Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (248)

Search Parameters:
Keywords = complex chemotherapeutic agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6133 KiB  
Review
Research Progress of Platinum-Based Complexes in Lung Cancer Treatment: Mechanisms, Applications, and Challenges
by Wanqi Liang, Yufeng Huang, Yi Wang, Desheng Lu and Qi Sun
Int. J. Mol. Sci. 2025, 26(16), 7958; https://doi.org/10.3390/ijms26167958 - 18 Aug 2025
Viewed by 287
Abstract
Platinum-based complexes, as one of the mainstay chemotherapeutic agents in oncology, have evolved from first-generation Cisplatin to third-generation Oxaliplatin, with numerous platinum complexes currently under clinical investigation. This review systematically evaluates all existing platinum complexes for lung cancer treatment, including three generations of [...] Read more.
Platinum-based complexes, as one of the mainstay chemotherapeutic agents in oncology, have evolved from first-generation Cisplatin to third-generation Oxaliplatin, with numerous platinum complexes currently under clinical investigation. This review systematically evaluates all existing platinum complexes for lung cancer treatment, including three generations of approved agents and investigational candidates, with comprehensive analysis of therapeutic efficacy and toxicity profiles. Our assessment aims to provide novel insights for developing next-generation platinum complexes with optimal therapeutic potential. Full article
Show Figures

Figure 1

20 pages, 1516 KiB  
Review
Ferroptosis and Nrf2 Signaling in Head and Neck Cancer: Resistance Mechanisms and Therapeutic Prospects
by Jaewang Lee, Youngin Seo and Jong-Lyel Roh
Antioxidants 2025, 14(8), 993; https://doi.org/10.3390/antiox14080993 - 13 Aug 2025
Viewed by 352
Abstract
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells [...] Read more.
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells often evade ferroptosis via activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant and iron-regulatory genes. HNC remains therapeutically challenging due to therapy resistance driven by redox adaptation. This review highlights the ferroptosis pathway—a form of regulated necrosis driven by iron and lipid peroxidation—and its regulation by Nrf2, a master antioxidant transcription factor. We detail how Nrf2 contributes to ferroptosis evasion in HNC and summarize emerging preclinical studies targeting this axis. The review aims to synthesize molecular insights and propose therapeutic perspectives for overcoming resistance in HNC by modulating Nrf2–ferroptosis signaling. We conducted a structured narrative review of the literature using PubMed databases. Relevant studies from 2015 to 2025 focusing on ferroptosis, Nrf2 signaling, and head and neck cancer were selected based on their experimental design, novelty, and relevance to clinical resistance mechanisms. In HNC, Nrf2 mediates resistance through transcriptional upregulation of GPX4 and SLC7A11, epigenetic stabilization by PRMT4 and ALKBH5, and activation by FGF5 and platelet-derived extracellular vesicles. Epstein–Barr virus (EBV) infection also enhances Nrf2 signaling in nasopharyngeal carcinoma. More recently, loss-of-function KEAP1 mutations have been linked to persistent Nrf2 activation and upregulation of NQO1, which confer resistance to both ferroptosis and immune checkpoint therapy. Targeting NQO1 in KEAP1-deficient models restores ferroptosis and reactivates antitumor immunity. Additionally, the natural alkaloid trigonelline has shown promise in reversing Nrf2-mediated ferroptosis resistance in cisplatin-refractory tumors. Pharmacologic agents such as auranofin, fucoxanthin, carnosic acid, and disulfiram/copper complexes have demonstrated efficacy in sensitizing HNC to ferroptosis by disrupting the Nrf2 axis. This review summarizes emerging mechanisms of ferroptosis evasion and highlights therapeutic strategies targeting the Nrf2–ferroptosis network. Integrating ferroptosis inducers with immune and chemotherapeutic approaches may provide new opportunities for overcoming resistance in head and neck malignancies. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Viewed by 542
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

21 pages, 1133 KiB  
Review
Beyond Docetaxel: Targeting Resistance Pathways in Prostate Cancer Treatment
by Tayo Alex Adekiya
BioChem 2025, 5(3), 24; https://doi.org/10.3390/biochem5030024 - 1 Aug 2025
Viewed by 377
Abstract
Prostate cancer continues to be the most common cause of cancer-related disease and mortality among men worldwide, especially in the advanced stages, notably metastatic castration-resistant prostate cancer (mCRPC), which poses significant treatment challenges. Docetaxel, a widely used chemotherapeutic agent, has long served as [...] Read more.
Prostate cancer continues to be the most common cause of cancer-related disease and mortality among men worldwide, especially in the advanced stages, notably metastatic castration-resistant prostate cancer (mCRPC), which poses significant treatment challenges. Docetaxel, a widely used chemotherapeutic agent, has long served as the standard treatment, offering survival benefits and mitigation. However, its clinical impact is frequently undermined by the development of chemoresistance, which is a formidable challenge that leads to treatment failure and disease progression. The mechanisms driving docetaxel resistance are diverse and complex, encompassing modifications in androgen receptor signaling, drug efflux transporters, epithelial-mesenchymal transition (EMT), microtubule alterations, apoptotic pathway deregulation, and tumor microenvironmental influences. Recent evidence suggests that extracellular RNAs influence drug responses, further complicating the resistance landscape. This review offers a broad discussion on the mechanisms of resistance and explores novel therapeutic approaches to address them. These include next-generation taxanes, targeted molecular inhibitors, immunotherapies, and combination regimens that can be designed to counteract specific resistance pathways. By broadening our understanding of docetaxel resistance, this review highlights potential strategies to improve therapeutic efficacy and the potential to enhance outcomes in patients with advanced treatment-resistant prostate cancer. Full article
Show Figures

Figure 1

30 pages, 7551 KiB  
Article
Receptor-Mediated Internalization of L-Asparaginase into Tumor Cells Is Suppressed by Polyamines
by Igor D. Zlotnikov, Alexander A. Ezhov and Elena V. Kudryashova
Int. J. Mol. Sci. 2025, 26(14), 6749; https://doi.org/10.3390/ijms26146749 - 14 Jul 2025
Viewed by 427
Abstract
L-asparaginase (L-ASNase) remains a vital chemotherapeutic agent for acute lymphoblastic leukemia (ALL), primarily due to its mechanism of depleting circulating asparagine essential for leukemic cell proliferation. However, existing ASNases (including pegylated ones) face limitations including immunogenicity, rapid clearance, and off-target toxicities. Earlier, we [...] Read more.
L-asparaginase (L-ASNase) remains a vital chemotherapeutic agent for acute lymphoblastic leukemia (ALL), primarily due to its mechanism of depleting circulating asparagine essential for leukemic cell proliferation. However, existing ASNases (including pegylated ones) face limitations including immunogenicity, rapid clearance, and off-target toxicities. Earlier, we have shown that the conjugation of L-ASNase with the polyamines and their copolymers results in significant enhancement of the antiproliferative activity due to accumulation in tumor cells. We suggested that this effect is probably mediated by polyamine transport system (PTS) receptors that are overexpressed in ALL cells. Here, we investigated the effect of competitive inhibitors of PTS receptors to the L-ASNase interaction with cancer cells (L5178Y, K562 and A549). L-ASNase from Rhodospirillum rubrum (RrA), Erwinia carotovora (EwA), and Escherichia coli (EcA) were conjugated with natural polyamines (spermine—spm, spermidine—spd, putrescine—put) and a synthetic branched polymer, polyethyleneimine 2 kDa (PEI2 ), using carbodiimide chemistry. Polyamine conjugation with L-ASNase significantly increased enzyme binding and cellular uptake, as quantified by fluorimetry and confocal microscopy. This increased cellular uptake translated into increased cytotoxicity of L-ASNase conjugates. The presence of competitive ligands to PTS receptors decreased the uptake of polyamine-conjugated enzymes-fatty acid derivatives of polyamines produced the strongest suppression. Simultaneously with this suppression, in some cases, competitive ligands to PTS significantly promoted the uptake of the native unconjugated enzymes, “equalizing” the cellular access for native vs conjugated ASNase. The screening for competing inhibitors of PTS receptor-mediated endocytosis revealed spermine and caproate/lipoate derivatives as the most potent inhibitors or antagonists, significantly reducing the cytostatic efficacy of polyamine-conjugated ASNases. The results obtained emphasize the complex, cell-type-dependent and inhibitor-specific nature of these interactions, which highlights the profound involvement of PTS in L-ASNase internalization and cytotoxic activity. These findings support the viability of polyamine conjugation as a strategy to enhance L-ASNase delivery and therapeutic efficacy by targeting the PTS. Full article
Show Figures

Graphical abstract

22 pages, 1990 KiB  
Article
Circadian-Tuned Peptide Drug/Gene Co-Delivery Nanocomplexes to Enhance Glioblastoma Targeting and Transfection
by Ana R. Neves, Eric Vivès, Prisca Boisguérin, Telma Quintela and Diana Costa
Int. J. Mol. Sci. 2025, 26(13), 6130; https://doi.org/10.3390/ijms26136130 - 26 Jun 2025
Viewed by 666
Abstract
Glioblastoma is the most prevalent and aggressive form of brain malignancy. Actual treatments face several challenges due to its high aggressiveness and poor prognosis. The chemotherapeutic agent temozolomide (TMZ) has limited therapeutic efficacy, and mutations in the tumour protein p53 gene (TP53 [...] Read more.
Glioblastoma is the most prevalent and aggressive form of brain malignancy. Actual treatments face several challenges due to its high aggressiveness and poor prognosis. The chemotherapeutic agent temozolomide (TMZ) has limited therapeutic efficacy, and mutations in the tumour protein p53 gene (TP53) have been associated with treatment resistance. Thus, this study aimed to explore an innovative therapeutic strategy to enhance treatment efficacy of GBM. Previously, our team had developed a WRAP5 cell-penetrating peptide (CPP) functionalized with a transferrin receptor ligand (Tf) for the targeted delivery of TMZ and a p53-encoding plasmid to glioma cells. Our research had elucidated the circadian oscillations of the clock genes in the U87 glioma cells by employing two different computational models and observed that T16 and T8 time points revealed the highest circadian activity for Bmal1 and Per2 genes, respectively. Similar analysis was conducted for the transferrin receptor, which revealed that T7 and T8 were the key time points for its expression. A confocal microscopy study indicated the highest intracellular uptake of complexes and p53 mRNA expression at T8, the time point with the highest Per2 and transferrin receptor expression. Following mRNA analysis, the evaluation of p53 levels confirmed transcriptional changes at the protein level, and that T16 appears to be a favourable time point for enhancing therapeutic efficacy in U87 glioblastoma cells. These findings suggested that synchronizing the complexes’ administration with the biological clock of GBM cells may significantly improve glioblastoma therapeutics. Full article
(This article belongs to the Special Issue The Importance of Molecular Circadian Rhythms in Health and Disease)
Show Figures

Graphical abstract

23 pages, 8209 KiB  
Article
Enhanced Anticancer Potential of Pd(II)-Thiosemicarbazone Complexes: Selectivity, Mechanisms, and 3D Models
by Mauro A. Lima, Tamara Teixeira, Dario B. Fortaleza, George B. S. Pereira, Amos O. Akinyemi, Carlos André Ferreira Moraes, Moacir R. Forim, Alzir A. Batista, Jocely L. Dutra, João H. Araujo-Neto, Javier A. Ellena and Fillipe V. Rocha
Pharmaceutics 2025, 17(7), 829; https://doi.org/10.3390/pharmaceutics17070829 - 25 Jun 2025
Viewed by 542
Abstract
Background/Objectives: Cancer remains a major global health challenge, driving the search for novel chemotherapeutic agents. This study aimed to evaluate the structural and biological properties of a series of Pd(II) complexes containing triphenylphosphine and thiosemicarbazone ligands, in order to assess their potential as [...] Read more.
Background/Objectives: Cancer remains a major global health challenge, driving the search for novel chemotherapeutic agents. This study aimed to evaluate the structural and biological properties of a series of Pd(II) complexes containing triphenylphosphine and thiosemicarbazone ligands, in order to assess their potential as anticancer agents. Methods: Six Pd(II) complexes with the general formula [PdCl(PPh3)(TSC)] were synthesized and fully characterized by NMR (1H, 1³C, ³1P), FTIR, mass spectrometry, and X-ray diffraction. Their cytotoxic effects were investigated through in vitro assays using 2D and 3D cancer cell models, including clonogenic, wound healing, cell cycle, and apoptosis assays via flow cytometry. Results: Complexes from the B family demonstrated significantly higher cytotoxicity than those from the C family, particularly against ovarian (IC50 < 1 µM) and breast (IC50~2 µM) cancer cell lines. These compounds exhibited superior potency and selectivity compared to cisplatin, with high selectivity indices toward non-tumor cells. Mechanistic studies revealed both cytotoxic and cytostatic effects depending on structural variations, with apoptosis identified as the primary mechanism of cell death. PdB1, in particular, induced a marked increase in late apoptotic populations and maintained its cytotoxic activity in 3D spheroid models by promoting disintegration, loss of cell adhesion, and nuclear fragmentation. Conclusions: The findings underscore the therapeutic promise of Pd(II) complexes, especially PdB1, as potent and selective antineoplastic agents capable of acting effectively in complex tumor environments and potentially overcoming chemoresistance. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Metal Complexes and Derived Materials)
Show Figures

Graphical abstract

48 pages, 8758 KiB  
Review
Targeting Cancer Cell Fate: Apoptosis, Autophagy, and Gold Nanoparticles in Treatment Strategies
by Maria Anthi Kouri, Alexandra Tsaroucha, Theano-Marina Axakali, Panagiotis Varelas, Vassilis Kouloulias, Kalliopi Platoni and Efstathios P. Efstathopoulos
Curr. Issues Mol. Biol. 2025, 47(6), 460; https://doi.org/10.3390/cimb47060460 - 14 Jun 2025
Viewed by 891
Abstract
At the intersection of nanotechnology and cancer biology, gold nanoparticles (AuNPs) have emerged as more than passive carriers—they are active agents capable of reshaping cellular fate. Among their most promising attributes is the potential to modulate apoptosis and autophagy, two intricately linked pathways [...] Read more.
At the intersection of nanotechnology and cancer biology, gold nanoparticles (AuNPs) have emerged as more than passive carriers—they are active agents capable of reshaping cellular fate. Among their most promising attributes is the potential to modulate apoptosis and autophagy, two intricately linked pathways that determine tumor response to stress, damage, and treatment. Apoptosis serves as the principal mechanism of programmed cell death, while autophagy offers a dualistic role—preserving survival under transient stress or contributing to cell death under sustained insult. Thus, understanding how these mechanisms interact—and how AuNPs influence this crosstalk—may be key to unlocking more effective oncologic therapies. This review explores the molecular interplay between apoptosis and autophagy in cancer and evaluates how AuNPs impact these pathways. By enhancing radiosensitization in radiation therapy and improving drug delivery and chemotherapeutic precision, AuNPs offer a unique strategy to circumvent resistance in aggressive or refractory tumors towards shaping their biological behavior and cellular pathways and, therefore, forming a patient-centered personalized therapeutic potential. Yet, clinical translation remains challenging. The dynamic physicochemical nature of AuNPs makes their biological behavior highly context-dependent. Combined with the complexity of apoptotic and autophagic signaling and tumor heterogeneity, this creates a triad of profound intricacy. However, within this complexity lies therapeutic opportunity. Framing AuNPs, apoptosis, and autophagy as a synergistic axis may enable mechanism-informed, adaptable, and patient-specific cancer therapies. This paradigm shift invites a more strategic integration of nanotechnology with molecular oncology, advancing the frontier of precision medicine. Full article
(This article belongs to the Special Issue Effects of Nanoparticles on Living Organisms, 3rd Edition)
Show Figures

Figure 1

27 pages, 4024 KiB  
Article
Photodynamic Evaluation of Synthesized Chlorin-Desthiobiotin Conjugate with Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells In Vitro and in Hydra Organisms In Vivo
by Bailey N. Rutkowski and Meden F. Isaac-Lam
Int. J. Mol. Sci. 2025, 26(11), 5357; https://doi.org/10.3390/ijms26115357 - 3 Jun 2025
Viewed by 656
Abstract
In this article, the synthesis and characterization of chlorin-based photosensitizers for potential applications in photodynamic therapy (PDT) of triple-negative breast cancer (TNBC) are described. The photodynamic efficacy of the synthesized chlorin-desthiobiotin (CDBTN) conjugate and its zinc and indium complexes were compared with the [...] Read more.
In this article, the synthesis and characterization of chlorin-based photosensitizers for potential applications in photodynamic therapy (PDT) of triple-negative breast cancer (TNBC) are described. The photodynamic efficacy of the synthesized chlorin-desthiobiotin (CDBTN) conjugate and its zinc and indium complexes were compared with the starting unconjugated precursor methyl pheophorbide, and assessed in a TNBC cell line in vitro. The chlorin-desthiobiotin complex aims to target the vitamin receptors upregulated in malignant cancer cells. The synthesized CDBTN was combined with chemotherapeutic agents (paclitaxel, cisplatin or fluorouracil) to evaluate their binary photodynamic efficacy. Cell survival assay in vitro indicated that the chlorin-vitamin conjugate CDBTN—alone and in combination with paclitaxel or fluorouracil—is photoactive against the TNBC cell line, but not when combined with cisplatin. The combination index (CI) calculated using the Chou-Talalay method indicated synergism of CDBTN and fluorouracil combination, aligning with the in vitro assay. The photodynamic cytotoxicity of CDBTN was also evaluated in vivo using the hydra as a novel model organism. This study is the first to show the use of the aquatic hydra organism in assessing photodynamic activity of the photosensitizer alone or in combination with chemotherapeutic agents. In vivo results with hydras indicated that the CDBTN-cisplatin combination is more phototoxic than CDBTN-paclitaxel or CDBTN-fluorouracil binary treatment. With the proper adjustment of concentration and light dosage, the synthesized photosensitizer can provide promising application in binary chemotherapy PDT treatment of TNBC. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 758 KiB  
Review
Advances and Challenges in Structural Studies of Bioactive Peptide-Anthracycline Conjugates: A Mass Spectrometric Insight
by Eszter Fehérvári, Katalin Uray and Gitta Schlosser
Int. J. Mol. Sci. 2025, 26(10), 4896; https://doi.org/10.3390/ijms26104896 - 20 May 2025
Viewed by 800
Abstract
Drug conjugates, in which chemotherapeutic or cytotoxic agents are coupled to targeting or delivering macromolecules like peptides or proteins via a linker, revolutionize cancer treatment. While protein-drug and antibody-drug conjugates have already secured a role in clinical oncology, peptide–drug conjugates (PDCs) are emerging [...] Read more.
Drug conjugates, in which chemotherapeutic or cytotoxic agents are coupled to targeting or delivering macromolecules like peptides or proteins via a linker, revolutionize cancer treatment. While protein-drug and antibody-drug conjugates have already secured a role in clinical oncology, peptide–drug conjugates (PDCs) are emerging as a promising alternative, offering enhanced efficacy and fewer side effects compared to the free drug molecules. Comprehensive chemical and biological investigation of PDCs is crucial during drug development and optimization, paving the way for the next generation of targeted therapies. Anthracycline-containing peptide conjugates have emerged as promising candidates in targeted cancer therapies due to their ability to deliver cytotoxic agents directly to tumor cells. However, their structural complexity poses significant analytical challenges, particularly in mass spectrometric characterization. Accurate identification and quantification of these conjugates are critical for assessing their stability, efficacy, and mechanism of action. This article explores the major difficulties encountered during mass spectrometry (MS) analysis of anthracycline-peptide conjugates, focusing on ionization issues, fragmentation behavior, and challenges of detection from biological matrix. Full article
Show Figures

Figure 1

18 pages, 4426 KiB  
Article
TWIK Complex Expression in Prostate Cancer: Insights into the Biological and Therapeutic Significances of Potassium Ion Channels in Clinical Cancer
by Abdulaziz Alfahed
Biology 2025, 14(5), 569; https://doi.org/10.3390/biology14050569 - 19 May 2025
Viewed by 685
Abstract
Ion channels play ubiquitous roles in the maintenance of tumour cell homeostasis and hence are attractive targets in the molecular pathogenesis and progression of prostate cancer (PCa). This study aimed to investigate the roles of the potassium ion channel complex TWIK, a member [...] Read more.
Ion channels play ubiquitous roles in the maintenance of tumour cell homeostasis and hence are attractive targets in the molecular pathogenesis and progression of prostate cancer (PCa). This study aimed to investigate the roles of the potassium ion channel complex TWIK, a member of the two-pore-domain potassium channel subfamily, in clinical PCa. The clinicopathological, gene expression, and copy number data of three clinical PCa cohorts from cancer genomics databases were analysed to determine the clinicopathological, biological, and therapeutic significances of the TWIK expression signature using statistical correlations and gene enrichment techniques. The results show that the PCa subset with high TWIK expression exhibited associations with worse pathological tumours, nodes, and overall tumour stages, as well as with high Gleason scores, high prognostic grade groups, and poorer responses to androgen deprivation therapy. Furthermore, a combination of gene set and gene ontology enrichment analyses showed that the PCa subset with high TWIK complex expression was differentially enriched for known oncogenic signalling pathways, aberrant ubiquitination and glucuronidation activities, and for gene sets of ion channel blockers and chemotherapeutic agents. The implications of these findings with respect to cancer progression, therapeutic response, and opportunities for therapeutic targeting of the TWIK complex are discussed, along with the potential of the TWIK complex as a predictive biomarker for integrated, multitargeted therapy. Full article
(This article belongs to the Special Issue Ion Channels in Cancer Progression)
Show Figures

Figure 1

24 pages, 4706 KiB  
Article
New Dimethoxyaryl-Sesquiterpene Derivatives with Cytotoxic Activity Against MCF-7 Breast Cancer Cells: From Synthesis to Topoisomerase I/II Inhibition and Cell Death Mechanism Studies
by Ileana Araque, Rut Vergara, Jaime Mella, Pablo Aránguiz, Luis Espinoza-Catalán, Cristian O. Salas, Alejandro F. Barrero, José Quílez del Moral, Joan Villena and Mauricio A. Cuellar
Int. J. Mol. Sci. 2025, 26(10), 4539; https://doi.org/10.3390/ijms26104539 - 9 May 2025
Viewed by 1044
Abstract
Breast cancer is a prevalent type of cancer worldwide, leading to both high incidence and mortality, and hence, effective and safe drugs are needed. Because of this, the use of natural products and their derivatives has become a popular strategy for developing new [...] Read more.
Breast cancer is a prevalent type of cancer worldwide, leading to both high incidence and mortality, and hence, effective and safe drugs are needed. Because of this, the use of natural products and their derivatives has become a popular strategy for developing new chemotherapeutic agents. In this study, 17 new sesquiterpene-aryl derivatives were synthesized using (−)-drimenol as the starting material. The cytotoxicity of these semi-synthetic derivatives was determined in MCF-7 cells, a breast cancer model, and in a non-tumor cell line, MCF-10, to evaluate selectivity. The results show that five of these sesquiterpene derivatives had IC50 values between 9.0 and 25 µM. Of these, compound 14c stands out for its higher cytotoxicity in MCF-7 cells but lower cytotoxicity in MCF-10 cells, being more selective than daunorubicin (selective index values of 44 and 28, respectively). In addition, compound 14c induced oxidative stress in MCF-7 cells, activated caspases-3/7, and selectively inhibited topoisomerase II (TOP2) versus topoisomerase I (TOP1) in MCF-7 cells. In silico studies allowed us to propose a binding mode for 14c to the TOP2 DNA complex to validate the experimental results. Therefore, this study demonstrated the importance of aryl-sesquiterpene structures and their promising profiles in the search for new bioinspired antitumor drugs in natural products. Full article
Show Figures

Graphical abstract

27 pages, 707 KiB  
Review
Single-Agent and Associated Therapies with Monoclonal Antibodies: What About Follicular Lymphoma?
by Gabriella Cancemi, Chiara Campo, Santino Caserta, Iolanda Rizzotti and Donato Mannina
Cancers 2025, 17(10), 1602; https://doi.org/10.3390/cancers17101602 - 8 May 2025
Cited by 1 | Viewed by 1316
Abstract
Monoclonal antibodies (mAbs) have become a cornerstone in the treatment of follicular lymphoma (FL), offering highly specific therapeutic targeting that enhances efficacy while minimizing systemic toxicity. Their mechanisms of action include antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and direct apoptotic signaling, effectively [...] Read more.
Monoclonal antibodies (mAbs) have become a cornerstone in the treatment of follicular lymphoma (FL), offering highly specific therapeutic targeting that enhances efficacy while minimizing systemic toxicity. Their mechanisms of action include antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and direct apoptotic signaling, effectively mediating malignant B-cell depletion. Anti-CD20 mAbs, such as rituximab and obinutuzumab, have significantly improved progression-free survival (PFS) and overall survival (OS), establishing immunochemotherapy as the standard of care for FL. However, the emergence of treatment resistance, often characterized by CD20 antigen downregulation or immune escape, has prompted the development of next-generation mAbs with enhanced effector functions. Bispecific antibodies (BsAbs), which simultaneously engage CD20-expressing tumor cells and CD3-positive cytotoxic T cells, have emerged as a novel immunotherapeutic strategy, redirecting T-cell activity to eliminate malignant B cells independently of major histocompatibility complex (MHC) antigen presentation. Additionally, antibody–drug conjugates (ADCs) offer a targeted cytotoxic approach by delivering potent chemotherapeutic payloads directly to tumor cells while limiting off-target effects. The integration of mAbs with immune checkpoint inhibitors and immunomodulatory agents is further enhancing treatment outcomes by overcoming immunosuppressive mechanisms within the tumor microenvironment. Despite these advancements, challenges remain, including optimizing the treatment sequence, mitigating immune-related toxicities—particularly cytokine release syndrome (CRS)—and identifying predictive biomarkers to guide patient selection. As the role of monoclonal antibodies continues to expand, their integration into therapeutic regimens is transforming the management of FL, paving the way for chemotherapy-free treatment approaches and long-term disease control. This review provides an updated overview of mAbs therapies for FL, emphasizing the advances brought by BsAbs and ADCs toward more tailored and effective treatments. Full article
(This article belongs to the Special Issue Monoclonal Antibodies in Lymphoma)
Show Figures

Figure 1

15 pages, 3084 KiB  
Article
Tumor-Treating Fields Alter Nanomechanical Properties of Pancreatic Ductal Adenocarcinoma Cells Co-Cultured with Extracellular Matrix
by Tanmay Kulkarni, Sreya Banik, Debabrata Mukhopadhyay, Hani Babiker and Santanu Bhattacharya
J. Funct. Biomater. 2025, 16(5), 160; https://doi.org/10.3390/jfb16050160 - 3 May 2025
Viewed by 787
Abstract
Tumor-Treating Fields (TTFields), a novel therapeutic avenue, is approved for therapy in Glioblastoma multiforme, malignant pleural mesothelioma, and metastatic non-small cell lung cancer (NSCLC). In pancreatic ductal adenocarcinoma (PDAC), several clinical trials are underway to improve outcomes, yet a significant knowledge gap prevails [...] Read more.
Tumor-Treating Fields (TTFields), a novel therapeutic avenue, is approved for therapy in Glioblastoma multiforme, malignant pleural mesothelioma, and metastatic non-small cell lung cancer (NSCLC). In pancreatic ductal adenocarcinoma (PDAC), several clinical trials are underway to improve outcomes, yet a significant knowledge gap prevails involving the cell-extracellular matrix (ECM) crosstalk. Herein, we hypothesized that treatment with TTFields influence this crosstalk, which is reflected by the dynamic alteration in nanomechanical properties (NMPs) of cells and the ECM in a co-culture system. We employed an ECM gel comprising collagen, fibronectin, and laminin mixed in 100:1:1 stoichiometry to co-culture of Panc1 and AsPC1 individually. This ECM mixture mimics the in vivo tumor microenvironment closely when compared to the individual ECM components studied before. A comprehensive frequency-dependent study revealed the optimal TTFields frequency to be 150 kHz. We also observed that irrespective of the ECM’s presence, TTFields increase cell membrane stiffness and decrease deformation several-folds in both Panc1 and AsPC1 cells at both 48 h and 72 h. Although adhesion for AsPC1 decreased at 48 h, at 72 h it was observed to increase irrespective of ECM’s presence. Moreover, it significantly alters the NMPs of ECM gels when co-cultured with PDAC cell lines. However, AsPC1 cells were observed to be more detrimental to these changes. Lastly, we attribute the stiffness changes in Panc1 cells to the membrane F-actin reorganization in the presence of TTFields. This study paves a path to study complex PDAC TME as well as the effect of various chemotherapeutic agents on such TME with TTFields in the future. Full article
(This article belongs to the Section Biomaterials for Cancer Therapies)
Show Figures

Figure 1

18 pages, 1735 KiB  
Review
Perturbation-Theory Machine Learning for Multi-Target Drug Discovery in Modern Anticancer Research
by Valeria V. Kleandrova, M. Natália D. S. Cordeiro and Alejandro Speck-Planche
Curr. Issues Mol. Biol. 2025, 47(5), 301; https://doi.org/10.3390/cimb47050301 - 25 Apr 2025
Viewed by 631
Abstract
Cancers constitute a group of biological complex diseases, which are associated with great prevalence and mortality. These medical conditions are very difficult to tackle due to their multi-factorial nature, which includes their ability to evade the immune system and become resistant to current [...] Read more.
Cancers constitute a group of biological complex diseases, which are associated with great prevalence and mortality. These medical conditions are very difficult to tackle due to their multi-factorial nature, which includes their ability to evade the immune system and become resistant to current anticancer agents. There is a pressing need to search for novel anticancer agents with multi-target modes of action and/or multi-cell inhibition versatility, which can translate into more efficacious and safer chemotherapeutic treatments. Computational methods are of paramount importance to accelerate multi-target drug discovery in cancer research but most of them have several disadvantages such as the use of limited structural information through homogeneous datasets of chemicals, the prediction of activity against a single target, and/or lack of interpretability. This mini-review discusses the emergence, development, and application of perturbation-theory machine learning (PTML) as a cutting-edge approach capable of overcoming the aforementioned limitations in the context of multi-target small molecule anticancer discovery. Here, we analyze the most promising investigations on PTML modeling spanning over a decade to enable the discovery of versatile anticancer agents. We highlight the potential of the PTML approach for the modeling of multi-target anticancer activity while envisaging future applications of PTML modeling. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

Back to TopTop