Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (670)

Search Parameters:
Keywords = complex nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4228 KB  
Article
Complex Effects of Functional Groups on the Cotransport Behavior of Functionalized Fe3O4 Magnetic Nanospheres and Tetracycline in Porous Media
by Yiqun Cui, Ming Wu, Meng Chen and Yanru Hao
Water 2025, 17(19), 2889; https://doi.org/10.3390/w17192889 - 4 Oct 2025
Abstract
In this study, four types of Fe3O4-based magnetic nanospheres were functionalized with distinct surface groups to examine how surface chemistry influences their co-transport with tetracycline (TC) in porous media. The functional groups investigated are carboxyl (−COOH), epoxy (−EPOXY), silanol [...] Read more.
In this study, four types of Fe3O4-based magnetic nanospheres were functionalized with distinct surface groups to examine how surface chemistry influences their co-transport with tetracycline (TC) in porous media. The functional groups investigated are carboxyl (−COOH), epoxy (−EPOXY), silanol (−SiOH), and amino (−NH2). Particles bearing −COOH, −EPOXY, or −SiOH are negatively charged, facilitating their transport through porous media, whereas −NH2-modified particles acquire a positive charge, leading to strong electrostatic attraction to the negatively charged TC and quartz sand, and consequently substantial retention with reduced mobility. Adsorption of TC onto Fe3O4-MNPs is predominantly chemisorptive, driven by ligand exchange and the formation of coordination complexes between the ionizable carboxyl and amino groups of TC and the surface hydroxyls of Fe3O4-MNPs. Additional contributions arise from electrostatic interactions, hydrogen bonding, hydrophobic effects, and cation–π interactions. Moreover, the carboxylate moiety of TC can coordinate to surface Fe centers via its oxygen atoms. Molecular dynamics simulations reveal a hierarchy of adsorption energies for TC on the differently modified surfaces: Fe3O4-NH2 > Fe3O4-EPOXY > Fe3O4-COOH > Fe3O4-SiOH, consistent with experimental findings. The results underscore that tailoring the surface properties of engineered nanoparticles substantially modulates their environmental fate and interactions, offering insights into the potential ecological risks associated with these nanomaterials. Full article
Show Figures

Graphical abstract

17 pages, 3165 KB  
Article
Simple Fabrication and Biological Evaluation of Ulva australis-Derived Marine Carbon Dots with Anti-Inflammation, Anti-Oxidation, and Anti-Adipogenesis Features
by Kyung Woo Kim, Gun-Woo Oh, Seung-Hyun Jung, Seok-Chun Ko, Ji-Yul Kim, Dongwoo Yang, Du-Min Jo, Dae-Sung Lee and Grace Choi
J. Mar. Sci. Eng. 2025, 13(10), 1878; https://doi.org/10.3390/jmse13101878 - 1 Oct 2025
Abstract
The overabundance of Ulva australis (U. australis), a green macroalga widespread along the coastline of Jeju Island, Republic of Korea, presents a growing ecological challenge, as it can cause unpleasant odors and disturb the ecological balance. Hence, we report a sustainable [...] Read more.
The overabundance of Ulva australis (U. australis), a green macroalga widespread along the coastline of Jeju Island, Republic of Korea, presents a growing ecological challenge, as it can cause unpleasant odors and disturb the ecological balance. Hence, we report a sustainable valorization strategy for converting U. australis biomass into marine carbon dots (MCDs) via a facile hydrothermal carbonization process. The synthesis requires no hazardous reagents or complex instrumentation and yields highly water-dispersible MCDs with excitation-dependent fluorescence properties. Comprehensive in vitro and in vivo assessments revealed the multifunctional bioactivity of the synthesized MCDs. Moreover, in vivo fluorescence imaging at seven days post-fertilization revealed the preferential accumulation of MCDs along the vertebral column, implying a possible affinity for mineralized tissues and suggesting their utility in skeletal imaging applications. Collectively, these findings underscore the potential of U. australis-derived MCDs as biocompatible and multifunctional nanomaterials with broad biomedical applications. Full article
(This article belongs to the Special Issue Advances in Marine Natural Products)
Show Figures

Figure 1

18 pages, 582 KB  
Review
A Review on the Application of Magnetic Nanomaterials for Environmental and Ecological Remediation
by Nan Lu, Yingying Sun, Yan Li, Zhe Liu, Na Wang, Tingting Meng and Yuhu Luo
Toxics 2025, 13(10), 814; https://doi.org/10.3390/toxics13100814 - 25 Sep 2025
Abstract
Despite the immense potential in environmental remediation, the translation of magnetic nanomaterials (MNMs) from laboratory innovations to practical, field-scale applications remains hindered by significant technical and environmental challenges. This is particularly evident in soil environments—which are inherently more complex than aquatic systems and [...] Read more.
Despite the immense potential in environmental remediation, the translation of magnetic nanomaterials (MNMs) from laboratory innovations to practical, field-scale applications remains hindered by significant technical and environmental challenges. This is particularly evident in soil environments—which are inherently more complex than aquatic systems and have received comparatively less research attention. Beginning with an outline of the fundamental properties that make iron-based MNMs effective as adsorbents and catalysts for heavy metals and organic pollutants, this review systematically examines their core contaminant removal mechanisms. These include adsorption, catalytic degradation (e.g., via Fenton-like reactions), and magnetic recovery. However, the practical implementation of MNMs is constrained by several key limitations, such as particle agglomeration, oxidative instability, and reduced efficacy in multi-pollutant systems. More critically, major uncertainties persist regarding their long-term environmental fate and biocompatibility. In light of these challenges, we propose that future efforts should prioritize the rational design of stable, selective, and intelligent MNMs through advanced surface engineering and interdisciplinary collaboration. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

33 pages, 8051 KB  
Review
Synthesis of Magnetic Core–Shell Materials and Their Application in Detection of Food Contaminants
by Jing Cao, Huilin Li, Jingjing Cui, Mengmeng Gao, Jingming Sun and Mingfei Pan
Foods 2025, 14(19), 3305; https://doi.org/10.3390/foods14193305 - 24 Sep 2025
Viewed by 68
Abstract
Food contamination poses a significant global public health challenge, necessitating the accurate detection of hazardous substances within complex food matrices. Magnetic core–shell nanomaterials have emerged as critical materials for trace contaminant analysis due to their efficient magnetic separation capabilities, excellent adsorption performance, and [...] Read more.
Food contamination poses a significant global public health challenge, necessitating the accurate detection of hazardous substances within complex food matrices. Magnetic core–shell nanomaterials have emerged as critical materials for trace contaminant analysis due to their efficient magnetic separation capabilities, excellent adsorption performance, and tunable surface functionalities. By encapsulating magnetic cores with functional shells, these nanomaterials combine rapid magnetic responsiveness with advantageous shell properties, including target-specific recognition, enhanced dispersibility, colloidal stability, and high surface area. This enables a comprehensive detection approach encompassing target adsorption, rapid separation, and signal amplification. Magnetic core–shell nanomaterials have been effectively integrated with techniques including magnetic solid-phase extraction (MSPE), fluorescence (FL) assays, and lateral flow immunoassays (LFIAs), demonstrating broad applicability in food safety monitoring and detection. This review outlines synthesis strategies for magnetic core–shell nanomaterials, highlights their applications for food contaminant detection, and discusses future challenges and prospects in the field of food safety analysis. Full article
Show Figures

Graphical abstract

36 pages, 2691 KB  
Review
Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics
by Janani Sridev, Arif R. Deen, Md Younus Ali, Wei-Ting Ting, M. Jamal Deen and Matiar M. R. Howlader
Biosensors 2025, 15(9), 626; https://doi.org/10.3390/bios15090626 - 19 Sep 2025
Viewed by 575
Abstract
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a [...] Read more.
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a non-invasive, real-time diagnostic medium—offers transformative potential for early disease identification and personalized health monitoring. This review synthesizes advancements in electrochemical sensor technologies tailored for Trp and Tryp quantification, emphasizing their clinical relevance in diagnosing conditions like oral squamous cell carcinoma (OSCC), Alzheimer’s disease (AD), and breast cancer, where dysregulated Trp metabolism reflects immune dysfunction or tumor progression. Electrochemical platforms have overcome the limitations of conventional techniques (e.g., enzyme-linked immunosorbent assays (ELISA) and mass spectrometry) by integrating innovative nanomaterials and smart engineering strategies. Carbon-based architectures, such as graphene (Gr) and carbon nanotubes (CNTs) functionalized with metal nanoparticles (Ni and Co) or nitrogen dopants, amplify electron transfer kinetics and catalytic activity, achieving sub-nanomolar detection limits. Synergies between doping and advanced functionalization—via aptamers (Apt), molecularly imprinted polymers (MIPs), or metal-oxide hybrids—impart exceptional selectivity, enabling the precise discrimination of Trp and Tryp in complex matrices like saliva. Mechanistically, redox reactions at the indole ring are optimized through tailored electrode interfaces, which enhance reaction kinetics and stability over repeated cycles. Translational strides include 3D-printed microfluidics and wearable sensors for continuous intraoral health surveillance, demonstrating clinical utility in detecting elevated Trp levels in OSCC and breast cancer. These platforms align with point-of-care (POC) needs through rapid response times, minimal fouling, and compatibility with scalable fabrication. However, challenges persist in standardizing saliva collection, mitigating matrix interference, and validating biomarkers across diverse populations. Emerging solutions, such as AI-driven analytics and antifouling coatings, coupled with interdisciplinary efforts to refine device integration and manufacturing, are critical to bridging these gaps. By harmonizing material innovation with clinical insights, electrochemical sensors promise to revolutionize precision medicine, offering cost-effective, real-time diagnostics for both localized oral pathologies and systemic diseases. As the field advances, addressing stability and scalability barriers will unlock the full potential of these technologies, transforming them into indispensable tools for early intervention and tailored therapeutic monitoring in global healthcare. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Point-of-Care Testing)
Show Figures

Figure 1

16 pages, 3168 KB  
Article
Nanozinc Ecotoxicity in the Freshwater Invasive Bivalve Limnoperna fortunei Under a Climate Change Scenario
by Analía Ale, Victoria S. Andrade, Florencia M. Rojas Molina, Luciana Montalto, Lucía M. Odetti, Pablo E. Antezana, Martín F. Desimone and María Fernanda Simoniello
Animals 2025, 15(18), 2734; https://doi.org/10.3390/ani15182734 - 19 Sep 2025
Viewed by 213
Abstract
In a changing world where temperature is expected to increase, emerging nanopollutants could affect the biota in complex ways. With zinc oxide nanoparticles (ZnONP) being one of the most applied nanomaterials, we exposed the freshwater invasive bivalve Limnoperna fortunei to 0 (control), 25, [...] Read more.
In a changing world where temperature is expected to increase, emerging nanopollutants could affect the biota in complex ways. With zinc oxide nanoparticles (ZnONP) being one of the most applied nanomaterials, we exposed the freshwater invasive bivalve Limnoperna fortunei to 0 (control), 25, and 250 µg/L of ZnONP at 27 or 31 °C for 96 h. In parallel, a 24 h bioassay was performed to calculate filtration rate. After 96 h, in soft tissue of the bivalves, tissue-damage-related enzyme activities (aspartate aminotransferase and alkaline phosphatase) were inhibited at both concentrations and temperatures. Oxidative stress was observed through increased superoxide dismutase activity after both ZnONP concentrations at 27 °C and decreased catalase activity after 250 µg/L at 31 °C, while glutathione-S-transferase activity showed opposing significant tendencies depending on temperature. After 6 h, the filtration rate differed significantly between control groups, as it was higher at 31 °C. However, in case of 31 °C, bivalves exposed to ZnONP drastically decreased their filtration rate compared to control. Our study highlights nanotoxicological implications of ZnONP; as even at environmentally relevant concentrations (such as the lowest applied in this study), they exert deleterious effects on freshwater organisms, which could be worsened in a climate-change scenario. Full article
Show Figures

Figure 1

22 pages, 1231 KB  
Proceeding Paper
Emerging Trends in Paper-Based Electrochemical Biosensors for Healthcare Applications
by Aparoop Das, Partha Protim Borthakur, Dibyajyoti Das, Jon Jyoti Sahariah, Parimita Kalita and Kalyani Pathak
Eng. Proc. 2025, 106(1), 8; https://doi.org/10.3390/engproc2025106008 - 11 Sep 2025
Viewed by 641
Abstract
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary [...] Read more.
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary action, which make it an ideal candidate for low-cost, functional, and reliable diagnostic devices. The simplicity and cost-effectiveness of paper-based biosensors make them especially suitable for point-of-care (POC) applications, particularly in resource-limited settings where traditional diagnostic tools may be inaccessible. Their lightweight nature and ease of operation allow non-specialized users to perform diagnostic tests without the need for complex laboratory equipment, making them suitable for emergency, field, and remote applications. Technological advancements in paper-based biosensors have significantly enhanced their capabilities. Integration with microfluidic systems has improved fluid handling and reagent storage, resulting in enhanced sensor performance, including greater sensitivity and specificity for target biomarkers. The use of nanomaterials in electrode fabrication, such as reduced graphene oxide and gold nanoparticles, has further elevated their sensitivity, allowing for the precise detection of low-concentration biomarkers. Moreover, the development of multiplexed sensor arrays has enabled the simultaneous detection of multiple biomarkers from a single sample, facilitating comprehensive and rapid diagnostics in clinical settings. These biosensors have found applications in diagnosing a wide range of diseases, including infectious diseases, cancer, and metabolic disorders. They are also effective in genetic analysis and metabolic monitoring, such as tracking glucose, lactate, and uric acid levels, which are crucial for managing chronic conditions like diabetes and kidney diseases. In this review, the latest advancements in paper-based electrochemical biosensors are explored, with a focus on their applications, technological innovations, challenges, and future directions. Full article
Show Figures

Figure 1

29 pages, 6045 KB  
Review
Advancements and Strategies for Selectivity Enhancement in Chemiresistive Gas Sensors
by Jianwei Liu, Jingyun Sun, Lei Zhu, Jiaxin Zhang, Xiaomeng Yang, Yating Zhang and Wei Yan
Nanomaterials 2025, 15(17), 1381; https://doi.org/10.3390/nano15171381 - 8 Sep 2025
Cited by 2 | Viewed by 544
Abstract
Chemiresistive gas sensors are extensively employed in environmental monitoring, disease diagnostics, and industrial safety due to their high sensitivity, low cost, and miniaturization. However, the high cross-sensitivity and poor selectivity of gas sensors limit their practical applications in complex environmental detection. In particular, [...] Read more.
Chemiresistive gas sensors are extensively employed in environmental monitoring, disease diagnostics, and industrial safety due to their high sensitivity, low cost, and miniaturization. However, the high cross-sensitivity and poor selectivity of gas sensors limit their practical applications in complex environmental detection. In particular, the mechanisms underlying the selective response of certain chemiresistive materials to specific gases are not yet fully understood. In this review, we systematically discuss material design strategies and system integration techniques for enhancing the selectivity and sensitivity of gas sensors. The focus of material design primarily on the modification and optimization of advanced functional materials, including semiconductor metal oxides (SMOs), metallic/alloy systems, conjugated polymers (CPs), and two-dimensional nanomaterials. This study offers a comprehensive investigation into the underlying mechanisms for enhancing the gas sensing performance through oxygen vacancy modulation, single-atom catalysis, and heterojunction engineering. Furthermore, we explore the potential of emerging technologies, such as bionics and artificial intelligence, to synergistically integrate with functional sensitive materials, thereby achieving a significant enhancement in the selectivity of gas sensors. This review concludes by offering recommendations aimed at improving the selectivity of gas sensors, along with suggesting potential avenues for future research and development. Full article
Show Figures

Graphical abstract

47 pages, 3847 KB  
Review
Photoelectrochemical Aptasensors for Biosensing: A Review
by Gang Xiao, Jiazheng Li, Boxiang Zhao and Zhao Yue
Chemosensors 2025, 13(9), 344; https://doi.org/10.3390/chemosensors13090344 - 8 Sep 2025
Viewed by 595
Abstract
Biodetection, the basis of many biotechnologies, has rapidly developed in recent years. Among various biodetection methods, the photoelectrochemical (PEC) sensor is an emerging analytical method and has been applied in biodetection widely because of its high sensitivity, low cost, expandability into multichannel sensor [...] Read more.
Biodetection, the basis of many biotechnologies, has rapidly developed in recent years. Among various biodetection methods, the photoelectrochemical (PEC) sensor is an emerging analytical method and has been applied in biodetection widely because of its high sensitivity, low cost, expandability into multichannel sensor arrays, and many other superior properties. Unlike conventional electrochemical aptasensors, the PEC aptasensor uses light as the excitation and an electrical photocurrent as the readout, which separates the stimulus from the measurement and reduces the excitation-related background. By modulating the light and demodulating the current, the PEC aptasensor improves the signal-to-noise ratio and lowers the limit of detection in complex matrices. Compared with optical aptasensors, the PEC aptasensor relies on simple light sources and electrodes rather than bulky imaging optics, enabling easier miniaturization and light-addressed multiplexed arrays. Therefore, aptamer-based PEC aptasensors have become a new hotspot in the field of biodetection. In this review, the development history of PEC aptasensors was presented. Then, this paper focuses on the photoactive nanomaterials, aptamers as sensing films, and sensing strategies of PEC aptasensors. The applications of PEC aptasensors in biodetection were also discussed. Finally, current challenges are discussed and opportunities in the future are prospected. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Electrochemical Sensors)
Show Figures

Figure 1

23 pages, 3367 KB  
Review
Noble Metal-Based Nanocomposites for Surface-Enhanced Raman Spectroscopy Detection of Food Contaminants
by Huilin Li, Rui Gao, Xiaochun Hu, Mengmeng Gao and Mingfei Pan
Foods 2025, 14(17), 3108; https://doi.org/10.3390/foods14173108 - 5 Sep 2025
Viewed by 514
Abstract
Public health concerns related to food contaminants, including biotoxins, pesticide and veterinary drug residues, illegal additives, foodborne pathogens, and heavy metals, have garnered significant public attention in recent years. Consequently, there is an urgent need to develop rapid and accurate technologies to detect [...] Read more.
Public health concerns related to food contaminants, including biotoxins, pesticide and veterinary drug residues, illegal additives, foodborne pathogens, and heavy metals, have garnered significant public attention in recent years. Consequently, there is an urgent need to develop rapid and accurate technologies to detect these harmful substances. Surface-enhanced Raman spectroscopy (SERS), due to its characteristics of high sensitivity and specificity enabling the detection of food contaminants within complex matrices, has attracted widespread interest. This review focuses on the application of noble metal-based nanocomposites as SERS-active substrates for food contaminant detection. It particularly highlights the structure–performance relationships of metallic nanomaterials, including gold and silver nanoparticles (e.g., nanospheres, nanostars, nanorods), bimetallic structures (e.g., Au@Ag core–shell), as well as metal–nonmetal composite nanomaterials such as semiconductor-based, carbon-based, and porous framework-based materials. All of which play a crucial role in achieving effective Raman signal enhancement. Furthermore, the significant applications in detecting various contaminants and distinct advantages in terms of the sensitivity and selectivity of noble metal-based nanomaterials are also discussed. Finally, this review addresses current challenges associated with SERS technology based on noble metal-based nanomaterials and proposes corresponding strategies alongside future perspectives. Full article
Show Figures

Figure 1

24 pages, 1864 KB  
Review
Multiple Applications of Nanomaterials in the Diagnosis and Treatment of Hemorrhagic Stroke
by Boyao Yuan, Taotao Jiang, Jingjing Han, Ting Zheng and Manxia Wang
Biomolecules 2025, 15(9), 1272; https://doi.org/10.3390/biom15091272 - 3 Sep 2025
Viewed by 640
Abstract
Hemorrhagic stroke is a severe cerebrovascular disease with a high rate of disability and mortality. Its complex pathological mechanisms, such as blood–brain barrier damage, neuroinflammation, and oxidative stress, along with the restrictive nature of the blood–brain barrier, have restricted the clinical therapeutic effects [...] Read more.
Hemorrhagic stroke is a severe cerebrovascular disease with a high rate of disability and mortality. Its complex pathological mechanisms, such as blood–brain barrier damage, neuroinflammation, and oxidative stress, along with the restrictive nature of the blood–brain barrier, have restricted the clinical therapeutic effects of drugs. Nanotechnology, with its advantages of targeting ability, biocompatibility, and multifunctionality, has provided a new approach for the precise diagnosis and treatment of hemorrhagic stroke. In terms of diagnosis, imaging technology enhanced by magnetic nanoparticles can achieve real-time bedside monitoring of hematoma dynamics and cerebral perfusion, significantly improving the timeliness compared with traditional imaging methods. In the field of treatment, the nanodrug delivery system can remarkably improve the bioavailability and brain targeting of clinical drugs and herbal medicines by enhancing drug solubility, crossing the blood–brain barrier, and responsive and targeting drug release. Multifunctional inorganic nanomaterials, such as cerium oxide nanoparticles, graphene, and perfluorooctyl octyl ether nanoparticles, can alleviate brain edema and neuronal damage through antioxidant and anti-inflammatory effects, and the scavenging of free radicals. Moreover, gene delivery mediated by nanocarriers and stem cell transplantation protection strategies have provided innovative solutions for regulating molecular pathways and promoting nerve repair. Although nanotechnology has shown great potential in the diagnosis and treatment of hemorrhagic stroke, its clinical translation still faces challenges such as the evaluation of biosafety, standardization of formulations, and verification of long-term efficacy. In the future, it is necessary to further optimize material design and combine multimodal treatment strategies to promote a substantial breakthrough in this field from basic research to clinical application. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

33 pages, 4561 KB  
Review
Smartphone-Integrated Electrochemical Devices for Contaminant Monitoring in Agriculture and Food: A Review
by Sumeyra Savas and Seyed Mohammad Taghi Gharibzahedi
Biosensors 2025, 15(9), 574; https://doi.org/10.3390/bios15090574 - 2 Sep 2025
Cited by 2 | Viewed by 1063
Abstract
Recent progress in microfluidic technologies has led to the development of compact and highly efficient electrochemical platforms, including lab-on-a-chip (LoC) systems, that integrate multiple testing functions into a single, portable device. Combined with smartphone-based electrochemical devices, these systems enable rapid and accurate on-site [...] Read more.
Recent progress in microfluidic technologies has led to the development of compact and highly efficient electrochemical platforms, including lab-on-a-chip (LoC) systems, that integrate multiple testing functions into a single, portable device. Combined with smartphone-based electrochemical devices, these systems enable rapid and accurate on-site detection of food contaminants, including pesticides, heavy metals, pathogens, and chemical additives at farms, markets, and processing facilities, significantly reducing the need for traditional laboratories. Smartphones improve the performance of these platforms by providing computational power, wireless connectivity, and high-resolution imaging, making them ideal for in-field food safety testing with minimal sample and reagent requirements. At the core of these systems are electrochemical biosensors, which convert specific biochemical reactions into electrical signals, ensuring highly sensitive and selective detection. Advanced nanomaterials and integration with Internet of Things (IoT) technologies have further improved performance, delivering cost-effective, user-friendly food monitoring solutions that meet regulatory safety and quality standards. Analytical techniques such as voltammetry, amperometry, and impedance spectroscopy increase accuracy even in complex food samples. Moreover, low-cost engineering, artificial intelligence (AI), and nanotechnology enhance the sensitivity, affordability, and data analysis capabilities of smartphone-integrated electrochemical devices, facilitating their deployment for on-site monitoring of food and agricultural contaminants. This review explains how these technologies address global food safety challenges through rapid, reliable, and portable detection, supporting food quality, sustainability, and public health. Full article
Show Figures

Figure 1

19 pages, 5960 KB  
Article
Involvement of Surface Receptors in the Uptake and Cellular Responses Induced by Cationic Polyamine-Based Carbon Dots in Macrophages
by Agathe Cerland, Ezeddine Harmouch, Mickaël Rapp, Luc Lebeau, Françoise Pons and Carole Ronzani
Toxics 2025, 13(9), 731; https://doi.org/10.3390/toxics13090731 - 30 Aug 2025
Viewed by 580
Abstract
Cationic polyamine-based carbon dots (CDs) are increasingly being explored for biomedical applications. These ultrasmall (<10 nm) fluorescent nanoparticles, synthesized from organic precursors and functionalized with polyamines, possess a strong positive surface charge that enables efficient complexation and delivery of nucleic acids, making them [...] Read more.
Cationic polyamine-based carbon dots (CDs) are increasingly being explored for biomedical applications. These ultrasmall (<10 nm) fluorescent nanoparticles, synthesized from organic precursors and functionalized with polyamines, possess a strong positive surface charge that enables efficient complexation and delivery of nucleic acids, making them promising candidates for gene therapy. However, the mechanisms by which the immune system, particularly macrophages, recognizes and responds to these nanomaterials remain poorly understood. In this study, we investigated the role of surface receptors in the uptake and biological effects of cationic polyamine-based CDs in macrophages. Our data showed that Fc receptors and the Toll-like receptor 4 (TLR4) were minimally involved in CD internalization and associated cellular responses in contrast to scavenger receptors (SRs). Indeed, SR inhibition reduced CD-induced cell viability loss, LDH release, and secretion of the pro-inflammatory cytokine IL-1β. Among SRs, SR-A1 was identified as a key receptor mediating CD recognition and toxicity, likely through activation of the MERTK signaling pathway. Importantly, these mechanisms occurred in the absence of serum, indicating that protein corona formation is not required for CD interaction with macrophage surface receptors. Overall, our findings highlight the prominent role of SRs, particularly SR-A1, as receptors recognizing cationic polyamine-based CDs on the surface of macrophages, and provide new insights into the cellular mechanisms underlying the immunotoxicity of these carbon-based nanomaterials. Full article
Show Figures

Graphical abstract

21 pages, 928 KB  
Proceeding Paper
Advances in Enzyme-Based Biosensors: Emerging Trends and Applications
by Kerolina Sonowal, Partha Protim Borthakur and Kalyani Pathak
Eng. Proc. 2025, 106(1), 5; https://doi.org/10.3390/engproc2025106005 - 29 Aug 2025
Viewed by 610
Abstract
Enzyme-based biosensors have emerged as a transformative technology, leveraging the specificity and catalytic efficiency of enzymes across various domains, including medical diagnostics, environmental monitoring, food safety, and industrial processes. These biosensors integrate biological recognition elements with advanced transduction mechanisms to provide highly sensitive, [...] Read more.
Enzyme-based biosensors have emerged as a transformative technology, leveraging the specificity and catalytic efficiency of enzymes across various domains, including medical diagnostics, environmental monitoring, food safety, and industrial processes. These biosensors integrate biological recognition elements with advanced transduction mechanisms to provide highly sensitive, selective, and portable solutions for real-time analysis. This review explores the key components, detection mechanisms, applications, and future trends in enzyme-based biosensors. Artificial enzymes, such as nanozymes, play a crucial role in enhancing enzyme-based biosensors by mimicking natural enzyme activity while offering improved stability, cost-effectiveness, and scalability. Their integration can significantly boost sensor performance by increasing the catalytic efficiency and durability. Additionally, lab-on-a-chip and microfluidic devices enable the miniaturization of biosensors, allowing for the development of compact, portable devices that require minimal sample volumes for complex diagnostic tests. The functionality of enzyme-based biosensors is built on three essential components: enzymes as biocatalysts, transducers, and immobilization techniques. Enzymes serve as the biological recognition elements, catalyzing specific reactions with target molecules to produce detectable signals. Transducers, including electrochemical, optical, thermal, and mass-sensitive types, convert these biochemical reactions into measurable outputs. Effective immobilization strategies, such as physical adsorption, covalent bonding, and entrapment, enhance the enzyme stability and reusability, enabling consistent performance. In medical diagnostics, they are widely used for glucose monitoring, cholesterol detection, and biomarker identification. Environmental monitoring benefits from these biosensors by detecting pollutants like pesticides, heavy metals, and nerve agents. The food industry employs them for quality control and contamination monitoring. Their advantages include high sensitivity, rapid response times, cost-effectiveness, and adaptability to field applications. Enzyme-based biosensors face challenges such as enzyme instability, interference from biological matrices, and limited operational lifespans. Addressing these issues involves innovations like the use of synthetic enzymes, advanced immobilization techniques, and the integration of nanomaterials, such as graphene and carbon nanotubes. These advancements enhance the enzyme stability, improve sensitivity, and reduce detection limits, making the technology more robust and scalable. Full article
Show Figures

Figure 1

18 pages, 1533 KB  
Review
The Dual Role of Nanomaterials in Ovarian Cancer and Female Fertility as Anti- and Prooxidants
by Massimo Aloisi, Gianna Rossi and Sandra Cecconi
Antioxidants 2025, 14(9), 1066; https://doi.org/10.3390/antiox14091066 - 29 Aug 2025
Viewed by 639
Abstract
Nanomaterials (NMs) are becoming increasingly important in biomedical applications, especially in reproductive biology and oncology. In this review, we examined the “double face” of NMs as prooxidants and antioxidants in relation to ovarian cancer and female fertility. NMs have been shown to reduce [...] Read more.
Nanomaterials (NMs) are becoming increasingly important in biomedical applications, especially in reproductive biology and oncology. In this review, we examined the “double face” of NMs as prooxidants and antioxidants in relation to ovarian cancer and female fertility. NMs have been shown to reduce oxidative stress pathways in tumors, enhancing the effectiveness of chemotherapy and serving as carriers for drugs and compounds. They are also considered for their protective effects on female fertility by improving oocyte quality, maturation, and survival under various healthy and adverse conditions. However, certain NMs can induce oxidative stress, mitochondrial dysfunction, and ovarian tissue apoptosis when present in high concentrations or after prolonged exposure. These “double face” effects highlight the complex nature of NMs’ concentration, shape, and biocompatibility. Although NMs show promise in cancer treatment and fertility preservation, a comprehensive assessment of their prooxidant potential is necessary for successful clinical application. Full article
Show Figures

Graphical abstract

Back to TopTop