Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (37,416)

Search Parameters:
Keywords = composite analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7110 KiB  
Article
Lipidomics Approach Reveals the Effects of Physical Refining Processes on the Characteristic Fatty Acids and Physicochemical Indexes of Safflower Seed Oil and Flaxseed Oil
by Jiayan Yang, Haoan Zhao, Fanhua Wu, Zeyu Wang, Lin Yuan, Yu Qiu, Liang Wang and Min Zhu
Foods 2025, 14(16), 2845; https://doi.org/10.3390/foods14162845 (registering DOI) - 16 Aug 2025
Abstract
As the principal dietary source of lipids, edible oils (notably vegetable oils) exist in crude form predominantly as triacylglycerols (about 95%), with the remainder comprising impurities and diverse minor components. Therefore, the refining processes of vegetable oil are particularly important. The application potential [...] Read more.
As the principal dietary source of lipids, edible oils (notably vegetable oils) exist in crude form predominantly as triacylglycerols (about 95%), with the remainder comprising impurities and diverse minor components. Therefore, the refining processes of vegetable oil are particularly important. The application potential of safflower seed oil (SSO) in both nutraceutical and pharmaceutical domains is attributed to its exceptionally high linoleic acid concentration and abundant polyphenolic constituents. However, a systematic analysis of SSO during physical refining has yet to be conducted. This study aims to investigate the effects of refining processes on the fatty acids of SSO compared with flaxseed oil (FSO). In this study, chemical analysis, gas chromatography and ultra-high-performance liquid chromatography were used to analyze and compare the physicochemical indexes, fatty acid composition, and the lipidomics of SSO and FSO. Results indicated that optimized refining significantly enhances quality parameters in both SSO and FSO. A total of 40 and 43 fatty acids were identified in SSO and FSO, respectively. Deacidification significantly altered their fatty acid profiles, particularly polyunsaturated fatty acids, with C18:2 and C18:3 being the most affected. A total of 20 significantly different lipids were screened (variable importance in projection > 1.5, p < 0.05) and were mainly classified as glycerophospholipids and glycerolipids, of which two lipids (C18:2 and C18:3 (9, 12, 15)) demonstrated particularly marked differences, suggesting that these lipid species represent significant discriminators between SSO and FSO groups; these two lipids exhibited significant alterations during the refining processes of SSO and FSO, respectively. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

15 pages, 4371 KiB  
Article
Optimization of 4-Cyano-4’-pentylbiphenyl Liquid Crystal Dispersed with Photopolymer: Application Towards Smart Windows and Aerospace Technology
by Govind Pathak, Busayamas Phettong and Nattaporn Chattham
Polymers 2025, 17(16), 2232; https://doi.org/10.3390/polym17162232 (registering DOI) - 16 Aug 2025
Abstract
The present reported work deals with the preparation of an energy-efficient smart window based on liquid crystal (LC) using a polymer-dispersed liquid crystal (PDLC) technique. The smart window was prepared using an LC–polymer composite by mixing photopolymer NOA-71 into nematic liquid crystal (NLC) [...] Read more.
The present reported work deals with the preparation of an energy-efficient smart window based on liquid crystal (LC) using a polymer-dispersed liquid crystal (PDLC) technique. The smart window was prepared using an LC–polymer composite by mixing photopolymer NOA-71 into nematic liquid crystal (NLC) 4-cyano-4’-pentylbiphenyl (5CB). The liquid crystal cell was prepared, the LC–polymer composite was filled inside the cell, and voltage was applied after the exposure of ultraviolet (UV) light. Textural analysis was carried out, and microscope images were taken out with the variation in voltage. Optical measurements were also performed for the smart window based on the PDLC system. Threshold voltage and saturation voltages were measured to carry out the operating voltage analysis. Transmittance was measured as a function of wavelength at different voltages. An absorbance study was also performed, varying the voltage and wavelength. The change in the power of the laser beam passing through the prepared smart window as a function of voltage was also investigated. The working of a prepared smart window using liquid crystal and a photopolymer composite is also demonstrated in opaque and transparent states in the absence and presence of voltage. The output of the present investigation into a PDLC-based smart window can be useful in the applications of adaptive or light shutter devices and in aerospace technology, as it shows the dual nature of opaque and transparent states in the absence and presence of electric field. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 3794 KiB  
Article
Synergistic Effect of In2O3-rGO Hybrid Composites for Electrochemical Applications
by Alina Matei, Cosmin Obreja, Cosmin Romaniţan, Oana Brîncoveanu, Marius Stoian and Vasilica Țucureanu
Coatings 2025, 15(8), 958; https://doi.org/10.3390/coatings15080958 (registering DOI) - 16 Aug 2025
Abstract
In the present paper, the interaction between metal oxide nanoparticles and carbon materials was studied, and the results showed a synergetic effect, leading to an improvement in the properties of the obtained hybrid composites. The In2O3 NPs were prepared by [...] Read more.
In the present paper, the interaction between metal oxide nanoparticles and carbon materials was studied, and the results showed a synergetic effect, leading to an improvement in the properties of the obtained hybrid composites. The In2O3 NPs were prepared by the precipitation method and thermal treatment at 550 °C. The composites were obtained using an ex situ method, by mixing the In2O3 NPs with reduced oxide graphene (rGO) in a ratio of 10:1. The structural, morphological, and chemical composition studies of the In2O3 NPs and In2O3-rGO composites were investigates by FTIR and EDX spectroscopy, SEM microscopy, and XRD analysis. These techniques have highlighted the obtaining of In2O3 of high purity, and crystallinity, with the mean particle size in the range of 8–25 nm, but also, the dispersion of In2O3 NPs onto rGO sheets. We examined the influence of the In2O3 nanostructure morphology and In2O3-rGO composites on the electrochemical properties using cyclic voltammetry. The surface properties of the In2O3 and composite films were studied by contact angles, which indicate the maintenance of the hydrophilic nature. The obtained results establish the synergy between the main components to form In2O3-rGO, which can be used for the development of biosensors to enhance the device performance. Full article
(This article belongs to the Special Issue Smart Coatings: Adapting to the Future)
Show Figures

Figure 1

13 pages, 3044 KiB  
Article
Tribotechnical and Physical Characteristics of a Friction Composite Made of a Polymer Matrix Reinforced with a Complex of Fiber-Dispersed Particles
by Ievgen Byba, Anatolii Minitskyi, Yuriy Sydorenko, Andrii Shysholin, Oleksiy Myronyuk and Maksym Barabash
Materials 2025, 18(16), 3847; https://doi.org/10.3390/ma18163847 (registering DOI) - 16 Aug 2025
Abstract
A friction composite material which contains cellulose fiber, carbon fiber, wollastonite, graphite, and resin for use in oil-cooled friction units, hydromechanical boxes, and couplings was developed. The fabrication technique includes the formation of a paper layer based on the mixture of stated fibers [...] Read more.
A friction composite material which contains cellulose fiber, carbon fiber, wollastonite, graphite, and resin for use in oil-cooled friction units, hydromechanical boxes, and couplings was developed. The fabrication technique includes the formation of a paper layer based on the mixture of stated fibers via a wet-laid process, impregnation of the layer with phenolic resin, and hot pressing onto a steel carrier. The infrared spectra of the polymeric base (phenolic resin) were studied by solvent extraction. The structural-phase analysis of the obtained material was carried out by the SEM method, and the particle size distribution parameters of the composite components were estimated based on the images of the sample surface. The surface roughness parameters of the samples are as follows: Ra = 5.7 μm Rz = 31.4 μm. The tribotechnical characteristics of the material were tested in an oil medium at a load of 5.0 MPa and a rotation mode of 2000 rpm for 180 min in a pair with a steel 45 counterbody. The coefficient of friction of the developed material was 0.11–0.12; the degree of wear was 6.17 × 10−6 μm/mm. The degree of compression deformation of the composite is 0.36%, and the compressive strength is 7.8 MPa. The calculated kinetic energy absorbed and power level are 205 J/cm2 and 110 W/cm2, respectively. The main tribotechnical characteristics of the developed friction material correspond to industrial analogues. Full article
Show Figures

Figure 1

22 pages, 1868 KiB  
Article
Comparative Decoding of Physicochemical and Flavor Profiles of Coffee Prepared by High-Pressure Carbon Dioxide, Ice Drip, and Traditional Cold Brew
by Zihang Wang, Yixuan Zhou, Yinquan Zong, Jihong Wu and Fei Lao
Foods 2025, 14(16), 2840; https://doi.org/10.3390/foods14162840 (registering DOI) - 16 Aug 2025
Abstract
High-pressure carbon dioxide (HPCD) has been widely used in the extraction of high-quality bioactive compounds. The flavor profiles of cold brew coffee (CBC) prepared by HPCD, traditional cold brew (TCB), and ice drip (ID) were comprehensively evaluated by chromatographic approaches, and their variations [...] Read more.
High-pressure carbon dioxide (HPCD) has been widely used in the extraction of high-quality bioactive compounds. The flavor profiles of cold brew coffee (CBC) prepared by HPCD, traditional cold brew (TCB), and ice drip (ID) were comprehensively evaluated by chromatographic approaches, and their variations were investigated by multivariate statistical methods. ID produced the lightest coffee color while HPCD produced the darkest. No significant difference was found in pH among the three coffee processes. The concentrations of chlorogenic acids and caffeine were the highest in ID but the lowest in HPCD. Seventeen of the forty-eight volatiles were identified as key aroma compounds, contributing nutty, cocoa, caramel, baked, and other coffee flavors to all CBCs. Among them, linalool (OAV = 100.50) was found only in ID and provided ID with unique floral and fruity notes; 2-methyl-5-propylpyrazine (OAV = 17.70) was found only in TCB and gave a roasted aroma. With significantly lower levels of medicine-like and plastic off-flavors, HPCD had a refined aroma experience featuring nutty, cocoa, and caramel notes, though their contents were not the highest. Orthogonal partial least squares discriminant analysis (OPLS-DA) identified 36 aromas that could differentiate three cold brew methods, with TCB and HPCD being the most similar. Aroma sensory tests showed that no significant difference was perceived between TCB and HPCD. These findings provide a profound understanding of CBC flavor produced by cold brew methods from the aspect of composition, indicating that HPCD has great potential to realize TCB-like flavor characteristics in a shorter time. Full article
(This article belongs to the Special Issue Flavor, Palatability, and Consumer Acceptance of Foods)
Show Figures

Figure 1

30 pages, 6444 KiB  
Article
Microalgae-Enriched High-Moisture Meat Analogues: Improved Physicochemical, Functional, and Digestibility Properties
by Wanida Pan-utai, Thidarat Pantoa, Waraporn Prasert, Janya Sangkhiaw, Catleya Rojviriya, Chalermluck Phoovasawat and Hataichanok Kantrong
Foods 2025, 14(16), 2838; https://doi.org/10.3390/foods14162838 (registering DOI) - 16 Aug 2025
Abstract
This investigation examined the effects of microalgae supplementation on the physicochemical properties, nutritional profile, and digestibility parameters of high-moisture meat analogues (HMMAs). The sustainability and nutritional potential of incorporating three microalgae species—Arthrospira platensis, Haematococcus pluvialis, and Nannochloropsis oculata—into diets [...] Read more.
This investigation examined the effects of microalgae supplementation on the physicochemical properties, nutritional profile, and digestibility parameters of high-moisture meat analogues (HMMAs). The sustainability and nutritional potential of incorporating three microalgae species—Arthrospira platensis, Haematococcus pluvialis, and Nannochloropsis oculata—into diets were investigated at inclusion levels of 0.5% and 1.5% (w/w). Colour metrics, compositional analysis, antioxidant capacity, textural characteristics, and in vitro protein digestibility were also assessed. The findings demonstrated enhancements in nutritional quality, particularly in protein content. Antioxidant capacity was significantly elevated in the 1.5% inclusion samples. Samples containing 1.5% A. platensis exhibited the highest chlorophyll concentrations at 19.91 mg/mg, while 1.5% H. pluvialis displayed carotenoid levels at 34.59 µg/mg. These improvements correlated with increased efficacy in ABTS and FRAP radical scavenging assays. Colourimetric analysis indicated that elevated microalgae concentrations contributed to darker hues; 1.5% H. pluvialis markedly increased redness (a-value, p < 0.05), with the visual profile similar to conventional meat. Supplementation with 1.5% A. platensis consistently decreased hardness and chewiness, likely attributable to enhanced porosity. Conversely, 1.5% N. oculata promoted a honeycomb-like microstructure, thereby augmenting cut resistance and hardness. The diminished rehydration capacity observed in 1.5% H. pluvialis was ascribed to smaller pore sizes, but maintained a higher oil-holding capacity relative to the control. All microalgae-infused HMMAs retained excellent in vitro protein digestibility. These results underscored the potential of microalgae—particularly 1.5% A. platensis for nutritional and textural enhancements, 1.5% H. pluvialis for improved visual and antioxidant properties, and 1.5% N. oculata for elevated phenolic and chlorophyll contents—in advancing sustainable, plant-based meat alternatives. Full article
Show Figures

Figure 1

21 pages, 2464 KiB  
Article
Prediction of Selected Minerals in Beef-Type Tomatoes Using Machine Learning for Digital Agriculture
by Aylin Kabaş, Uğur Ercan, Onder Kabas and Georgiana Moiceanu
Horticulturae 2025, 11(8), 971; https://doi.org/10.3390/horticulturae11080971 (registering DOI) - 16 Aug 2025
Abstract
Tomato is one of the most important vegetables due to its high production and nutritional value. With the development of digital agriculture, the tomato breeding and processing industries have seen a rapid increase in the need for simple, low-labor, and inexpensive methods for [...] Read more.
Tomato is one of the most important vegetables due to its high production and nutritional value. With the development of digital agriculture, the tomato breeding and processing industries have seen a rapid increase in the need for simple, low-labor, and inexpensive methods for analyzing tomato composition. This study proposes a digital method to predict four minerals (calcium, potassium, phosphorus, and magnesium) in beef-type tomato using machine learning models, including k-nearest neighbors (kNN), artificial neural networks (ANNs), and Support Vector Regression (SVR). The models were discriminated using the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The kNN model showed the best performance for estimation of quantity of calcium, potassium, phosphorus, and magnesium. The results demonstrate that kNN consistently outperforms ANNs and SVR across all target nutrients, achieving the highest R2 and the lowest error metrics (RMSE, MAE, and MAPE). Notably, kNN achieved an exceptional R2 of 0.8723 and a remarkably low MAPE of 3.95% in predicting phosphorus. This study highlights how machine learning can provide a versatile, accurate, and efficient solution for tomato mineral analysis in digital agriculture. Full article
Show Figures

Figure 1

21 pages, 7113 KiB  
Article
Ecological Responses of Mercury to Selenium in Farmland: Insights from Metal Transport in Crops, Soil Properties, Enzyme Activities, and Microbiome
by Yuxin Li, Shuyun Guan, Guangpeng Pei, Xiaorong Zhang, Yongbing Zhang, Junbao Huang, Yingzhong Lv and Hua Li
Agriculture 2025, 15(16), 1753; https://doi.org/10.3390/agriculture15161753 (registering DOI) - 16 Aug 2025
Abstract
Selenium (Se) is a natural detoxifier of the heavy metal mercury (Hg), and the interaction between Se and Hg has been widely investigated. However, the ecological response of Hg to Se in Hg-contaminated farmland requires further study, especially the relationship between Se–Hg interactions [...] Read more.
Selenium (Se) is a natural detoxifier of the heavy metal mercury (Hg), and the interaction between Se and Hg has been widely investigated. However, the ecological response of Hg to Se in Hg-contaminated farmland requires further study, especially the relationship between Se–Hg interactions and soil abiotic and biological properties. Through a field experiment, the effects of different levels of exogenous Se (0, 0.50, 0.75, 1.00, and 2.00 mg kg−1) on Hg and Se transport in maize, soil properties, enzyme activities, and the microbial community in Hg-contaminated farmland were systematically studied. The Se treatments significantly reduced the Hg concentration in maize roots, stems, leaves, and grains and significantly increased the Se concentration in maize tissues. Except for the 0.75 mg kg−1 Se treatment which significantly increased electrical conductivity compared to the control, other Se treatments hadnon-significant effect on soil physicochemical properties (pH, conductivity, organic matter content, and cation exchange capacity) and oxidoreductase activities (catalase, peroxidase, and ascorbate peroxide). The activities of soil invertase, urease, and alkaline phosphatase increased significantly after Se application, and the highest enzyme activities were observed with a 0.50 mg kg−1 Se treatment. The bacteria and fungi with the highest relative abundance in this study were Proteobacteria (>30.5%) and Ascomycota (>73.4%). The results of a redundancy analysis and predictions of the microbial community showed that there was a significant correlation between the soil nutrient cycle enzyme activity, microbial community composition, and microbial community function. Overall, exogenous Se application was found to be a viable strategy for mitigating the impact of Hg stress on ecosystems. Furthermore, the results provide new insights into the potential for the large-scale application of Se in the remediation of Hg-contaminated farmland. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

25 pages, 2734 KiB  
Article
Nanoextract of Zataria multiflora Boiss. Enhances Salt Stress Tolerance in Hydroponically Grown Ocimum basilicum L. var. Genovese
by Edris Shabani, Fardin Ghanbari, Afsaneh Azizi, Elham Helalipour and Matteo Caser
Horticulturae 2025, 11(8), 970; https://doi.org/10.3390/horticulturae11080970 (registering DOI) - 16 Aug 2025
Abstract
In order to investigate the effect of Zataria multiflora Bioss. extract and nanoextract on morphophysiological and phytochemical indices, yield, and essential oil compositions of basil (Ocimum basilicum L. var. Genovese) under salinity stress (0, 25, 50, and 100 mM NaCl), an experiment [...] Read more.
In order to investigate the effect of Zataria multiflora Bioss. extract and nanoextract on morphophysiological and phytochemical indices, yield, and essential oil compositions of basil (Ocimum basilicum L. var. Genovese) under salinity stress (0, 25, 50, and 100 mM NaCl), an experiment was conducted as a split-plot design in a basic block with complete randomization and three replications. In the treatment without salinity, nanoextract increased the shoot fresh weight by 34.28%, and regular extract increased it by 8.35% compared to the 0 NaCl without extract. In the treatment without salinity stress, nanoextract decreased the Na content by 17%, and regular extract decreased it by 5%; nanoextract increased the K content by 22.93%, and regular extract increased it by 9.05% compared to the 0 NaCl without extract, respectively. In all salinity concentrations applied, nanoextract showed lower sodium accumulation and higher potassium accumulation rate than regular extract and treatment without extract at the same salinity concentration. The highest total phenols were observed in the 100 mM salinity treatment in both nanoextract and regular extract of Z. multiflora, followed by the 50 mM salinity treatment—nano extract, with 12.33, 11.17, and 10.01 mg GA g−1 FW, respectively. In the non-saline stress treatment, nanoextract increased the proline content by 125%, and regular extract increased it by 79.16% compared to the 0 NaCl without extract. In the treatment without salinity stress, the nano extract increased the level of PAL enzyme by 16.66% and the regular extract by 8.33% compared to the 0 NaCl without extract. The highest antioxidant activity was observed in the 100 mM salinity treatment in both nano extract and regular extract of Z. multiflora, followed by the 50 mM salinity treatment and nano extract with 31.86, 30.60, and 28.21%, respectively. In this study, the results of essential oil analysis indicated the identification of 39 compounds in which linalool, eugenol, carotenoid, methyl chavicol, A-Humulene, and menthol were identified as the main compounds. Among all treatments, Z. multiflora nanoextract, while moderating the effects of stress, showed the highest efficiency in improving the morphophysiological and biochemical traits and essential oil content and secondary metabolites of O. basilicum L. var. Genovese. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Graphical abstract

11 pages, 1701 KiB  
Article
Design Strategies for Optimized Bulk-Linearized MOS Pseudo-Resistor
by Lorenzo Benatti, Tommaso Zanotti and Francesco Maria Puglisi
Micromachines 2025, 16(8), 941; https://doi.org/10.3390/mi16080941 (registering DOI) - 16 Aug 2025
Abstract
The bulk linearization technique is a design strategy used to extend the linear region of a metal oxide semiconductor field effect transistor (MOSFET) by increasing its saturation voltage through a composite structure and a gate biasing circuit. This allows us to develop compact [...] Read more.
The bulk linearization technique is a design strategy used to extend the linear region of a metal oxide semiconductor field effect transistor (MOSFET) by increasing its saturation voltage through a composite structure and a gate biasing circuit. This allows us to develop compact and flexible pseudo-resistor elements for integrated circuit designs. In this paper we propose a new simple yet effective design approach, focused on the biasing circuit, that optimizes area, offset, and power consumption without altering the design complexity of the original solution. Post-layout simulations verify the presented design strategy, which is then applied for designing a band-pass filter for neural action potential acquisition. Results of harmonic distortion and noise analysis strengthen the validity of the proposed strategy. Full article
Show Figures

Figure 1

1684 KiB  
Proceeding Paper
Investigation on Transverse Loading of Auxetic Beams Using Finite Element Methods
by Navneeth Sanjeev and M. P. Hariprasad
Eng. Proc. 2025, 93(1), 24; https://doi.org/10.3390/engproc2025093024 (registering DOI) - 15 Aug 2025
Abstract
Structures that possess negative Poisson’s ratio are termed “Auxetic” structures. They elongate laterally on longitudinal–tensile loading and compress laterally on longitudinal–compressive loading. Auxetic structures are a composition of unit cells that are available in various geometries, which include triangular, hexa-triangular, re-entrant, chiral, star, [...] Read more.
Structures that possess negative Poisson’s ratio are termed “Auxetic” structures. They elongate laterally on longitudinal–tensile loading and compress laterally on longitudinal–compressive loading. Auxetic structures are a composition of unit cells that are available in various geometries, which include triangular, hexa-triangular, re-entrant, chiral, star, arrowhead, etc. Due to their unique shape, these structures possess remarkably good mechanical properties such as shear resistance, indentation resistance, fracture resistance, synclastic behavior, energy absorption capacity, etc. However, they have poor load-bearing capacity. To improve the load bearing strength of these structures, this paper presents a numerical analysis of oriented re-entrant structured (ORS) beams with auxetic clusters aligned at various angles (0°, 45° and 90°), using Finite Element Methods. Oriented re-entrant unit cell clusters enclosed by a bounded frame were modeled and a three-point bending test was conducted to perform a comparison study on deformation mechanisms of the different oriented re-entrant honeycomb structures with honeycomb beams. The computational analysis of ORS beams revealed that the directional deformation and normal strain along the x-axis were the lowest in ORS45, followed by ORS90, ORS0, and honeycomb. Among all the beams, ORS45 displayed the best load-bearing capacity with comparably low mass density. Full article
Show Figures

Figure 1

17 pages, 633 KiB  
Article
Impact of Preoperative CT-Diagnosed Sarcopenic Obesity on Outcomes After Radical Cystectomy for Bladder Cancer
by Alberto Artiles Medina, Mariam Bajawi Carretero, Enrique López Pérez, Sara Garach Fernández, David López Curtis, Leyre Elías Pascual, José Daniel Subiela, Javier Soto Pérez-Olivares, Catalina Nieto Góngora, Fernando González Tello, Irene de la Parra Sánchez, César Mínguez Ojeda, Victoria Gómez Dos Santos and Francisco Javier Burgos Revilla
Cancers 2025, 17(16), 2669; https://doi.org/10.3390/cancers17162669 - 15 Aug 2025
Abstract
Objective: To evaluate the impact of body composition parameters, including specifically sarcopenic obesity (SO), on postoperative and oncological outcomes in patients undergoing radical cystectomy (RC) for bladder cancer, thereby addressing a paucity of data in this setting. Methods: A retrospective observational study was [...] Read more.
Objective: To evaluate the impact of body composition parameters, including specifically sarcopenic obesity (SO), on postoperative and oncological outcomes in patients undergoing radical cystectomy (RC) for bladder cancer, thereby addressing a paucity of data in this setting. Methods: A retrospective observational study was conducted in patients who underwent RC. Preoperative CT scans were analyzed using semi-automatic segmentation software to assess body composition parameters, with measurements of adipose and muscle tissue obtained at the level of the L3 vertebra. Results: A total of 249 patients were included, of whom 127 (52.5%) met the criteria for sarcopenia, 53 (21.3%) for obesity, and 14 (5.6%) for SO. Multivariate analysis identified previous abdominal surgery (OR 2.56, 95% CI 1.24–5.23, p = 0.011), total serum protein level (OR 0.57, 95% CI 0.36–0.88, p = 0.013), and SO (OR 7.01, 95% CI 1.06–37.05, p = 0.045) as independent predictors of 90-day postoperative complications. Patients with SO experienced significantly higher rates of abdominal wall complications (p = 0.03). However, in multivariate analyses, SO was not associated with overall survival (despite a p value of 0.04 at univariate analysis), cancer-specific survival, or progression-free survival. Conclusions: Preoperative CT-based assessment of body composition is a valuable tool in the surgical evaluation of patients undergoing RC. SO appears to be an independent predictor of short-term postoperative complications and should be considered when planning prehabilitation strategies. Full article
(This article belongs to the Special Issue Clinical Outcomes in Urologic Cancers)
20 pages, 598 KiB  
Review
Oral Microbiome as a Biomarker and Therapeutic Target in Head and Neck Cancer: Current Insights and Future Directions
by Saad Ahmad, Dasantha Jayamanne, Sarah Bergamin, Anna Lawless, Alexander Guminski, Adrian Lee, Alexander Yuile, Helen Wheeler, Thomas Eade, Michael Back, Mark Molloy and Byeongsang Oh
Cancers 2025, 17(16), 2667; https://doi.org/10.3390/cancers17162667 - 15 Aug 2025
Abstract
Background/Objectives: The oral microbiome has been implicated in the pathogenesis of head and neck squamous cell carcinoma (HNSCC). This review examines the association between specific oral bacterial taxa and HNSCC. Methods: A systematic review was conducted following the Preferred Reporting Items [...] Read more.
Background/Objectives: The oral microbiome has been implicated in the pathogenesis of head and neck squamous cell carcinoma (HNSCC). This review examines the association between specific oral bacterial taxa and HNSCC. Methods: A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to examine the relationship between the oral microbiome and HNSCC. A comprehensive literature search was conducted in databases including EMBASE, Cochrane Library, Web of Science, Medline, and PubMed. Results: Following the screening of 284 articles, 21 studies met the inclusion criteria, comprising 1023 HNSCC patients (male: n = 806, 79%; female: n = 217, 21%) and 837 healthy controls (male: n = 622, 74%; female: n = 215, 25.7%). Although findings on alpha diversity were inconsistent, a significant difference in beta diversity was consistently reported between HNSCC patients and healthy controls. HNSCC patients exhibited higher relative abundances of Firmicutes and Synergistetes at the phylum level; Fusobacterium, Prevotella, Porphyromonas, Parvimonas, and Peptostreptococcus at the genus level; and Fusobacterium nucleatum, Prevotella intermedia, Lactobacillus spp., and Porphyromonas gingivalis at the species level. In contrast, healthy controls showed higher abundances of Proteobacteria and Actinobacteria at the phylum level; Streptococcus, Actinomyces, Corynebacterium, Rothia, and Veillonella at the genus level; and Haemophilus influenzae, Rothia mucilaginosa, and Streptococcus mitis at the species level in most studies. Conclusions: The findings indicate distinct alterations in oral microbiome diversity and composition among HNSCC patients, highlighting the role of microbial dysbiosis in cancer progression. Standardized protocols for oral sample collection and microbiota analysis are essential to facilitate more robust, comparable, and clinically meaningful research outcomes. Full article
(This article belongs to the Special Issue Gut Microbiome, Diet and Cancer Risk)
Show Figures

Figure 1

18 pages, 3613 KiB  
Article
Early Biological Response to Poly(ε-caprolactone) PCL—Bioactive Glass Composites Obtained by 3D Printing as Bone Substitutes
by Alessandro Mosca Balma, Riccardo Pedraza, Ilaria Roato, Clarissa Orrico, Sara Meinardi, Stefano Bertinetti, Tullio Genova, Giovanna Gautier di Confiengo, Maria Giulia Faga, Donatella Duraccio, Giulio Malucelli, Marta Miola, Enrica Verné and Federico Mussano
Polymers 2025, 17(16), 2229; https://doi.org/10.3390/polym17162229 - 15 Aug 2025
Abstract
The increasing demand for smart bone substitutes has boosted the implementation of biomaterials possibly endowed with both pro-osteogenic and pro-angiogenic capabilities, among which bioactive glasses hold great potential. Hence, two Poly(ε-caprolactone) (PCL)-based composites were loaded at 10 wt.%, with either pristine (SBA3) or [...] Read more.
The increasing demand for smart bone substitutes has boosted the implementation of biomaterials possibly endowed with both pro-osteogenic and pro-angiogenic capabilities, among which bioactive glasses hold great potential. Hence, two Poly(ε-caprolactone) (PCL)-based composites were loaded at 10 wt.%, with either pristine (SBA3) or copper-doped (SBA3_Cu) silica-based bioactive glasses, through a solvent casting method with chloroform. Neat PCL was used as a control. Samples produced by 3D printing underwent SEM and EDX analyses, and the following were measured: tensile strength and hardness, surface roughness, ion release through ICP-OES, surface free energy, and optical contact angle. Adipose-derived mesenchymal stem cells (ASCs) and human microvascular endothelial cells (HMEC-1) were used to test the biocompatibility of the materials through cell adhesion, spreading, and viability assays. A significant improvement in tensile strength and hardness was observed especially with Cu-doped composites. Both SBA3 and SBA3_Cu added to the PCL favored the early adhesion and the proliferation of HMEC-1 after 3 and 7 days, while ASCs proliferated significantly the most on the SBA-containing composite, at all the time points. Cellular morphology analysis highlighted interesting adaptation patterns to the samples. Further biological characterizations are needed to understand thoroughly how specific bioactive glasses may interact with different cellular types. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 1864 KiB  
Article
Ternary Nickel-Iron-Phosphorus (NiFeP) Electrocatalysts for Alkaline Water Splitting
by Raminta Šakickaitė, Zita Sukackienė, Virginija Kepenienė, Aldona Balčiūnaitė, Raminta Stagniūnaitė, Gitana Valeckytė and Loreta Tamašauskaitė-Tamašiūnaitė
Electrochem 2025, 6(3), 30; https://doi.org/10.3390/electrochem6030030 - 15 Aug 2025
Abstract
In this study, ternary NiFeP coatings were fabricated on a copper substrate using a simple, fast, and cost-effective electroless deposition method. The coatings were named Ni85Fe4P12, Ni80Fe8P12, and Ni75Fe [...] Read more.
In this study, ternary NiFeP coatings were fabricated on a copper substrate using a simple, fast, and cost-effective electroless deposition method. The coatings were named Ni85Fe4P12, Ni80Fe8P12, and Ni75Fe12P12, indicating 4, 8, and 12 at % of Fe, respectively. The surface morphology and composition of the coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The activity of the prepared coatings was evaluated using the water-splitting reaction to determine the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in a 1 M KOH electrolyte solution. Electrochemical measurements were carried out in a temperature range from 25 °C to 55 °C. The HER and OER current density values increased by up to 2.58 and 2.13 times, respectively, with temperature increase compared to the result at 25 °C. All three coatings demonstrated activity in both reactions. Ni85Fe4P12 exhibited the highest catalytic efficiency in the HER, with the overpotential of 340 mV at 10 mAcm−2 and a Tafel slope of 61 mVdec−1. In the OER, the efficiency of the NiFeP catalysts correlated with their Fe content. The overpotential was 412 mV for Ni80Fe8P12 and 432 mV for Ni75Fe12P12 at 10 mAcm−2 with Tafel slopes of 96 and 91 mVdec−1, respectively. This study underscores the critical influence of Fe content on the catalytic efficiency of NiFeP coatings, with reduced Fe content enhancing HER and increased Fe content benefits OER. Full article
Show Figures

Figure 1

Back to TopTop