Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,896)

Search Parameters:
Keywords = company system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2141 KiB  
Article
Enhancing Efficiency in Sustainable IoT Enterprises: Modeling Indicators Using Pythagorean Fuzzy and Interval Grey Approaches
by Mimica R. Milošević, Miloš M. Nikolić, Dušan M. Milošević and Violeta Dimić
Sustainability 2025, 17(15), 7143; https://doi.org/10.3390/su17157143 - 6 Aug 2025
Abstract
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many [...] Read more.
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many IoT-related products, challenges pertaining to their effective implementation, particularly the lack of knowledge and confidence about security, must be addressed. To provide IoT-based enterprises with a platform for efficiency and sustainability, this study aims to identify the critical elements that influence the growth of a successful company integrated with an IoT system. This study proposes a decision support tool that evaluates the influential features of IoT using the Pythagorean Fuzzy and Interval Grey approaches within the Analytical Hierarchy Process (AHP). This study demonstrates that security, value, and connectivity are more critical than telepresence and intelligence indicators. When both strategies are used, market demand and information privacy become significant indicators. Applying the Pythagorean Fuzzy approach enables the identification of sensor networks, authorization, market demand, and data management in terms of importance. The application of the Interval Grey approach underscores the importance of data management, particularly in sensor networks. The indicators that were finally ranked are compared to obtain a good coefficient of agreement. These findings offer practical insights for promoting sustainability in enterprise operations by optimizing IoT infrastructure and decision-making processes. Full article
Show Figures

Figure 1

17 pages, 5929 KiB  
Article
Optimization of Operations in Bus Company Service Workshops Using Queueing Theory
by Sergej Težak and Drago Sever
Vehicles 2025, 7(3), 82; https://doi.org/10.3390/vehicles7030082 - 6 Aug 2025
Abstract
Public transport companies are aware that the success of their operations largely depends on the proper sizing and optimization of their processes. Among the key activities are the maintenance and repair of the vehicle fleet. This paper presents the application of mathematical optimization [...] Read more.
Public transport companies are aware that the success of their operations largely depends on the proper sizing and optimization of their processes. Among the key activities are the maintenance and repair of the vehicle fleet. This paper presents the application of mathematical optimization methods from the field of operations research to improve the efficiency of service workshops for bus maintenance and repair. Based on an analysis of collected data using queueing theory, the authors assessed the current system performance and found that the queueing system still has spare capacity and could be downsized, which aligns with the company’s management goals. Specifically, the company plans to reduce the number of bus repair service stations (servers in a queueing system). The main question is whether the system will continue to function effectively after this reduction. Three specific downsizing solutions were proposed and evaluated using queueing theory methods: extending the daily operating hours of the workshops, reducing the number of arriving buses, and increasing the productivity of a service station (server). The results show that, under high system load, only those solutions that increase the productivity of individual service stations (servers) in the queueing system provide optimal outcomes. Other solutions merely result in longer queues and associated losses due to buses waiting for service, preventing them from performing their intended function and causing financial loss to the company. Full article
Show Figures

Figure 1

27 pages, 4506 KiB  
Article
Interpretable Machine Learning Framework for Corporate Financialization Prediction: A SHAP-Based Analysis of High-Dimensional Data
by Yanhe Wang, Wei Wei, Zhuodong Liu, Jiahe Liu, Yinzhen Lv and Xiangyu Li
Mathematics 2025, 13(15), 2526; https://doi.org/10.3390/math13152526 - 6 Aug 2025
Abstract
High-dimensional prediction problems with complex non-linear feature interactions present significant algorithmic challenges in machine learning, particularly when dealing with imbalanced datasets and multicollinearity issues. This study proposes an innovative Shapley Additive Explanations (SHAP)-enhanced machine learning framework that integrates SHAP with advanced ensemble methods [...] Read more.
High-dimensional prediction problems with complex non-linear feature interactions present significant algorithmic challenges in machine learning, particularly when dealing with imbalanced datasets and multicollinearity issues. This study proposes an innovative Shapley Additive Explanations (SHAP)-enhanced machine learning framework that integrates SHAP with advanced ensemble methods for interpretable financialization prediction. The methodology simultaneously addresses high-dimensional feature selection using 40 independent variables (19 CSR-related and 21 financialization-related), multicollinearity issues, and model interpretability requirements. Using a comprehensive dataset of 25,642 observations from 3776 Chinese A-share companies (2011–2022), we implement nine optimized machine learning algorithms with hyperparameter tuning via the Hippopotamus Optimization algorithm and five-fold cross-validation. XGBoost demonstrates superior performance with 99.34% explained variance, achieving an RMSE of 0.082 and R2 of 0.299. SHAP analysis reveals non-linear U-shaped relationships between key predictors and financialization outcomes, with critical thresholds at approximately 10 for CSR_SocR, 1.5 for CSR_S, and 5 for CSR_CV. SOE status, EPU, ownership concentration, firm size, and housing prices emerge as the most influential predictors. Notable shifts in factor importance occur during the COVID-19 pandemic period (2020–2022). This work contributes a scalable, interpretable machine learning architecture for high-dimensional financial prediction problems, with applications in risk assessment, portfolio optimization, and regulatory monitoring systems. Full article
Show Figures

Figure 1

22 pages, 288 KiB  
Article
An X-Ray Using NLP Techniques of Financial Reporting Quality in Central and Eastern European Countries
by Tatiana Dănescu and Roxana Maria Stejerean
Int. J. Financial Stud. 2025, 13(3), 142; https://doi.org/10.3390/ijfs13030142 - 6 Aug 2025
Abstract
This study assesses the quality of financial reporting in ten Central and Eastern European countries using a methodology based on natural language processing (NLP) techniques. 570 annual reports of companies listed on the main index on the stock exchanges of 10 Central and [...] Read more.
This study assesses the quality of financial reporting in ten Central and Eastern European countries using a methodology based on natural language processing (NLP) techniques. 570 annual reports of companies listed on the main index on the stock exchanges of 10 Central and Eastern European (CEE) countries, over the period 2019–2023, were evaluated to determine the degree of convergence of the following four measurable qualitative characteristics: relevance, exact representation, comparability and understandability. The main objective is to identify consistency in the quality of accounting information based on the application of an international financial reporting framework. The applied methodology eliminates subjective variability by implementing a standardized scoring system, aligned with the criteria developed by NiCE, using libraries such as spaCy and NLTK for term extraction, respective sentiment analysis and word frequency evaluation. The results reveal significant heterogeneity in all characteristics examined, with statistical tests confirming substantial differences between countries. The investigation of relevance revealed partial convergence, with three dimensions achieving complete uniformity, while the exact representation showed the highest variability. The assessment of comparability showed a significant difference between countries’ extreme values, and in terms of comprehensibility a formalistic approach was evident, with technical dimensions outweighing user-oriented aspects. The overall quality index varied significantly across countries, with a notable average deterioration in 2023, indicating structural vulnerabilities in financial reporting systems. These findings support initial hypotheses on the lack of homogeneity in the quality of financial reporting in the selected region, despite the implementation of international standards. Full article
38 pages, 2949 KiB  
Article
Modeling the Evolutionary Mechanism of Multi-Stakeholder Decision-Making in the Green Renovation of Existing Residential Buildings in China
by Yuan Gao, Jinjian Liu, Jiashu Zhang and Hong Xie
Buildings 2025, 15(15), 2758; https://doi.org/10.3390/buildings15152758 - 5 Aug 2025
Abstract
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and [...] Read more.
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and risk perceptions among governments, energy service companies (ESCOs), and owners, the implementation of green renovation is hindered by numerous obstacles. In this study, we integrated prospect theory and evolutionary game theory by incorporating core prospect-theory parameters such as loss aversion and perceived value sensitivity, and developed a psychologically informed tripartite evolutionary game model. The objective was to provide a theoretical foundation and analytical framework for collaborative governance among stakeholders. Numerical simulations were conducted to validate the model’s effectiveness and explore how government regulation intensity, subsidy policies, market competition, and individual psychological factors influence the system’s evolutionary dynamics. The findings indicate that (1) government regulation and subsidy policies play central guiding roles in the early stages of green renovation, but the effectiveness has clear limitations; (2) ESCOs are most sensitive to policy incentives and market competition, and moderately increasing their risk costs can effectively deter opportunistic behavior associated with low-quality renovation; (3) owners’ willingness to participate is primarily influenced by expected returns and perceived renovation risks, while economic incentives alone have limited impact; and (4) the evolutionary outcomes are highly sensitive to parameters from prospect theory, The system’s evolutionary outcomes are highly sensitive to prospect theory parameters. High levels of loss aversion (λ) and loss sensitivity (β) tend to drive the system into a suboptimal equilibrium characterized by insufficient demand, while high gain sensitivity (α) serves as a key driving force for the system’s evolution toward the ideal equilibrium. This study offers theoretical support for optimizing green renovation policies for existing residential buildings in China and provides practical recommendations for improving market competition mechanisms, thereby promoting the healthy development of the green renovation market. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 2216 KiB  
Article
Development of Financial Indicator Set for Automotive Stock Performance Prediction Using Adaptive Neuro-Fuzzy Inference System
by Tamás Szabó, Sándor Gáspár and Szilárd Hegedűs
J. Risk Financial Manag. 2025, 18(8), 435; https://doi.org/10.3390/jrfm18080435 - 5 Aug 2025
Abstract
This study investigates the predictive performance of financial indicators in forecasting stock prices within the automotive sector using an adaptive neuro-fuzzy inference system (ANFIS). In light of the growing complexity of global financial markets and the increasing demand for automated, data-driven forecasting models, [...] Read more.
This study investigates the predictive performance of financial indicators in forecasting stock prices within the automotive sector using an adaptive neuro-fuzzy inference system (ANFIS). In light of the growing complexity of global financial markets and the increasing demand for automated, data-driven forecasting models, this research aims to identify those financial ratios that most accurately reflect price dynamics in this specific industry. The model incorporates four widely used financial indicators, return on assets (ROA), return on equity (ROE), earnings per share (EPS), and profit margin (PM), as inputs. The analysis is based on real financial and market data from automotive companies, and model performance was assessed using RMSE, nRMSE, and confidence intervals. The results indicate that the full model, including all four indicators, achieved the highest accuracy and prediction stability, while the exclusion of ROA or ROE significantly deteriorated model performance. These findings challenge the weak-form efficiency hypothesis and underscore the relevance of firm-level fundamentals in stock price formation. This study’s sector-specific approach highlights the importance of tailoring predictive models to industry characteristics, offering implications for both financial modeling and investment strategies. Future research directions include expanding the indicator set, increasing the sample size, and testing the model across additional industry domains. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

21 pages, 5391 KiB  
Article
Application of Computer Simulation to Evaluate Performance Parameters of the Selective Soldering Process
by Maciej Dominik and Marek Kęsek
Appl. Sci. 2025, 15(15), 8649; https://doi.org/10.3390/app15158649 (registering DOI) - 5 Aug 2025
Viewed by 44
Abstract
The growing complexity of production systems in the technology sector demands advanced tools to ensure efficiency, flexibility, and cost-effectiveness. This study presents the development of a simulation model for a selective soldering line at a technology manufacturing company in Poland, created during an [...] Read more.
The growing complexity of production systems in the technology sector demands advanced tools to ensure efficiency, flexibility, and cost-effectiveness. This study presents the development of a simulation model for a selective soldering line at a technology manufacturing company in Poland, created during an engineering internship. Using FlexSim 24.2 software, the real production process was replicated, including input/output queues, manual insertion (MI) stations, soldering machines, and quality control points. Special emphasis was placed on implementing dynamic process logic via ProcessFlow, enabling detailed modeling of token flow and system behavior. Through experimentation, various configurations were tested to optimize process time and the number of soldering pallets in circulation. The results revealed that reducing pallets from 12 to 8 maintains process continuity while offering cost savings without impacting performance. An intuitive operator panel was also developed, allowing users to adjust parameters and monitor outcomes in real time. The project demonstrates that simulation not only supports operational decision-making and resource planning but also enhances interdisciplinary communication by visually conveying complex workflows. Ultimately, the study confirms that simulation modeling is a powerful and adaptable approach to production optimization, contributing to long-term strategic improvements and innovation in technologically advanced manufacturing environments. Full article
(This article belongs to the Special Issue Integration of Digital Simulation Models in Smart Manufacturing)
Show Figures

Figure 1

27 pages, 4239 KiB  
Article
Implementing Zero Trust: Expert Insights on Key Security Pillars and Prioritization in Digital Transformation
by Francesca Santucci, Gabriele Oliva, Maria Teresa Gonnella, Maria Elena Briga, Mirko Leanza, Marco Massenzi, Luca Faramondi and Roberto Setola
Information 2025, 16(8), 667; https://doi.org/10.3390/info16080667 - 5 Aug 2025
Viewed by 53
Abstract
As organizations continue to embrace digital transformation, the need for robust cybersecurity strategies has never been more critical. This paper explores the Zero Trust Architecture (ZTA) as a contemporary cybersecurity framework that addresses the challenges posed by increasingly interconnected systems. Zero Trust (ZT) [...] Read more.
As organizations continue to embrace digital transformation, the need for robust cybersecurity strategies has never been more critical. This paper explores the Zero Trust Architecture (ZTA) as a contemporary cybersecurity framework that addresses the challenges posed by increasingly interconnected systems. Zero Trust (ZT) operates under the principle of “never trust, always verify,” ensuring that every access request is thoroughly authenticated, regardless of the requester’s location within or outside the network. However, implementing ZT is a challenging task, requiring an adequate roadmap to prioritize the different initiatives in agreement with company culture, exposure and cyber posture. We apply multi-criteria decision analysis (MCDA) to evaluate the relative importance of various components within a ZT framework, using the Incomplete Analytic Hierarchy Process (IAHP). Expert opinions from professionals in cybersecurity and IT governance were gathered through structured questionnaires, leading to a prioritized ranking of the eight key ZT pillars, as defined by the Cybersecurity and Infrastructure Security Agency (CISA), Washington, DC, USA, along with a prioritization of the sub-elements within each pillar. The study provides actionable insights into the implementation of ZTA, helping organizations prioritize security efforts to mitigate risks effectively and build a resilient digital infrastructure. The evaluation results were used to create a prioritized framework, integrated into the ZEUS platform, developed with Teleconsys S.p.A., to enable detailed assessments of a firm’s cyber partner regarding ZT and identify improvement areas. The paper concludes by offering recommendations for future research and practical guidance for organizations transitioning to a ZT model. Full article
(This article belongs to the Section Information Security and Privacy)
Show Figures

Figure 1

23 pages, 5135 KiB  
Article
Strategic Multi-Stage Optimization for Asset Investment in Electricity Distribution Networks Under Load Forecasting Uncertainties
by Clainer Bravin Donadel
Eng 2025, 6(8), 186; https://doi.org/10.3390/eng6080186 - 5 Aug 2025
Viewed by 79
Abstract
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage [...] Read more.
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage methodology to optimize reconductoring investments under load forecasting uncertainties. The approach combines a decomposition strategy with Monte Carlo simulation to capture demand variability. By discretizing a lognormal probability density function and selecting the largest loads in the network, the methodology balances computational feasibility with modeling accuracy. The optimization model employs exhaustive search techniques independently for each network branch, ensuring precise and consistent investment decisions. Tests conducted on the IEEE 123-bus feeder consider both operational and regulatory constraints from the Brazilian context. Results show that uncertainty-aware planning leads to a narrow investment range—between USD 55,108 and USD 66,504—highlighting the necessity of reconductoring regardless of demand scenarios. A comparative analysis of representative cases reveals consistent interventions, changes in conductor selection, and schedule adjustments based on load conditions. The proposed methodology enables flexible, cost-effective, and regulation-compliant investment planning, offering valuable insights for utilities seeking to enhance network reliability and performance while managing demand uncertainties. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

15 pages, 1189 KiB  
Article
Innovative Payment Mechanisms for High-Cost Medical Devices in Latin America: Experience in Designing Outcome Protection Programs in the Region
by Daniela Paredes-Fernández and Juan Valencia-Zapata
J. Mark. Access Health Policy 2025, 13(3), 39; https://doi.org/10.3390/jmahp13030039 - 4 Aug 2025
Viewed by 124
Abstract
Introduction and Objectives: Risk-sharing agreements (RSAs) have emerged as a key strategy for financing high-cost medical technologies while ensuring financial sustainability. These payment mechanisms mitigate clinical and financial uncertainties, optimizing pricing and reimbursement decisions. Despite their widespread adoption globally, Latin America has [...] Read more.
Introduction and Objectives: Risk-sharing agreements (RSAs) have emerged as a key strategy for financing high-cost medical technologies while ensuring financial sustainability. These payment mechanisms mitigate clinical and financial uncertainties, optimizing pricing and reimbursement decisions. Despite their widespread adoption globally, Latin America has reported limited implementation, particularly for high-cost medical devices. This study aims to share insights from designing RSAs in the form of Outcome Protection Programs (OPPs) for medical devices in Latin America from the perspective of a medical devices company. Methods: The report follows a structured approach, defining key OPP dimensions: payment base, access criteria, pricing schemes, risk assessment, and performance incentives. Risks were categorized as financial, clinical, and operational. The framework applied principles from prior models, emphasizing negotiation, program design, implementation, and evaluation. A multidisciplinary task force analyzed patient needs, provider motivations, and payer constraints to ensure alignment with health system priorities. Results: Over two semesters, a panel of seven experts from the manufacturer designed n = 105 innovative payment programs implemented in Argentina (n = 7), Brazil (n = 7), Colombia (n = 75), Mexico (n = 9), Panama (n = 4), and Puerto Rico (n = 3). The programs targeted eight high-burden conditions, including Coronary Artery Disease, atrial fibrillation, Heart Failure, and post-implantation arrhythmias, among others. Private providers accounted for 80% of experiences. Challenges include clinical inertia and operational complexities, necessitating structured training and monitoring mechanisms. Conclusions: Outcome Protection Programs offer a viable and practical risk-sharing approach to financing high-cost medical devices in Latin America. Their implementation requires careful stakeholder alignment, clear eligibility criteria and endpoints, and robust monitoring frameworks. These findings contribute to the ongoing dialogue on sustainable healthcare financing, emphasizing the need for tailored approaches in resource-constrained settings. Full article
Show Figures

Figure 1

38 pages, 1465 KiB  
Article
Industry 4.0 and Collaborative Networks: A Goals- and Rules-Oriented Approach Using the 4EM Method
by Thales Botelho de Sousa, Fábio Müller Guerrini, Meire Ramalho de Oliveira and José Roberto Herrera Cantorani
Platforms 2025, 3(3), 14; https://doi.org/10.3390/platforms3030014 - 1 Aug 2025
Viewed by 286
Abstract
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business [...] Read more.
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business Rules and Goals Models to operationalize Industry 4.0 solutions through enterprise collaboration. Using the For Enterprise Modeling (4EM) method, the research integrates qualitative insights from expert opinions, including interviews with 12 professionals (academics, industry professionals, and consultants) from Brazilian manufacturing sectors. The Goals Model identifies five main objectives—competitiveness, efficiency, flexibility, interoperability, and real-time collaboration—while the Business Rules Model outlines 18 actionable recommendations, such as investing in digital infrastructure, upskilling employees, and standardizing information technology systems. The results reveal that cultural resistance, limited resources, and knowledge gaps are critical barriers, while interoperability and stakeholder integration emerge as enablers of digital transformation. The study concludes that successfully adopting Industry 4.0 requires technological investments, organizational alignment, structured governance, and collaborative ecosystems. These models provide a practical roadmap for companies navigating the complexities of Industry 4.0, emphasizing adaptability and cross-functional synergy. The research contributes to the literature on collaborative networks by connecting theoretical frameworks with actionable enterprise-level strategies. Full article
Show Figures

Figure 1

18 pages, 1065 KiB  
Article
A Machine Learning-Based Model for Predicting High Deficiency Risk Ships in Port State Control: A Case Study of the Port of Singapore
by Ming-Cheng Tsou
J. Mar. Sci. Eng. 2025, 13(8), 1485; https://doi.org/10.3390/jmse13081485 - 31 Jul 2025
Viewed by 160
Abstract
This study developed a model to predict ships with high deficiency risk under Port State Control (PSC) through machine learning techniques, particularly the Random Forest algorithm. The study utilized actual ship inspection data from the Port of Singapore, comprehensively considering various operational and [...] Read more.
This study developed a model to predict ships with high deficiency risk under Port State Control (PSC) through machine learning techniques, particularly the Random Forest algorithm. The study utilized actual ship inspection data from the Port of Singapore, comprehensively considering various operational and safety indicators of ships, including but not limited to flag state, ship age, past deficiencies, and detention history. By analyzing these factors in depth, this research enhances the efficiency and accuracy of PSC inspections, provides decision support for port authorities, and offers strategic guidance for shipping companies to comply with international safety standards. During the research process, I first conducted detailed data preprocessing, including data cleaning and feature selection, to ensure the effectiveness of model training. Using the Random Forest algorithm, I identified key factors influencing the detention risk of ships and established a risk prediction model accordingly. The model validation results indicated that factors such as ship age, tonnage, company performance, and flag state significantly affect whether a ship exhibits a high deficiency rate. In addition, this study explored the potential and limitations of applying the Random Forest model in predicting high deficiency risk under PSC, and proposed future research directions, including further model optimization and the development of real-time prediction systems. By achieving these goals, I hope to provide valuable experience for other global shipping hubs, promote higher international maritime safety standards, and contribute to the sustainable development of the global shipping industry. This research not only highlights the importance of machine learning in the maritime domain but also demonstrates the potential of data-driven decision-making in improving ship safety management and port inspection efficiency. It is hoped that this study will inspire more maritime practitioners and researchers to explore advanced data analytics techniques to address the increasingly complex challenges of global shipping. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
Show Figures

Figure 1

28 pages, 2933 KiB  
Review
Learning and Development in Entrepreneurial Era: Mapping Research Trends and Future Directions
by Fayiz Emad Addin Al Sharari, Ahmad ali Almohtaseb, Khaled Alshaketheep and Kafa Al Nawaiseh
Adm. Sci. 2025, 15(8), 299; https://doi.org/10.3390/admsci15080299 - 31 Jul 2025
Viewed by 324
Abstract
The age of entrepreneurship calls for the evolving of learning and development (L&D) models to meet the dynamic demands of innovation, sustainability, and technology innovation. This study examines the trends and issues of L&D models for entrepreneurs, more so focusing on how these [...] Read more.
The age of entrepreneurship calls for the evolving of learning and development (L&D) models to meet the dynamic demands of innovation, sustainability, and technology innovation. This study examines the trends and issues of L&D models for entrepreneurs, more so focusing on how these models influence business success in a rapidly changing global landscape. The research employs bibliometric analysis, VOSviewer cluster analysis, and co-citation analysis to explore the literature from 1994 to 2024. Data collected from the Web of Science Core Collection database reflect significant trends in entrepreneurial L&D, with particular emphasis on the use of digital tools, sustainability processes, and governance systems. Findings emphasize the imperative role of L&D in fostering entrepreneurship, more so in areas such as digital transformation and the adoption of new technologies. The study also identifies central regions propelling this field, such as UK and USA. Future studies will be centered on the role of digital technologies, innovation, and green business models within entrepreneurial L&D frameworks. This study provides useful insight into the future of L&D within the entrepreneurial domain, guiding academia and companies alike in the planning of effective learning strategies to foster innovation and sustainable business growth. Full article
Show Figures

Figure 1

21 pages, 2585 KiB  
Review
Advances of Articulated Tug–Barge Transport in Enhancing Shipping Efficiency
by Plamen Yanakiev, Yordan Garbatov and Petar Georgiev
J. Mar. Sci. Eng. 2025, 13(8), 1451; https://doi.org/10.3390/jmse13081451 - 29 Jul 2025
Viewed by 198
Abstract
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is [...] Read more.
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is expected to lead to an increase in the annual growth rate from 2025 to 2032. This study aims to analyse the current advancements in ATB technology and provide insights into the ATB fleet and the systems that connect tugboats and barges. Furthermore, it highlights the advantages of this transportation system, especially regarding its role in enhancing energy efficiency within the maritime transport sector. Currently, there is limited information available in the public domain about ATBs compared to other commercial vessels. The analysis reveals that much of the required information for modern ATB design is not accessible outside specialised design companies. The study also focuses on conceptual design aspects, which include the main dimensions, articulated connections, propulsion systems, and machinery, concluding with an evaluation of economic viability. Special emphasis is placed on defining the main dimensions, which is a critical part of the complex design process. In this context, the ratios of length to beam (L/B), beam to draft (B/D), beam to depth (B/T), draft to depth (T/D), and power to the number of tugs cubed (Pw/N3) are established as design control parameters in the conceptual design phase. This aspect underscores the novelty of the present study. Additionally, the economic viability is analysed in terms of both CAPEX (capital expenditures) and OPEX (operational expenditures). While CAPEX does not significantly differ between the methods used in different types of commercial ships, OPEX should account for the unique characteristics of ATB vessels. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 1072 KiB  
Article
Complexity of Supply Chains Using Shannon Entropy: Strategic Relationship with Competitive Priorities
by Miguel Afonso Sellitto, Ismael Cristofer Baierle and Marta Rinaldi
Appl. Syst. Innov. 2025, 8(4), 105; https://doi.org/10.3390/asi8040105 - 29 Jul 2025
Viewed by 256
Abstract
Entropy is a foundational concept across scientific domains, playing a role in understanding disorder, randomness, and uncertainty within systems. This study applies Shannon’s entropy in information theory to evaluate and manage complexity in industrial supply chain management. The purpose of the study is [...] Read more.
Entropy is a foundational concept across scientific domains, playing a role in understanding disorder, randomness, and uncertainty within systems. This study applies Shannon’s entropy in information theory to evaluate and manage complexity in industrial supply chain management. The purpose of the study is to propose a quantitative modeling method, employing Shannon’s entropy model as a proxy to assess the complexity in SCs. The underlying assumption is that information entropy serves as a proxy for the complexity of the SC. The research method is quantitative modeling, which is applied to four focal companies from the agrifood and metalworking industries in Southern Brazil. The results showed that companies prioritizing cost and quality exhibit lower complexity compared to those emphasizing flexibility and dependability. Additionally, information flows related to specially engineered products and deliveries show significant differences in average entropies, indicating that organizational complexities vary according to competitive priorities. The implications of this suggest that a focus on cost and quality in SCM may lead to lower complexity, in opposition to a focus on flexibility and dependability, influencing strategic decision making in industrial contexts. This research introduces the novel application of information entropy to assess and control complexity within industrial SCs. Future studies can explore and validate these insights, contributing to the evolving field of supply chain management. Full article
Show Figures

Figure 1

Back to TopTop