, G.C.; Zaoutsos, S.P.; Cardon, A.H. Prediction of the Non-Linear Viscoelastic Response of Unidirectional Fiber Composites. Compos. Sci. Technol. 1999, 59, 1311–1319. [Google Scholar] [CrossRef]
- Bargmann, S.; Klusemann, B.; Markmann, J.; Schnabel, J.E.; Schneider, K.; Soyarslan, C.; Wilmers, J. Generation of 3D Representative Volume Elements for Heterogeneous Materials: A Review. Prog. Mater. Sci. 2018, 96, 322–384. [Google Scholar] [CrossRef]
- Yancey, R.N.; Pindera, M.-J. Micromechanical Analysis of the Creep Response of Unidirectional Composites. J. Eng. Mater. Technol. 1990, 112, 157–163. [Google Scholar] [CrossRef]
- Li, S. On the Unit Cell for Micromechanical Analysis of Fibre-Reinforced Composites. Proc. R. Soc. Lond. A 1999, 455, 815–838. [Google Scholar] [CrossRef]
- Maragoni, L.; Carraro, P.A.; Quaresimin, M. Development, Validation and Analysis of an Efficient Micro-Scale Representative Volume Element for Unidirectional Composites. Compos. Part A Appl. Sci. Manuf. 2018, 110, 268–283. [Google Scholar] [CrossRef]
- Bahmani, A.; Li, G.; Willett, T.L.; Montesano, J. Three-Dimensional Microscopic Assessment of Randomly Distributed Representative Volume Elements for High Fiber Volume Fraction Unidirectional Composites. Compos. Struct. 2018, 192, 153–164. [Google Scholar] [CrossRef]
- Zhang, T.; Yan, Y. A Comparison between Random Model and Periodic Model for Fiber-reinforced Composites Based on a New Method for Generating Fiber Distributions. Polym. Compos. 2017, 38, 77–86. [Google Scholar] [CrossRef]
- Sencu, R.M.; Yang, Z.; Wang, Y.C.; Withers, P.J.; Rau, C.; Parson, A.; Soutis, C. Generation of Micro-Scale Finite Element Models from Synchrotron X-Ray CT Images for Multidirectional Carbon Fibre Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2016, 91, 85–95. [Google Scholar] [CrossRef]
- Emerson, M.J.; Jespersen, K.M.; Dahl, A.B.; Conradsen, K.; Mikkelsen, L.P. Individual Fibre Segmentation from 3D X-Ray Computed Tomography for Characterising the Fibre Orientation in Unidirectional Composite Materials. Compos. Part A Appl. Sci. Manuf. 2017, 97, 83–92. [Google Scholar] [CrossRef]
- Iizuka, K.; Ueda, M.; Takahashi, T.; Yoshimura, A.; Nakayama, M. Development of a Three-Dimensional Finite Element Model for a Unidirectional Carbon Fiber Reinforced Plastic Based on X-Ray Computed Tomography Images and the Numerical Simulation on Compression. Adv. Compos. Mater. 2019, 28, 73–85. [Google Scholar] [CrossRef]
- ASTM D 3171-22; Standard Test Methods for Constituent Content of Composite Materials. ASTM: West Conshohocken, PA, USA, 2022.
- ASTM D 3039-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM D 5379-19; Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. ASTM: West Conshohocken, PA, USA, 2019.
- Gosling, P.; Saribiyik, M. Nonstandard Tensile Coupon for Fiber-Reinforced Plastics. J. Mater. Civ. Eng. 2003, 15, 108–117. [Google Scholar] [CrossRef]
- Sereshk, M.R.V.; Faierson, E.J. Novel Test Method to Determine Shear Properties of Lattices: Test Set-up and Data Analysis. Compos. Part B Eng. 2023, 253, 110561. [Google Scholar] [CrossRef]
- Wongsto, A.; Li, S. Micromechanical FE Analysis of UD Fibre-Reinforced Composites with Fibres Distributed at Random over the Transverse Cross-Section. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1246–1266. [Google Scholar] [CrossRef]
- Cluni, F.; Schiantella, M.; Faralli, F.; Gusella, V. Mesoscale Analysis of Concrete Earth Mixtures, from CT to Random Generation of RVE. Probabilistic Eng. Mech. 2025, 80, 103765. [Google Scholar] [CrossRef]
- Sun, Q.; Jain, M.K. Computational Elastic Analysis of AA7075-O Using 3D-Microstructrure-Based-RVE with Really-Distributed Particles. Int. J. Mech. Sci. 2022, 221, 107192. [Google Scholar] [CrossRef]
- Balasubramani, N.; Zhang, B.; Chowdhury, N.; Mukkavilli, A.; Suter, M.; Pearce, G. Micro-Mechanical Analysis on Random RVE Size and Shape in Multiscale Finite Element Modelling of Unidirectional FRP Composites. Compos. Struct. 2022, 282, 115081. [Google Scholar] [CrossRef]
- Yin, S.; Pindera, M.-J. Homogenized Moduli and Local Stress Fields of Random Fiber Composites under Homogeneous and Periodic Boundary Conditions. Eur. J. Mech. A/Solids 2022, 93, 104504. [Google Scholar] [CrossRef]
- Ismail, Y.; Wan, L.; Chen, J.; Ye, J.; Yang, D. An ABAQUS® Plug-in for Generating Virtual Data Required for Inverse Analysis of Unidirectional Composites Using Artificial Neural Networks. Eng. Comput. 2022, 38, 4323–4335. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, Y.; Ellyin, F. A Unified Periodical Boundary Conditions for Representative Volume Elements of Composites and Applications. Int. J. Solids Struct. 2003, 40, 1907–1921. [Google Scholar] [CrossRef]
- Omairey, S.L.; Dunning, P.D.; Sriramula, S. Development of an ABAQUS Plugin Tool for Periodic RVE Homogenisation. Eng. Comput. 2019, 35, 567–577. [Google Scholar] [CrossRef]
- Manchiraju, V.N.M.; Bhagat, A.; Dwivedi, V.K. Prediction of Elastic Properties of Unidirectional Carbon/Carbon Composites Using Analytical and Numerical Homogenisation Methods. Adv. Mater. Process. Technol. 2022, 8, 1865–1879. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Adeoye, A.S.; Ighalo, J.O.; Onifade, D.V. FEA of Effective Elastic Properties of Banana Fiber-Reinforced Polystyrene Composite. Mech. Adv. Mater. Struct. 2021, 28, 1869–1877. [Google Scholar] [CrossRef]
- Bai, W.; Li, Y.; Gong, Z.; Liu, J. A New Method for Generating the Random Fiber Arrangement of Representative Volume Element for Unidirectional Fiber Reinforced Composites. Mech. Adv. Mater. Struct. 2024, 31, 6035–6043. [Google Scholar] [CrossRef]
- Ahmad, A.; Aljuhni, A.; Arshid, U.; Elchalakani, M.; Abed, F. Prediction of Columns with GFRP Bars through Artificial Neural Network and ABAQUS. Structures 2022, 40, 247–255. [Google Scholar] [CrossRef]
- Riaño, L.; Joliff, Y. An AbaqusTM Plug-in for the Geometry Generation of Representative Volume Elements with Randomly Distributed Fibers and Interphases. Compos. Struct. 2019, 209, 644–651. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, D.; Li, Y.; Jiang, L. Development of RVE-Embedded Solid Elements Model for Predicting Effective Elastic Constants of Discontinuous Fiber Reinforced Composites. Mech. Mater. 2016, 93, 109–123. [Google Scholar] [CrossRef]
- Hill, R. Elastic Properties of Reinforced Solids: Some Theoretical Principles. J. Mech. Phys. Solids 1963, 11, 357–372. [Google Scholar] [CrossRef]
- Cascio, M.L.; Milazzo, A.; Benedetti, I. Virtual Element Method for Computational Homogenization of Composite and Heterogeneous Materials. Compos. Struct. 2020, 232, 111523. [Google Scholar] [CrossRef]
- Hollister, S.J.; Kikuchi, N. A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites. Comput. Mech. 1992, 10, 73–95. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, Q.; Wu, C.; Wu, G.; Li, L. Effects of Fiber Volume Fraction and Length on the Mechanical Properties of Milled Glass Fiber/Polyurea Composites. Polymers 2022, 14, 3080. [Google Scholar] [CrossRef]
- Birleanu, C.; Udroiu, R.; Cioaza, M.; Pustan, M.; Paul, B.; Vilau, C. The Effect of Fiber Weight Fraction on Tribological Behavior for Glass Fiber Reinforced Polymer. Polymers 2025, 17, 720. [Google Scholar] [CrossRef]
- Mortensen, U.A.; Rasmussen, S.; Mikkelsen, L.P.; Fraisse, A.; Andersen, T.L. The Impact of the Fiber Volume Fraction on the Fatigue Performance of Glass Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2023, 169, 107493. [Google Scholar] [CrossRef]
- Lin, P.J. Effective Transverse Elastic Properties of Composites Containing Two Types of Continuous Fibers. J. Mech. 2007, 23, 309–318. [Google Scholar] [CrossRef]
- Beicha, D.; Kanit, T.; Brunet, Y.; Imad, A.; Moumen, A.E.; Khelfaoui, Y. Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites. Mech. Mater. 2016, 102, 47–53. [Google Scholar] [CrossRef]
Epoxy Precursor | Anhydride Curing Agent | Mixture (1:1 Mass Ratio) | Glass Fiber | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Viscosity (cps) | Density (g·cm−3) | Epoxy Value (mol·(100·g)−1) | Viscosity (cps) | Density (g·cm−3) | Acid Value (mgKOH·g−1) | Viscosity (cps) | Density (g·cm−3) | Diameter (μm) | Density (g·cm−3) | Breaking force (N) |
9500 | 1.15 | 0.55 | 150 | 1.15 | 590 | 550 | 1.15 | 25 | 2.54 | 24 |
Specimens | Volume (cm3) | Fiber Volume Fraction (%) | |
---|---|---|---|
Before Burn-Off | After Burn-Off | ||
1 | 1.563 | 0.984 | 62.96 |
2 | 1.552 | 0.978 | 63.02 |
3 | 1.557 | 0.979 | 62.90 |
Maximum Inclination Angle (°) | Inclination Distribution | E11 (GPa) | ν12 (ν13) | E22 (E33) (GPa) | ν21 (ν31) | ν23 (ν32) | G23 (GPa) | G31 (G21) (GPa) |
---|---|---|---|---|---|---|---|---|
0 | / | 46.94 | 0.27 | 14.85 | 0.09 | 0.36 | 4.22 | 4.45 |
6 | Normal distribution | 45.76 | 0.27 | 16.82 | 0.10 | 0.35 | 5.30 | 4.94 |
6 | Uniform distribution | 44.92 | 0.27 | 17.86 | 0.11 | 0.33 | 5.13 | 5.38 |
Static test | 46.33 | 0.27 | 16.77 | 0.10 | / | / | 4.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, M.; Xue, S. Generation of Randomly Inclined Fibers in the Representative Volume Element for Predicting the Elastic Modulus of Fiber-Reinforced Polymer Composites. Polymers 2025, 17, 2300. https://doi.org/10.3390/polym17172300
Shao M, Xue S. Generation of Randomly Inclined Fibers in the Representative Volume Element for Predicting the Elastic Modulus of Fiber-Reinforced Polymer Composites. Polymers. 2025; 17(17):2300. https://doi.org/10.3390/polym17172300
Chicago/Turabian StyleShao, Menglong, and Songling Xue. 2025. "Generation of Randomly Inclined Fibers in the Representative Volume Element for Predicting the Elastic Modulus of Fiber-Reinforced Polymer Composites" Polymers 17, no. 17: 2300. https://doi.org/10.3390/polym17172300
APA StyleShao, M., & Xue, S. (2025). Generation of Randomly Inclined Fibers in the Representative Volume Element for Predicting the Elastic Modulus of Fiber-Reinforced Polymer Composites. Polymers, 17(17), 2300. https://doi.org/10.3390/polym17172300