Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = competitive electricity market

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
86 pages, 10602 KiB  
Article
Optimizing Virtual Power Plants Cooperation via Evolutionary Game Theory: The Role of Reward–Punishment Mechanisms
by Lefeng Cheng, Pengrong Huang, Mengya Zhang, Kun Wang, Kuozhen Zhang, Tao Zou and Wentian Lu
Mathematics 2025, 13(15), 2428; https://doi.org/10.3390/math13152428 - 28 Jul 2025
Viewed by 275
Abstract
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable [...] Read more.
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable cooperation, the influence of initial market composition on equilibrium selection, the sufficiency of static versus dynamic mechanisms, and the quantitative mapping between regulatory parameters and market outcomes. The study establishes the mathematical conditions under which static reward–punishment mechanisms transform competitive VPP markets into stable cooperative systems, quantifying efficiency improvements of 15–23% and renewable integration gains of 18–31%. Through rigorous evolutionary game-theoretic analysis, we identify critical parameter thresholds that guarantee cooperation emergence, resolving longstanding market coordination failures documented across multiple jurisdictions. Numerical simulations and sensitivity analysis demonstrate that static reward–punishment systems enhance cooperation, optimize resources, and increase renewable energy utilization. Key findings include: (1) Reward–punishment mechanisms effectively promote cooperation and system performance; (2) A critical region exists where cooperation dominates, enhancing market outcomes; and (3) Parameter adjustments significantly impact VPP performance and market behavior. The theoretical contributions of this research address documented market failures observed across operational VPP implementations. Our findings provide quantitative foundations for regulatory frameworks currently under development in seven national energy markets, including the European Union’s proposed Digital Single Market for Energy and Japan’s emerging VPP aggregation standards. The model’s predictions align with successful cooperation rates achieved by established VPP operators, suggesting practical applicability for scaled implementations. Overall, through evolutionary game-theoretic analysis of 156 VPP implementations, we establish precise conditions under which static mechanisms achieve 85%+ cooperation rates. Based on this, future work could explore dynamic adjustments, uncertainty modeling, and technologies like blockchain to further improve VPP resilience. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Dynamical Systems)
Show Figures

Figure 1

34 pages, 712 KiB  
Review
Transformation of Demand-Response Aggregator Operations in Future US Electricity Markets: A Review of Technologies and Open Research Areas with Game Theory
by Styliani I. Kampezidou and Dimitri N. Mavris
Appl. Sci. 2025, 15(14), 8066; https://doi.org/10.3390/app15148066 - 20 Jul 2025
Viewed by 316
Abstract
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how [...] Read more.
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how demand–response (DR) aggregators and distributed loads can support these climate goals while addressing critical operational challenges. We hypothesize that current DR aggregator frameworks fall short in the areas of distributed load operational flexibility, scalability with the number of distributed loads (prosumers), prosumer privacy preservation, DR aggregator and prosumer competition, and uncertainty management, limiting their potential to enable large-scale prosumer participation. Using a systematic review methodology, we evaluate existing DR aggregator and prosumer frameworks through the proposed FCUPS criteria—flexibility, competition, uncertainty quantification, privacy, and scalability. The main results highlight significant gaps in current frameworks: limited support for decentralized operations; inadequate privacy protections for prosumers; and insufficient capabilities for managing competition, uncertainty, and flexibility at scale. We conclude by identifying open research directions, including the need for game-theoretic and machine learning approaches that ensure privacy, scalability, and robust market participation. Addressing these gaps is essential to shape future research agendas and to enable DR aggregators to contribute meaningfully to US climate targets. Full article
Show Figures

Figure 1

14 pages, 395 KiB  
Article
Economical Regulating Strategies Based on Enhanced EVM Model in Electric Substation Construction Projects
by Hongyan Xin, Zhengdong Wan, Yan Huang and Jinsong Zhang
Energies 2025, 18(14), 3795; https://doi.org/10.3390/en18143795 - 17 Jul 2025
Viewed by 178
Abstract
With the increasing demand for electricity in modern society, the scale of substation construction projects has greatly expanded, and the ever-increasing technical requirements have led to rising project costs year by year. Effective cost management not only enhances a company’s market competitiveness but [...] Read more.
With the increasing demand for electricity in modern society, the scale of substation construction projects has greatly expanded, and the ever-increasing technical requirements have led to rising project costs year by year. Effective cost management not only enhances a company’s market competitiveness but also ensures the construction quality of projects. This paper addressed the issues of cost management in substation projects by exploring the application of unbalanced bidding, target costing, and improved earned value management (EVM) in cost control. By introducing quality indicators to improve traditional EVM, this study proposed a comprehensive evaluation model that considers cost, schedule, and quality to ensure a good construction performance of substations. Using LT 220 kV substation of Company A project as a case study, the paper analyzed specific measures of cost management in the bidding decision, preparation, and construction phases, verifying the feasibility and effectiveness of the improved model. The results indicated that the enhanced EVM can effectively improve cost control in substation projects, achieving an optimal balance among quality, schedule, and cost with significant practical application value. Full article
Show Figures

Figure 1

20 pages, 632 KiB  
Article
An Electricity Market Pricing Method with the Optimality Limitation of Power System Dispatch Instructions
by Zhiheng Li, Anbang Xie, Junhui Liu, Yihan Zhang, Yao Lu, Wenjing Zu, Yi Wang and Xiaobing Zhang
Processes 2025, 13(7), 2235; https://doi.org/10.3390/pr13072235 - 13 Jul 2025
Viewed by 279
Abstract
The electricity market can optimize the resource allocation in power systems by calculating the market clearing problem. However, in the market clearing process, various market operation requirements must be considered. These requirements might cause the obtained power system dispatch instructions to deviate from [...] Read more.
The electricity market can optimize the resource allocation in power systems by calculating the market clearing problem. However, in the market clearing process, various market operation requirements must be considered. These requirements might cause the obtained power system dispatch instructions to deviate from the optimal solutions of original market clearing problems, thereby compromising the economic properties of locational marginal price (LMP). To mitigate the adverse effects of such optimality limitations, this paper proposes a pricing method for improving economic properties under the optimality limitation of power system dispatch instructions. Firstly, the underlying mechanism through which optimality limitations lead to economic property distortions in the electricity market is analyzed. Secondly, an analytical framework is developed to characterize economic properties under optimality limitations. Subsequently, an optimization-based electricity market pricing model is formulated, where price serves as the decision variable and economic properties, such as competitive equilibrium, are incorporated as optimization objectives. Case studies show that the proposed electricity market pricing method effectively mitigates the economic property distortions induced by optimality limitations and can be adapted to satisfy different economic properties based on market preferences. Full article
Show Figures

Figure 1

17 pages, 3466 KiB  
Article
Levelized Cost of Storage (LCOS) of Battery Energy Storage Systems (BESS) Deployed for Photovoltaic Curtailment Mitigation
by Luca Migliari, Daniele Cocco and Mario Petrollese
Energies 2025, 18(14), 3602; https://doi.org/10.3390/en18143602 - 8 Jul 2025
Cited by 1 | Viewed by 524
Abstract
Despite the growing application of storage for curtailment mitigation, its cost-effectiveness remains uncertain. This study evaluates the Levelized Cost of Storage, which also represents an implicit threshold revenue, for Lithium-ion Battery Energy Storage Systems deployed for photovoltaic curtailment mitigation. Specifically, the LCOS is [...] Read more.
Despite the growing application of storage for curtailment mitigation, its cost-effectiveness remains uncertain. This study evaluates the Levelized Cost of Storage, which also represents an implicit threshold revenue, for Lithium-ion Battery Energy Storage Systems deployed for photovoltaic curtailment mitigation. Specifically, the LCOS is assessed—using a mathematical simulation model—for various curtailment scenarios defined by maximum levels (10–40%), hourly profiles (upper limit and proportional), and growth rates (2, 5, and 10 years) at three storage system capacities (0.33, 0.50, 0.67 h) and two European locations (Cagliari and Berlin). The results indicate that the LCOS of batteries deployed for curtailment mitigation is, on average, comparable to that of systems used for bulk energy storage applications (155–320 EUR/MWh) in Cagliari (180–410 EUR/MWh). In contrast, in Berlin, the lower and more variable photovoltaic generation results in significantly higher LCOS values (200–750 EUR/MWh). For both locations, the lowest LCOS values (180 EUR/MWh for Cagliari and 200 EUR/MWh for Berlin), obtained for very high curtailment levels (40%), are significantly above average electricity prices (108 EUR/MWh for Cagliari and 78 EUR/MWh for Berlin), suggesting that BESSs for curtailment mitigation are competitive in the day-ahead market only if their electricity is sold at a significantly higher price. This is particularly true for lower curtailment levels. Indeed, for a curtailment level of 10% reached in 5 years, the LCOS for a 0.5 h BESS capacity is approximately 255 EUR/MWh in Cagliari and 460 EUR/MWh in Berlin. The study further highlights that the curtailment scenario significantly affects the Levelized Cost of Storage, with the upper limit hourly profile being more conservative. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

32 pages, 6149 KiB  
Article
The Carbon Reduction Contribution of Battery Electric Vehicles: Evidence from China
by Ying Sun, Le Xiong, Rui Yan, Ruizhu Rao and Hongshuo Du
Energies 2025, 18(13), 3578; https://doi.org/10.3390/en18133578 - 7 Jul 2025
Viewed by 330
Abstract
The transition to passenger car electrification is a crucial step in China’s strategic efforts to achieve carbon peak and carbon neutrality. However, previous research has not considered the variances in vehicle models. Hence, this study aims to fill this gap by comparing the [...] Read more.
The transition to passenger car electrification is a crucial step in China’s strategic efforts to achieve carbon peak and carbon neutrality. However, previous research has not considered the variances in vehicle models. Hence, this study aims to fill this gap by comparing the carbon emission reduction and economic feasibility of battery electric vehicles (BEVs) in the Chinese market, taking into account different powertrains, vehicle segments, classes, and driving ranges. Next, the study identifies the most cost-effective BEV within each market segment, employing life-cycle assessment and life cycle cost analysis methods. Moreover, at different levels of technological development, we construct three low-carbon measures, including electricity decarbonization (ED), energy efficiency improvement (EEI), and vehicle lightweight (LW), to quantify the emission mitigation potentials from different carbon reduction pathways. The findings indicate that BEVs achieve an average carbon reduction of about 31.85% compared to internal combustion engine vehicles (ICEVs), demonstrating a significant advantage in carbon reduction. However, BEVs are not economically competitive. The total life cycle cost of BEVs is 1.04–1.68 times higher than that of ICEVs, with infrastructure costs accounting for 18.8–57.8% of the vehicle’ s life cycle costs. In terms of cost-effectiveness, different models yield different results, with sedans generally outperforming sport utility vehicles (SUVs). Among sedans, both A-class and B-class sedans have already reached a point of cost-effectiveness, with the BEV400 emerging as the optimal choice. In low-carbon emission reduction scenarios, BEVs could achieve carbon reduction potentials of up to 45.3%, 14.9%, and 9.0% in the ED, EEI, and LW scenarios, respectively. Thus, electricity decarbonization exhibits the highest potential for mitigating carbon emissions, followed by energy efficiency improvement and vehicle lightweight. There are obvious differences in the stages of impact among different measures. The ED measure primarily impacts the waste treatment process (WTP) stage, followed by the vehicle cycle, while the EEI measure only affects the WTP stage. The LW measure has a complex impact on emission reductions, as the carbon reductions achieved in the WTP stage are partially offset by the increased carbon emissions in the vehicle cycle. Full article
Show Figures

Figure 1

25 pages, 1342 KiB  
Article
Analysis of the Palladium Market: A Strategic Aspect of Sustainable Development
by Alexey Cherepovitsyn, Irina Mekerova and Alexander Nevolin
Mining 2025, 5(3), 39; https://doi.org/10.3390/mining5030039 - 24 Jun 2025
Cited by 2 | Viewed by 1009
Abstract
In a dynamic global market, platinum-group metals (PGMs), particularly palladium, are in high demand across various industries due to their unique properties. Palladium plays a crucial role in environmentally friendly technologies, such as catalytic converters, which mitigate harmful automotive emissions. Additionally, it is [...] Read more.
In a dynamic global market, platinum-group metals (PGMs), particularly palladium, are in high demand across various industries due to their unique properties. Palladium plays a crucial role in environmentally friendly technologies, such as catalytic converters, which mitigate harmful automotive emissions. Additionally, it is essential for clean energy production, particularly in hydrogen generation, which makes palladium a critical resource for building a sustainable and secure supply chain. This study evaluates the prospects of the palladium market through strategic analysis, focusing on the Russian mining and metals company PJSC MMC Norilsk Nickel. The research employs strategic and industry analysis methods to examine palladium production, market dynamics, and technological advancements, as well as emerging applications in the context of a green economy. The article analyzes the economics of palladium production, including price volatility driven by stringent environmental regulations and the rising adoption of electric vehicles. The palladium market faces challenges such as a constrained resource base, supply disruptions due to sanctions, price instability, and growing demand from key sectors, particularly the automotive industry. Nevertheless, innovation-driven trends offer promising opportunities for market growth, aligning with sustainable development principles and the transition toward a green, low-carbon economy in both established and emerging markets. As a key scientific contribution, this study proposes a modified methodological approach to industry analysis, enabling the assessment of a mining and metals company’s competitive sustainability in the palladium market over the medium and long term. Furthermore, the research models the life cycle of palladium as a commodity, considering evolving market trends and the rapid development of new industries within the green economy. Full article
(This article belongs to the Special Issue Feature Papers in Sustainable Mining Engineering)
Show Figures

Figure 1

39 pages, 2336 KiB  
Article
Transforming Energy Management with IoT: The Norwegian Smart Metering Experience
by Moutaz Haddara, Ingeborg Johnsen, Julie Løes and Karippur Nanda Kumar
Smart Cities 2025, 8(3), 84; https://doi.org/10.3390/smartcities8030084 - 21 May 2025
Viewed by 1907
Abstract
The rapid adoption of smart technologies is increasingly evident in both personal and business contexts. The ‘post-pandemic’ economic recovery of 2022 and 2023 coincided with a global energy supply shortage driven by heightened energy demand and supply chain disruptions stemming from the ongoing [...] Read more.
The rapid adoption of smart technologies is increasingly evident in both personal and business contexts. The ‘post-pandemic’ economic recovery of 2022 and 2023 coincided with a global energy supply shortage driven by heightened energy demand and supply chain disruptions stemming from the ongoing Russian-Ukrainian conflict. The implementation of smart metering systems is a central component of European policies aimed at enhancing the competitiveness and environmental sustainability of energy markets. However, limited research exists on the acceptance of Smart Meter Technology (SMT) in general, specifically in Norway, as compared to other nations. SMT devices offer the potential for real-time energy consumption monitoring, enabling users to track and modify their usage patterns for optimized consumption. This study employs a mixed-methods research design to gather insights from both SMT consumers and vendors. Findings underscore the pivotal roles of familiarity, cost, social influence, and perceived usefulness in shaping consumer adoption of SMT. This article provides critical insights and implications for researchers, network operators, electricity companies, and government agencies. Full article
(This article belongs to the Special Issue Energy Strategies of Smart Cities)
Show Figures

Figure 1

9 pages, 679 KiB  
Article
Policies for Promising Prospects of Photovoltaics
by Lucie McGovern and Bob van der Zwaan
Solar 2025, 5(2), 22; https://doi.org/10.3390/solar5020022 - 19 May 2025
Viewed by 463
Abstract
As photovoltaics’ (PVs) capacity will probably rapidly expand to tens of terawatts globally, the diversification of the PV technology portfolio becomes essential. Perovskite technology proffers promise for expanding solar energy market segments like building-integrated PVs and flexible PVs for the residential and industrial [...] Read more.
As photovoltaics’ (PVs) capacity will probably rapidly expand to tens of terawatts globally, the diversification of the PV technology portfolio becomes essential. Perovskite technology proffers promise for expanding solar energy market segments like building-integrated PVs and flexible PVs for the residential and industrial sectors. In this perspective, we calculate that under reasonably attainable values for the module cost, conversion efficiency, and degradation rate, a levelized cost of electricity (LCOE) of 10 EURct/kWh can be reached for perovskite PV in 2035. Furthermore, if, in 2035, the conversion efficiency can be increased to 25% and the degradation rate falls to below 1%, with a module cost of 50 EUR/m2, the LCOE for perovskite PV could become around 8 EURct/kWh. For lower module costs, the LCOE would drop further, by which cost competitiveness with c-Si PV is in sight. We point out that even if the LCOE of perovskite solar modules may remain relatively high, they could still occupy an important role, particularly in the residential sector, thanks to their flexibility and lightweight properties, enabling a large suite of new applications. Overall, to push perovskite PVs towards successful commercialization, policy support will be indispensable. Full article
Show Figures

Figure 1

22 pages, 7431 KiB  
Article
Navigating Electricity Market Design of Greece: Challenges and Reform Initiatives
by Eleni Ntemou, Filippos Ioannidis, Kyriaki Kosmidou and Kostas Andriosopoulos
Energies 2025, 18(10), 2575; https://doi.org/10.3390/en18102575 - 16 May 2025
Viewed by 1027
Abstract
The huge penetration of renewable energy sources poses several challenges for the function of electricity markets, such as increased price volatility and massive curtailments. This paper investigates the current structure of the wholesale electricity market in Greece under the Target Model guidelines. Our [...] Read more.
The huge penetration of renewable energy sources poses several challenges for the function of electricity markets, such as increased price volatility and massive curtailments. This paper investigates the current structure of the wholesale electricity market in Greece under the Target Model guidelines. Our analysis put under scrutiny the formation and function of both spot and balancing markets by highlighting key challenges and reforms. Empirical evidence reveals that the domestic market is currently in accordance with the European Target Model; however, the anticipated benefits in terms of more competitive prices are not evident yet. The oversupply of electricity accompanied by low demand that is apparent in the Greek market points to the rapid participation of storage units in the system. The paper provides a detailed description of the recent support mechanism to facilitate the integration of BESS into the system. Eventually, this is anticipated to reduce price volatility and smoothen the price curves. Full article
(This article belongs to the Special Issue Emerging Trends in Energy Economics: 3rd Edition)
Show Figures

Figure 1

20 pages, 4974 KiB  
Review
Recent Developments in Enzyme-Free PANI-Based Electrochemical Nanosensors for Pollutant Detection in Aqueous Environments
by Sarah Cohen, Itamar Chajanovsky and Ran Yosef Suckeveriene
Polymers 2025, 17(10), 1320; https://doi.org/10.3390/polym17101320 - 12 May 2025
Cited by 1 | Viewed by 708
Abstract
Wastewater management has a direct impact on the supply of drinking water. New cutting-edge technologies are crucial to the ever-growing demand for tailored solutions for pollutant removal, but these pollutants first need to be detected. Traditional techniques are costly and are no longer [...] Read more.
Wastewater management has a direct impact on the supply of drinking water. New cutting-edge technologies are crucial to the ever-growing demand for tailored solutions for pollutant removal, but these pollutants first need to be detected. Traditional techniques are costly and are no longer competitive in the wastewater cleaning market. One sustainable and economically viable alternative is the fabrication of integrated nanosensors composed of conducting polymers. These include polyaniline doped with various types of nanomaterials such as nanocarbons (carbon nanotubes and graphene), metal oxide nanoparticles/nanostructures, and quantum dots. The synergistic properties of these components can endow sensing materials with enhanced surface reactivity, greater electrocatalytic activity, as well as tunable redox activity and electrical conductivity. This review covers key recent advances in the field of non-enzyme electrochemical conductive polymer nanosensors for pollutant detection in aqueous environments or simulated polluted samples. It provides an introduction to these sensors, their preparation, applications, the environmental and economic hurdles impeding the large-scale development of PANI-based nanomaterials in sensing applications, and future directions for research and real-world applications. Full article
(This article belongs to the Special Issue Functional Polymeric Materials for Water Treatment)
Show Figures

Graphical abstract

27 pages, 7548 KiB  
Article
Competition Between Geographically Spread Charge Point Operators for Battery Electric Trucks—Estimations of Prices and Queues with an Agent-Based Model
by Johannes Karlsson, Susanne Pettersson and Anders Grauers
Energies 2025, 18(10), 2453; https://doi.org/10.3390/en18102453 - 10 May 2025
Viewed by 470
Abstract
In light of the drawbacks of using fossil fuel, this paper investigates the competition between geographically spread charge point operators for future battery electric long-haul trucks along one of the busiest highways in Sweden. This is achieved using an agent-based model where trucks [...] Read more.
In light of the drawbacks of using fossil fuel, this paper investigates the competition between geographically spread charge point operators for future battery electric long-haul trucks along one of the busiest highways in Sweden. This is achieved using an agent-based model where trucks try to charge for a low price and still avoid queues in order to complete their transport mission. The charging need for a typical day at full electrification is derived from data from the Swedish Transport Administration. This typical day is simulated several times and in between these iterations the charge point operators adjust their prices and number of chargers, aiming to increase their profit. After a sufficiently long time of competition, a quasi-equilibrium is reached where, for example, prices and queueing times can be studied. The goal of the study is to estimate conditions for trucks and charge point operators in a future public fast-charging market. Assuming a price for electricity of 0.08 EUR/kWh, the results indicate that a system with low queuing problems is attainable with a mean price of 0.27 EUR/kWh or lower for public fast charging. It is also found that the behaviour of haulage companies, as a collective, can affect the future fast charging market to a great extent. If the hauliers are price-sensitive, they will be offered a low mean price, down to 0.11 EUR/kWh, but with queues, while if they are queue-sensitive, there will be almost no queues, but they will pay more to charge. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

30 pages, 432 KiB  
Article
Selection of Symmetrical and Asymmetrical Supply Chain Channels for New Energy Vehicles Under Multi-Factor Influences
by Yongjia Tong and Jingfeng Dong
Symmetry 2025, 17(5), 727; https://doi.org/10.3390/sym17050727 - 9 May 2025
Viewed by 605
Abstract
In recent years, as an important alternative to traditional gasoline-powered vehicles, new electric vehicles (NEVs) have gained widespread attention and rapid development globally. In the traditional automotive industry chain, downstream vehicle manufacturers need to master core technologies, such as engines, chassis, and transmissions. [...] Read more.
In recent years, as an important alternative to traditional gasoline-powered vehicles, new electric vehicles (NEVs) have gained widespread attention and rapid development globally. In the traditional automotive industry chain, downstream vehicle manufacturers need to master core technologies, such as engines, chassis, and transmissions. In contrast to the traditional automotive industry chain, where downstream vehicle manufacturers must master core technologies, like engines, chassis, and transmissions, the electric vehicle industry chain has evolved in a way that the development of core components is gradually separated from the vehicle manufacturers. Downstream vehicle manufacturers can now outsource key components, such as batteries, electric controls, and motors. Additionally, in terms of sales models, the electric vehicle industry chain can adopt either the traditional 4S dealership model or a direct-sales model. As the research and development of core components are increasingly separated from vehicle manufacturers, the downstream vehicle manufacturers can source components, like batteries, electric controls, and motors, externally. At the same time, they can choose to use either the traditional 4S dealership model or the direct-sales model. The underlying mechanisms and channel selection in this context require further exploration. Based on this, a mathematical model is established by incorporating terminal marketing input, product competitiveness, and after-sales service levels from the literature to solve for the optimal pricing under centralized and decentralized pricing strategies. Using numerical examples, the pricing and profit performance under different market structures are analyzed to systematically examine the impact of the electric vehicle supply chain on business operations, as well as the changes in various elements across different channels. We will focus on how after-sales services (including the spare part supply) influence the pricing strategy and profit distribution in the supply chain, aiming to provide insights into advanced manufacturing system management for manufacturing enterprises and improve the efficiency of intelligent logistics management. The research indicates that (1) The direct-sales model helps to improve the terminal marketing input, after-sales service quality, and product competitiveness for supply chain stakeholders; (2) It is noteworthy that the manufacturer’s direct-sales model also significantly contributes to lowering prices, highlighting that the direct-sales model has substantial impacts on both supply chain stakeholders and, importantly, consumers. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 1744 KiB  
Article
The Optimal Operation of Ice-Storage Air-Conditioning Systems by Considering Thermal Comfort and Demand Response
by Chia-Sheng Tu, Yon-Hon Tsai, Ming-Tang Tsai and Chih-Liang Chen
Energies 2025, 18(10), 2427; https://doi.org/10.3390/en18102427 - 8 May 2025
Viewed by 473
Abstract
The purpose of this paper is to discuss the optimal operation of ice-storage air-conditioning systems by considering thermal comfort and demand response (DR) in order to obtain the maximum benefit. This paper first collects the indoor environment parameters and human body parameters to [...] Read more.
The purpose of this paper is to discuss the optimal operation of ice-storage air-conditioning systems by considering thermal comfort and demand response (DR) in order to obtain the maximum benefit. This paper first collects the indoor environment parameters and human body parameters to calculate the Predicted Mean Vote (PMV). By considering the DR strategy, the cooling load requirements, thermal comfort, and the various operation constraints, the dispatch model of the ice-storage air-conditioning systems is formulated to minimize the total bill. This paper takes an office building as a case study to analyze the cooling capacity in ice-melting mode and ice-storage mode. A dynamic programming model is used to solve the dispatch model of ice-storage air-conditioning systems, and analyzes the optimal operation cost of ice-storage air-conditioning systems under a two-section and three-section Time-of-Use (TOU) price. The ice-storage mode and ice-melting mode of the ice-storage air-conditioning system are used as the analysis benchmark, and then the energy-saving strategy, thermal comfort, and the demand response (DR) strategy are added for analysis and comparison. It is shown that the total electricity cost of the two-section TOU and three-section TOU was reduced by 18.67% and 333%, respectively, if the DR is considered in our study. This study analyzes the optimal operation of the ice-storage air-conditioning system from an overall perspective under various conditions such as different seasons, time schedules, ice storage and melting, etc. Through the implementation of this paper, the ability for enterprise operation and management control is improved for the participants to reduce peak demand, save on an electricity bill, and raise the ability of the market’s competition. Full article
Show Figures

Figure 1

21 pages, 2977 KiB  
Article
Research on Typical Market Mode of Regulating Hydropower Stations Participating in Spot Market
by Mengfei Xie, Xiangrui Liu, Huaxiang Cai, Dianning Wu and Yanhe Xu
Water 2025, 17(9), 1288; https://doi.org/10.3390/w17091288 - 25 Apr 2025
Viewed by 323
Abstract
As the second largest power source in the world, hydropower plays a crucial role in the operation of power systems. This paper focuses on the key issues of regulating hydropower stations participating in the spot market. It aims at the core challenges, such [...] Read more.
As the second largest power source in the world, hydropower plays a crucial role in the operation of power systems. This paper focuses on the key issues of regulating hydropower stations participating in the spot market. It aims at the core challenges, such as the conflict of cascade hydro plants’ joint clearing, the lack of adaptability for different types of power supply bidding on the same platform, and the contradiction between long-term operation and the spot market. Through the construction of a water spillage management strategy and settlement compensation mechanism, the competitive abandoned water problem caused by mismatched quotations of cascade hydro plants can be solved. In order to achieve reasonable recovery of the power cost, a separate bidding mechanism and capacity cost recovery model are designed. Subsequently, the sufficient electricity supply constraint of the remaining period is integrated into the spot-clearing model, which can coordinate short-term hydropower dispatch with long-term energy storage demand. The operation of the Yunnan electricity spot market is being simulated to verify the effectiveness of the proposed method. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

Back to TopTop