Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (449)

Search Parameters:
Keywords = complex product supply chain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

28 pages, 3364 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 170
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

22 pages, 598 KiB  
Article
Re-Consider the Lobster: Animal Lives in Protein Supply Chains
by Karl T. Ulrich
Sustainability 2025, 17(15), 7034; https://doi.org/10.3390/su17157034 - 2 Aug 2025
Viewed by 137
Abstract
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive [...] Read more.
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive complexity and accounting for all lives involved in production, including direct harvests, reproductive animals, and feed species, reveals dramatic variations in protein efficiency. The analysis considers two categories of animal life: complex-cognitive lives (e.g., mammals, birds, cephalopods) and pain-capable lives (e.g., fish, crustaceans). Calculating protein yield per life demonstrates efficiency differences spanning more than five orders of magnitude, from 2 g per complex-cognitive life for baby octopus to 390,000 g per life for bovine dairy systems. Key findings expose disparities between terrestrial and marine protein production. Terrestrial systems involving mammals and birds show higher protein yields and exclusively involve complex-cognitive lives, while marine systems rely predominantly on pain-capable lives across complex food chains. Dairy production emerges as the most efficient system. Aquaculture systems reveal complex dynamics, with farmed carnivorous fish requiring hundreds of feed fish lives to produce protein, compared to omnivorous species that demonstrate improved efficiency. Beyond quantitative analysis, this research provides a framework for understanding the ethical and ecological dimensions of protein production, offering insights for potential systemic innovations. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Graphical abstract

18 pages, 1072 KiB  
Article
Complexity of Supply Chains Using Shannon Entropy: Strategic Relationship with Competitive Priorities
by Miguel Afonso Sellitto, Ismael Cristofer Baierle and Marta Rinaldi
Appl. Syst. Innov. 2025, 8(4), 105; https://doi.org/10.3390/asi8040105 - 29 Jul 2025
Viewed by 256
Abstract
Entropy is a foundational concept across scientific domains, playing a role in understanding disorder, randomness, and uncertainty within systems. This study applies Shannon’s entropy in information theory to evaluate and manage complexity in industrial supply chain management. The purpose of the study is [...] Read more.
Entropy is a foundational concept across scientific domains, playing a role in understanding disorder, randomness, and uncertainty within systems. This study applies Shannon’s entropy in information theory to evaluate and manage complexity in industrial supply chain management. The purpose of the study is to propose a quantitative modeling method, employing Shannon’s entropy model as a proxy to assess the complexity in SCs. The underlying assumption is that information entropy serves as a proxy for the complexity of the SC. The research method is quantitative modeling, which is applied to four focal companies from the agrifood and metalworking industries in Southern Brazil. The results showed that companies prioritizing cost and quality exhibit lower complexity compared to those emphasizing flexibility and dependability. Additionally, information flows related to specially engineered products and deliveries show significant differences in average entropies, indicating that organizational complexities vary according to competitive priorities. The implications of this suggest that a focus on cost and quality in SCM may lead to lower complexity, in opposition to a focus on flexibility and dependability, influencing strategic decision making in industrial contexts. This research introduces the novel application of information entropy to assess and control complexity within industrial SCs. Future studies can explore and validate these insights, contributing to the evolving field of supply chain management. Full article
Show Figures

Figure 1

21 pages, 1758 KiB  
Article
The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators
by Aušra Sinkevičienė, Kęstutis Romaneckas, Edita Meškinytė and Rasa Kimbirauskienė
Agronomy 2025, 15(8), 1823; https://doi.org/10.3390/agronomy15081823 - 28 Jul 2025
Viewed by 221
Abstract
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required [...] Read more.
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required to maintain a stable food supply chain. For many years, intensive farming systems have been used to meet this need. Today, intensive climate change events and other global environmental challenges are driving a shift towards sustainable use of natural resources and simplified cultivation methods that produce high-quality and productive food. It is important to study different tillage systems in order to understand how these methods can affect the chemical composition and nutritional value of the grain. Both agronomic and economic aspects contribute to the complexity of this field and their analysis will undoubtedly contribute to the development of more efficient agricultural practice models and the promotion of more conscious consumption. An appropriate tillage system should be oriented towards local climatic characteristics and people’s needs. The impact of reduced tillage on these indicators in spring barley production is still insufficiently investigated and requires further analysis at a global level. This study was carried out at Vytautas Magnus University Agriculture Academy (Lithuania) in 2022–2024. Treatments were arranged using a split-plot design. Based on a long-term tillage experiment, five tillage systems were tested: deep and shallow plowing, deep cultivation–chiseling, shallow cultivation–disking, and no-tillage. The results show that in 2022–2024, the hectoliter weight and moisture content of spring barley grains increased, but protein content and germination decreased in shallowly plowed fields. In deep cultivation–chiseling fields, the protein content (0.1–1.1%) of spring barley grains decreased, and in shallow cultivation–disking fields, the moisture content (0.2–0.3%) decreased. In all fields, the simplified tillage systems applied reduced spring barley germination (0.4–16.7%). Tillage systems and meteorological conditions are the two main forces shaping the quality indicators of spring barley grains. Properly selected tillage systems and favorable climatic conditions undoubtedly contribute to better grain properties and higher yields, while reducing the risk of disease spread. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

22 pages, 6452 KiB  
Article
A Blockchain and IoT-Enabled Framework for Ethical and Secure Coffee Supply Chains
by John Byrd, Kritagya Upadhyay, Samir Poudel, Himanshu Sharma and Yi Gu
Future Internet 2025, 17(8), 334; https://doi.org/10.3390/fi17080334 - 27 Jul 2025
Viewed by 452
Abstract
The global coffee supply chain is a complex multi-stakeholder ecosystem plagued by fragmented records, unverifiable origin claims, and limited real-time visibility. These limitations pose risks to ethical sourcing, product quality, and consumer trust. To address these issues, this paper proposes a blockchain and [...] Read more.
The global coffee supply chain is a complex multi-stakeholder ecosystem plagued by fragmented records, unverifiable origin claims, and limited real-time visibility. These limitations pose risks to ethical sourcing, product quality, and consumer trust. To address these issues, this paper proposes a blockchain and IoT-enabled framework for secure and transparent coffee supply chain management. The system integrates simulated IoT sensor data such as Radio-Frequency Identification (RFID) identity tags, Global Positioning System (GPS) logs, weight measurements, environmental readings, and mobile validations with Ethereum smart contracts to establish traceability and automate supply chain logic. A Solidity-based Ethereum smart contract is developed and deployed on the Sepolia testnet to register users and log batches and to handle ownership transfers. The Internet of Things (IoT) data stream is simulated using structured datasets to mimic real-world device behavior, ensuring that the system is tested under realistic conditions. Our performance evaluation on 1000 transactions shows that the model incurs low transaction costs and demonstrates predictable efficiency behavior of the smart contract in decentralized conditions. Over 95% of the 1000 simulated transactions incurred a gas fee of less than ETH 0.001. The proposed architecture is also scalable and modular, providing a foundation for future deployment with live IoT integrations and off-chain data storage. Overall, the results highlight the system’s ability to improve transparency and auditability, automate enforcement, and enhance consumer confidence in the origin and handling of coffee products. Full article
Show Figures

Figure 1

24 pages, 921 KiB  
Article
Towards Empowering Stakeholders Through Decentralized Trust and Secure Livestock Data Sharing
by Abdul Ghafoor, Iraklis Symeonidis, Anna Rydberg, Cecilia Lindahl and Abdul Qadus Abbasi
Cryptography 2025, 9(3), 52; https://doi.org/10.3390/cryptography9030052 - 23 Jul 2025
Viewed by 326
Abstract
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data [...] Read more.
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data consistency, transparency, ownership, controlled access or exposure, and privacy-preserving analytics for value-added services. In this paper, we introduced the Framework for Livestock Empowerment and Decentralized Secure Data eXchange (FLEX), as a comprehensive solution grounded on five core design principles: (i) enhanced security and privacy, (ii) human-centric approach, (iii) decentralized and trusted infrastructure, (iv) system resilience, and (v) seamless collaboration across the supply chain. FLEX integrates interdisciplinary innovations, leveraging decentralized infrastructure-based protocols to ensure trust, traceability, and integrity. It employs secure data-sharing protocols and cryptographic techniques to enable controlled information exchange with authorized entities. Additionally, the use of data anonymization techniques ensures privacy. FLEX is designed and implemented using a microservices architecture and edge computing to support modularity and scalable deployment. These components collectively serve as a foundational pillar of the development of a digital product passport. The FLEX architecture adopts a layered design and incorporates robust security controls to mitigate threats identified using the STRIDE threat modeling framework. The evaluation results demonstrate the framework’s effectiveness in countering well-known cyberattacks while fulfilling its intended objectives. The performance evaluation of the implementation further validates its feasibility and stability, particularly as the volume of evidence associated with animal identities increases. All the infrastructure components, along with detailed deployment instructions, are publicly available as open-source libraries on GitHub, promoting transparency and community-driven development for wider public benefit. Full article
(This article belongs to the Special Issue Emerging Trends in Blockchain and Its Applications)
Show Figures

Figure 1

33 pages, 1578 KiB  
Article
Machine Learning-Based Prediction of Resilience in Green Agricultural Supply Chains: Influencing Factors Analysis and Model Construction
by Daqing Wu, Tianhao Li, Hangqi Cai and Shousong Cai
Systems 2025, 13(7), 615; https://doi.org/10.3390/systems13070615 - 21 Jul 2025
Viewed by 277
Abstract
Exploring the action mechanisms and enhancement pathways of the resilience of agricultural product green supply chains is conducive to strengthening the system’s risk resistance capacity and providing decision support for achieving the “dual carbon” goals. Based on theories such as dynamic capability theory [...] Read more.
Exploring the action mechanisms and enhancement pathways of the resilience of agricultural product green supply chains is conducive to strengthening the system’s risk resistance capacity and providing decision support for achieving the “dual carbon” goals. Based on theories such as dynamic capability theory and complex adaptive systems, this paper constructs a resilience framework covering the three stages of “steady-state maintenance–dynamic adjustment–continuous evolution” from both single and multiple perspectives. Combined with 768 units of multi-agent questionnaire data, it adopts Structural Equation Modeling (SEM) and fuzzy-set Qualitative Comparative Analysis (fsQCA) to analyze the influencing factors of resilience and reveal the nonlinear mechanisms of resilience formation. Secondly, by integrating configurational analysis with machine learning, it innovatively constructs a resilience level prediction model based on fsQCA-XGBoost. The research findings are as follows: (1) fsQCA identifies a total of four high-resilience pathways, verifying the core proposition of “multiple conjunctural causality” in complex adaptive system theory; (2) compared with single algorithms such as Random Forest, Decision Tree, AdaBoost, ExtraTrees, and XGBoost, the fsQCA-XGBoost prediction method proposed in this paper achieves an optimization of 66% and over 150% in recall rate and positive sample identification, respectively. It reduces false negative risk omission by 50% and improves the ability to capture high-risk samples by three times, which verifies the feasibility and applicability of the fsQCA-XGBoost prediction method in the field of resilience prediction for agricultural product green supply chains. This research provides a risk prevention and control paradigm with both theoretical explanatory power and practical operability for agricultural product green supply chains, and promotes collaborative realization of the “carbon reduction–supply stability–efficiency improvement” goals, transforming them from policy vision to operational reality. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
Show Figures

Figure 1

30 pages, 2371 KiB  
Article
Optimization of Joint Distribution Routes for Automotive Parts Considering Multi-Manufacturer Collaboration
by Lingsan Dong, Jian Wang and Xiaowei Hu
Sustainability 2025, 17(14), 6615; https://doi.org/10.3390/su17146615 - 19 Jul 2025
Viewed by 463
Abstract
The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production [...] Read more.
The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production efficiency and cuts costs for automotive manufacturers but also enhances supply chain management and advances sustainable development. This study focuses on the optimization of automotive parts distribution routes under a multi-manufacturer collaboration framework. An optimization model is proposed to minimize the total operational costs within a joint distribution system, incorporating an improved Ant Colony Optimization (ACO) algorithm to formulate an effective solution approach. The model considers complex factors such as dynamic demand, time-window constraints, and periodic distribution. A PIVNS algorithm integrating a virtual distribution center with an enhanced variable neighborhood search is designed to efficiently address the problem. The efficacy of the proposed model and algorithm is substantiated through extensive experiments grounded in real-world case studies. The results confirm the high computational efficiency of the proposed approach in solving large-scale problems, which significantly reduces distribution costs while improving overall supply chain performance. Specifically, the PIVNS algorithm achieves an average travel distance of 2020.85 km, an average runtime of 112.25 s, a total transportation cost of CNY 12,497.99, and a loading rate of 86.775%. These findings collectively highlight the advantages of the proposed method in enhancing efficiency, reducing costs, and optimizing resource utilization. Overall, this study provides valuable insights for logistics optimization in automotive manufacturing and offers a significant reference for future research and practical applications in the field. Full article
Show Figures

Figure 1

27 pages, 1686 KiB  
Systematic Review
A Systematic Review of Artificial Intelligence (AI) and Machine Learning (ML) in Pharmaceutical Supply Chain (PSC) Resilience: Current Trends and Future Directions
by Shireen Al-Hourani and Dua Weraikat
Sustainability 2025, 17(14), 6591; https://doi.org/10.3390/su17146591 - 19 Jul 2025
Viewed by 721
Abstract
The resilience of the pharmaceutical supply chain (PSC) is crucial to ensuring the availability of medical products. However, increasing complexity and logistical bottlenecks have exposed weaknesses within PSC frameworks. These challenges underscore the urgent need for more resilient and intelligent supply chain solutions. [...] Read more.
The resilience of the pharmaceutical supply chain (PSC) is crucial to ensuring the availability of medical products. However, increasing complexity and logistical bottlenecks have exposed weaknesses within PSC frameworks. These challenges underscore the urgent need for more resilient and intelligent supply chain solutions. Recently, Artificial Intelligence and machine learning (AI/ML) have emerged as transformative technologies to enhance PSC resilience. This study presents a systematic review evaluating the role of AI/ML in advancing PSC resilience and their applications across PSC functions. A comprehensive search of five academic databases (Scopus, the Web of Science, IEEE Xplore, PubMed, and EMBASE) identified 89 peer-reviewed studies published between 2019 and 2025. PRISMA 2020 guidelines were implemented, resulting in a final dataset of 32 studies. In addition to analyzing applications, this study identifies the AI/ML grouped into five main categories, providing a clearer understanding of their impact on PSC resilience. The findings reveal that despite AI/ML’s promise, significant research gaps persist. Particularly, AI/ML-driven regulatory compliance and real-time supplier collaboration remain underexplored. Over 59.3% of studies fail to address regulatory frameworks and ethical considerations. In addition, major challenges emerge such as the limited real-world deployment of AI/ML-driven solutions and the lack of managerial impacts on PSC resilience. This study emphasizes the need for stronger regulatory frameworks, broader empirical validation, and AI/ML-driven predictive modeling. This study proposes recommendations for future research to foster more efficient, transparent and ethical PSCs capable of navigating the complexities of global healthcare. Full article
Show Figures

Figure 1

34 pages, 14529 KiB  
Review
Research and Applications of Additive Manufacturing in Oil and Gas Extraction and Gathering Engineering
by Xiang Jin, Jubao Liu, Wei Fan, Mingyuan Sun, Zhongmin Xiao, Zongheng Fan, Ming Yang and Liming Yao
Materials 2025, 18(14), 3353; https://doi.org/10.3390/ma18143353 - 17 Jul 2025
Viewed by 624
Abstract
The growing consumption of oil and gas resources and the increasing difficulty of extraction have created major challenges for traditional manufacturing and maintenance, particularly in the timely supply of critical components, customized production, and complex structure fabrication. Additive manufacturing (AM) technology, with its [...] Read more.
The growing consumption of oil and gas resources and the increasing difficulty of extraction have created major challenges for traditional manufacturing and maintenance, particularly in the timely supply of critical components, customized production, and complex structure fabrication. Additive manufacturing (AM) technology, with its high design freedom, precision, and rapid prototyping, provides new approaches to address these issues. However, systematic reviews of related efforts are scarce. This paper reviews the applications and progress of metal and non-metal AM technologies in oil and gas extraction and gathering engineering, focusing on the just-in-time (JIT) manufacturing of failed components, the manufacturing and repair of specialized equipment and tools for oil and gas extraction and gathering, and artificial core and reservoir geological modeling fabrication. AM applications in this field remain exploratory and face challenges with regard to their standards, supply chains, materials, and processes. Future research should emphasize developing materials and processes for extreme conditions, optimizing process parameters, establishing standards and traceability systems, and integrating AM with digital design and reverse engineering to support efficient, safe, and sustainable industry development. This work aims to provide a reference for advancing AM research and engineering applications in the oil and gas sector. Full article
Show Figures

Figure 1

29 pages, 870 KiB  
Article
Deep Reinforcement Learning for Optimal Replenishment in Stochastic Assembly Systems
by Lativa Sid Ahmed Abdellahi, Zeinebou Zoubeir, Yahya Mohamed, Ahmedou Haouba and Sidi Hmetty
Mathematics 2025, 13(14), 2229; https://doi.org/10.3390/math13142229 - 9 Jul 2025
Viewed by 509
Abstract
This study presents a reinforcement learning–based approach to optimize replenishment policies in the presence of uncertainty, with the objective of minimizing total costs, including inventory holding, shortage, and ordering costs. The focus is on single-level assembly systems, where both component delivery lead times [...] Read more.
This study presents a reinforcement learning–based approach to optimize replenishment policies in the presence of uncertainty, with the objective of minimizing total costs, including inventory holding, shortage, and ordering costs. The focus is on single-level assembly systems, where both component delivery lead times and finished product demand are subject to randomness. The problem is formulated as a Markov decision process (MDP), in which an agent determines optimal order quantities for each component by accounting for stochastic lead times and demand variability. The Deep Q-Network (DQN) algorithm is adapted and employed to learn optimal replenishment policies over a fixed planning horizon. To enhance learning performance, we develop a tailored simulation environment that captures multi-component interactions, random lead times, and variable demand, along with a modular and realistic cost structure. The environment enables dynamic state transitions, lead time sampling, and flexible order reception modeling, providing a high-fidelity training ground for the agent. To further improve convergence and policy quality, we incorporate local search mechanisms and multiple action space discretizations per component. Simulation results show that the proposed method converges to stable ordering policies after approximately 100 episodes. The agent achieves an average service level of 96.93%, and stockout events are reduced by over 100% relative to early training phases. The system maintains component inventories within operationally feasible ranges, and cost components—holding, shortage, and ordering—are consistently minimized across 500 training episodes. These findings highlight the potential of deep reinforcement learning as a data-driven and adaptive approach to inventory management in complex and uncertain supply chains. Full article
Show Figures

Figure 1

27 pages, 7655 KiB  
Article
Subsidy Policy Interactions in Agricultural Supply Chains: An Interdepartmental Coordination Perspective
by Aibo Yao, Lin Jiang, Bingxue Guo and Wei Li
Agriculture 2025, 15(14), 1464; https://doi.org/10.3390/agriculture15141464 - 8 Jul 2025
Viewed by 251
Abstract
The efficacy of government subsidy programs in agriculture is frequently compromised by internal policy conflicts that arise between competing government departments. This challenge is addressed herein, with a focus on the policy environment in China, through the development of a game-theoretic model of [...] Read more.
The efficacy of government subsidy programs in agriculture is frequently compromised by internal policy conflicts that arise between competing government departments. This challenge is addressed herein, with a focus on the policy environment in China, through the development of a game-theoretic model of an agricultural supply chain. This model explicitly incorporates two competing government bodies—the Agriculture and Rural Affairs Department (ARAD) and the Development and Reform Commission (DRC)—each with distinct objectives and performance indicators. Within this framework, the strategic interactions of four subsidy types are analyzed: production and cold-chain subsidies (ARAD), and platform operation and blockchain subsidies (DRC). The findings reveal that department-specific performance indicators can significantly distort the overall effectiveness of subsidies. While individual subsidies may achieve their intended departmental goals, their combined impact is shown to be complex and frequently suboptimal in the absence of higher-level coordination. Notably, a subsidy portfolio combining production and platform operation subsidies is found to consistently yield superior performance in maximizing social welfare. Ultimately, this research contributes a new framework for understanding subsidy policies and provides actionable insights for optimizing interdepartmental coordination to enhance supply chain performance. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

34 pages, 4095 KiB  
Article
Integrating LCA and Multi-Criteria Tools for Eco-Design Approaches: A Case Study of Mountain Farming Systems
by Pasqualina Sacco, Davide Don, Andreas Mandler and Fabrizio Mazzetto
Sustainability 2025, 17(14), 6240; https://doi.org/10.3390/su17146240 - 8 Jul 2025
Viewed by 383
Abstract
Designing sustainable farming systems in mountainous regions is particularly challenging because of complex economic, social, and environmental factors. Production models prioritizing sustainability and environmental protection require integrated assessment methodologies that can address multiple criteria and incorporate diverse stakeholders’ perspectives while ensuring accuracy and [...] Read more.
Designing sustainable farming systems in mountainous regions is particularly challenging because of complex economic, social, and environmental factors. Production models prioritizing sustainability and environmental protection require integrated assessment methodologies that can address multiple criteria and incorporate diverse stakeholders’ perspectives while ensuring accuracy and applicability. Life cycle assessment (LCA) and multi-actor multi-criteria analysis (MAMCA) are two complementary approaches that support “eco-design” strategies aimed at identifying the most sustainable options, including on-farm transformation processes. This study presents an integrated application of LCA and MAMCA to four supply chains: rye bread, barley beer, cow cheese, and goat cheese. The results show that cereal-based systems have lower environmental impacts than livestock systems do, although beer’s required packaging significantly increases its footprint. The rye bread chain emerged as the most sustainable and widely preferred option, except under high-climatic risk scenarios. In contrast, livestock-based systems were generally less favorable because of greater impacts and risks but gained preference when production security became a priority. Both approaches underline the need for a deep understanding of production performance. Future assessments in mountain contexts should integrate logistical aspects and cooperative models to enhance the resilience and sustainability of short food supply chains. Full article
Show Figures

Figure 1

32 pages, 1107 KiB  
Review
Advanced Planning Systems in Production Planning Control: An Ethical and Sustainable Perspective in Fashion Sector
by Martina De Giovanni, Mariangela Lazoi, Romeo Bandinelli and Virginia Fani
Appl. Sci. 2025, 15(13), 7589; https://doi.org/10.3390/app15137589 - 7 Jul 2025
Viewed by 488
Abstract
In the shift toward sustainable and resource-efficient manufacturing, Artificial Intelligence (AI) is playing a transformative role in overcoming the limitations of traditional production scheduling methods. This study, based on a Systematic Literature Review (SLR), explores how AI techniques enhance Advanced Planning and Scheduling [...] Read more.
In the shift toward sustainable and resource-efficient manufacturing, Artificial Intelligence (AI) is playing a transformative role in overcoming the limitations of traditional production scheduling methods. This study, based on a Systematic Literature Review (SLR), explores how AI techniques enhance Advanced Planning and Scheduling (APS) systems, particularly under finite-capacity constraints. Traditional scheduling models often overlook real-time resource limitations, leading to inefficiencies in complex and dynamic production environments. AI, with its capabilities in data fusion, pattern recognition, and adaptive learning, enables the development of intelligent, flexible scheduling solutions. The integration of metaheuristic algorithms—especially Ant Colony Optimization (ACO) and hybrid models like GA-ACO—further improves optimization performance by offering high-quality, near-optimal solutions without requiring extensive structural modeling. These AI-powered APS systems enhance scheduling accuracy, reduce lead times, improve resource utilization, and enable the proactive identification of production bottlenecks. Especially relevant in high-variability sectors like fashion, these approaches support Industry 5.0 goals by enabling agile, sustainable, and human-centered manufacturing systems. The findings have been highlighted in a structured framework for AI-based APS systems supported by metaheuristics that compares the Industry 4.0 and Industry 5.0 perspectives. The study offers valuable implications for both academia and industry: academics can gain a synthesized understanding of emerging trends, while practitioners are provided with actionable insights for deploying intelligent planning systems that align with sustainability goals and operational efficiency in modern supply chains. Full article
Show Figures

Figure 1

Back to TopTop