Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = compact polarimetric SAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6489 KiB  
Article
Improving SAR Ship Detection Accuracy by Optimizing Polarization Modes: A Study of Generalized Compact Polarimetry (GCP) Performance
by Guo Song, Yunkai Deng, Heng Zhang, Xiuqing Liu and Sheng Chang
Remote Sens. 2025, 17(11), 1951; https://doi.org/10.3390/rs17111951 - 5 Jun 2025
Viewed by 754
Abstract
The debate surrounding the optimal polarimetric modes—compact polarimetry (CP) versus dual polarization (DP)—for PolSAR ship detection persists. This study pioneers a systematic investigation into Generalized Compact Polarimetry (GCP) for this application. By synthesizing and evaluating 143 distinct GCP configurations from fully polarimetric data, [...] Read more.
The debate surrounding the optimal polarimetric modes—compact polarimetry (CP) versus dual polarization (DP)—for PolSAR ship detection persists. This study pioneers a systematic investigation into Generalized Compact Polarimetry (GCP) for this application. By synthesizing and evaluating 143 distinct GCP configurations from fully polarimetric data, this study presents the first comprehensive comparison of their ship detection performance against conventional modes using Target-to-Clutter Ratio (TCR) and deep learning-based accuracy (AP50). Experiments on the FPSD dataset reveal that an optimized GCP mode (e.g., ellipse/orientation: [−10, −5]) consistently outperforms traditional CP and DP modes, yielding TCR gains of 0.2–2.7 dB. This translates to AP50 improvements of 0.5–4.7% (Faster R-CNN) and 0.1–5.5% (RetinaNet) over five common baseline modes. Crucially, this enhancement arises from optimizing the interaction between the polarization mode and target/clutter scattering characteristics rather than algorithmic improvements, supporting the proposed “optimization from the information source” strategy. These findings offer significant implications for future PolSAR system design and operational mode selection. Full article
Show Figures

Figure 1

19 pages, 31258 KiB  
Article
Pyramid Fine and Coarse Attentions for Land Cover Classification from Compact Polarimetric SAR Imagery
by Saeid Taleghanidoozdoozan, Linlin Xu and David A. Clausi
Remote Sens. 2025, 17(3), 367; https://doi.org/10.3390/rs17030367 - 22 Jan 2025
Cited by 1 | Viewed by 810
Abstract
Land cover classification from compact polarimetry (CP) imagery captured by the launched RADARSAT Constellation Mission (RCM) is important but challenging due to class signature ambiguity issues and speckle noise. This paper presents a new land cover classification method to improve the learning of [...] Read more.
Land cover classification from compact polarimetry (CP) imagery captured by the launched RADARSAT Constellation Mission (RCM) is important but challenging due to class signature ambiguity issues and speckle noise. This paper presents a new land cover classification method to improve the learning of discriminative features based on a novel pyramid fine- and coarse-grained self-attention transformer (PFC transformer). The fine-grained dependency inside a non-overlapping window and coarse-grained dependencies between non-overlapping windows are explicitly modeled and concatenated using a learnable linear function. This process is repeated in a hierarchical manner. Finally, the output of each stage of the proposed method is spatially reduced and concatenated to take advantage of both low- and high-level features. Two high-resolution (3 m) RCM CP SAR scenes are used to evaluate the performance of the proposed method and compare it to other state-of-the-art deep learning methods. The results show that the proposed approach achieves an overall accuracy of 93.63%, which was 4.83% higher than the best comparable method, demonstrating the effectiveness of the proposed approach for land cover classification from RCM CP SAR images. Full article
(This article belongs to the Topic Computer Vision and Image Processing, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 6555 KiB  
Article
Mangrove Extraction from Compact Polarimetric Synthetic Aperture Radar Images Based on Optimal Feature Combinations
by Sijing Shu, Ji Yang, Wenlong Jing, Chuanxun Yang and Jianping Wu
Forests 2024, 15(11), 2047; https://doi.org/10.3390/f15112047 - 20 Nov 2024
Cited by 1 | Viewed by 967
Abstract
As a polarimetric synthetic aperture radar (SAR) mode capable of simultaneously acquiring abundant surface information and conducting large-width observations, compact polarimetric synthetic aperture radar (CP SAR) holds great promise for mangrove dynamics monitoring. Nevertheless, there have been no studies on mangrove identification using [...] Read more.
As a polarimetric synthetic aperture radar (SAR) mode capable of simultaneously acquiring abundant surface information and conducting large-width observations, compact polarimetric synthetic aperture radar (CP SAR) holds great promise for mangrove dynamics monitoring. Nevertheless, there have been no studies on mangrove identification using CP SAR. This study aims to explore the potential of C-band CP SAR for mangrove monitoring applications, with the objective of identifying the most effective CP SAR descriptors for mangrove discrimination. A systematic comparison of 52 well-known CP features is provided, utilizing CP SAR data derived from the reconstruction of C-band Gaofen-3 quad-polarimetric data. Among all the features, Shannon entropy (SE), a random polarimetric constituent (VB), Shannon entropy (SEI), and the Bragg backscattering constituent (VG) exhibited the best performance. By combining these four features, we designed three supervised classifiers—support vector machine (SVM), maximum likelihood (ML), and artificial neural network (ANN)—for comparative analysis experiments. The results demonstrated that the optimal polarimetric feature combination not only reduced the redundancy of polarimetric feature data but also enhanced overall accuracy. The highest accuracy of mangrove extraction reached 98.04%. Among the three classifiers, SVM outperformed the other classifiers in mangrove extraction, while ML achieved the highest overall classification accuracy. Full article
(This article belongs to the Special Issue Forest and Urban Green Space Ecosystem Services and Management)
Show Figures

Figure 1

30 pages, 11567 KiB  
Article
Gini Coefficient-Based Feature Learning for Unsupervised Cross-Domain Classification with Compact Polarimetric SAR Data
by Xianyu Guo, Junjun Yin, Kun Li and Jian Yang
Agriculture 2024, 14(9), 1511; https://doi.org/10.3390/agriculture14091511 - 3 Sep 2024
Viewed by 1250
Abstract
Remote sensing image classification usually needs many labeled samples so that the target nature can be fully described. For synthetic aperture radar (SAR) images, variations of the target scattering always happen to some extent due to the imaging geometry, weather conditions, and system [...] Read more.
Remote sensing image classification usually needs many labeled samples so that the target nature can be fully described. For synthetic aperture radar (SAR) images, variations of the target scattering always happen to some extent due to the imaging geometry, weather conditions, and system parameters. Therefore, labeled samples in one image could not be suitable to represent the same target in other images. The domain distribution shift of different images reduces the reusability of the labeled samples. Thus, exploring cross-domain interpretation methods is of great potential for SAR images to improve the reuse rate of existing labels from historical images. In this study, an unsupervised cross-domain classification method is proposed that utilizes the Gini coefficient to rank the robust and stable polarimetric features in both the source and target domains (GRFST) such that an unsupervised domain adaptation (UDA) can be achieved. This method selects the optimal features from both the source and target domains to alleviate the domain distribution shift. Both fully polarimetric (FP) and compact polarimetric (CP) SAR features are explored for crop-domain terrain type classification. Specifically, the CP mode refers to the hybrid dual-pol mode with an arbitrary transmitting ellipse wave. This is the first attempt in the open literature to investigate the representing abilities of different CP modes for cross-domain terrain classification. Experiments are conducted from four aspects to demonstrate the performance of CP modes for cross-data, cross-scene, and cross-crop type classification. Results show that the GRFST-UDA method yields a classification accuracy of 2% to 12% higher than the traditional UDA methods. The degree of scene similarity has a certain impact on the accuracy of cross-domain crop classification. It was also found that when both the FP and circular CP SAR data are used, stable, promising results can be achieved. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Agricultural Soil and Crop Mapping)
Show Figures

Figure 1

14 pages, 5602 KiB  
Article
Surface Soil Moisture Estimation from Time Series of RADARSAT Constellation Mission Compact Polarimetric Data for the Identification of Water-Saturated Areas
by Igor Zakharov, Sarah Kohlsmith, Jon Hornung, François Charbonneau, Pradeep Bobby and Mark Howell
Remote Sens. 2024, 16(14), 2664; https://doi.org/10.3390/rs16142664 - 21 Jul 2024
Cited by 2 | Viewed by 1406
Abstract
Soil moisture is one of the main factors affecting microwave radar backscatter from the ground. While there are other factors that affect backscatter levels (for instance, surface roughness, vegetation, and incident angle), relative variations in soil moisture can be estimated using space-based, medium [...] Read more.
Soil moisture is one of the main factors affecting microwave radar backscatter from the ground. While there are other factors that affect backscatter levels (for instance, surface roughness, vegetation, and incident angle), relative variations in soil moisture can be estimated using space-based, medium resolution, multi-temporal synthetic aperture radar (SAR). Understanding the distribution and identification of water-saturated areas using SAR soil moisture can be important for wetland mapping. The SAR soil moisture retrieval algorithm provides a relative assessment and requires calibration over wet and dry periods. In this work, relative soil moisture indicators are derived from a time series of the RADARSAT Constellation Mission (RCM) SAR compact polarimetric (CP) data over reclaimed areas of an oil sands mine in Alberta, Canada. An evaluation of the soil moisture product is performed using in situ measurements showing agreement from June to September. The surface scattering component of m-chi CP decomposition and the RL SAR products demonstrated a good agreement with the field data (low RMSE values and a perfect alignment with field-identified wetlands). Full article
(This article belongs to the Special Issue GIS and Remote Sensing in Soil Mapping and Modeling)
Show Figures

Figure 1

13 pages, 2320 KiB  
Article
Optimizing Soil Moisture Retrieval: Utilizing Compact Polarimetric Features with Advanced Machine Learning Techniques
by Mohammed Dabboor, Ghada Atteia and Rana Alnashwan
Land 2023, 12(10), 1861; https://doi.org/10.3390/land12101861 - 29 Sep 2023
Cited by 3 | Viewed by 1650
Abstract
Soil moisture plays a crucial role in various environmental processes and is essential for agricultural management, hydrological modeling, and climate studies. Synthetic Aperture Radar (SAR) remote sensing presents significant potential for estimating soil moisture due to its ability to operate in all weather [...] Read more.
Soil moisture plays a crucial role in various environmental processes and is essential for agricultural management, hydrological modeling, and climate studies. Synthetic Aperture Radar (SAR) remote sensing presents significant potential for estimating soil moisture due to its ability to operate in all weather conditions and provide day-and-night imaging capabilities. Among the SAR configurations, the Compact Polarimetric (CP) mode has gained increasing interest as it relaxes system constraints, improves coverage, and enhances target information compared to conventional dual polarimetric SAR systems. This paper introduces a novel approach for soil moisture retrieval utilizing machine learning algorithms and CP SAR features. The CP SAR features are derived from a series of RADARSAT Constellation Mission (RCM) CP SAR imagery acquired over Canadian experimental sites equipped with Real-Time In Situ Soil Monitoring for Agriculture (RISMA) stations. This study employs a diverse dataset of compact polarimetric SAR features and corresponding ground truth soil moisture measurements for training and validation purposes. The results of our study achieved a Root Mean Square Error (RMSE) of 6.88% with a coefficient of determination R2 equal to 0.60, which corresponds to a correlation R between true and predicted soil moisture values of 0.75, using optimized Ensemble Learning Regression (ELR) with a decision-tree-based model. These results improved, yielding an RMSE of 5.67% and an R2 equal to 0.73 (R = 0.85), using an optimized Gaussian Process Regression (GPR) model. Full article
(This article belongs to the Topic Advances in Earth Observation and Geosciences)
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

21 pages, 10897 KiB  
Article
Quad-Pol SAR Data Reconstruction from Dual-Pol SAR Mode Based on a Multiscale Feature Aggregation Network
by Junwu Deng, Peng Zhou, Mingdian Li, Haoliang Li and Siwei Chen
Remote Sens. 2023, 15(17), 4182; https://doi.org/10.3390/rs15174182 - 25 Aug 2023
Cited by 6 | Viewed by 2720
Abstract
Polarimetric synthetic aperture radar (PolSAR) is widely used in remote sensing applications due to its ability to obtain full-polarization information. Compared to the quad-pol SAR, the dual-pol SAR mode has a wider observation swath and is more common in most SAR systems. The [...] Read more.
Polarimetric synthetic aperture radar (PolSAR) is widely used in remote sensing applications due to its ability to obtain full-polarization information. Compared to the quad-pol SAR, the dual-pol SAR mode has a wider observation swath and is more common in most SAR systems. The goal of reconstructing quad-pol SAR data from the dual-pol SAR mode is to learn the contextual information of dual-pol SAR images and the relationships among polarimetric channels. This work is dedicated to addressing this issue, and a multiscale feature aggregation network has been established to achieve the reconstruction task. Firstly, multiscale spatial and polarimetric features are extracted from the dual-pol SAR images using the pretrained VGG16 network. Then, a group-attention module (GAM) is designed to progressively fuse the multiscale features extracted by different layers. The fused feature maps are interpolated and aggregated with dual-pol SAR images to form a compact feature representation, which integrates the high- and low-level information of the network. Finally, a three-layer convolutional neural network (CNN) with a 1 × 1 convolutional kernel is employed to establish the mapping relationship between the feature representation and polarimetric covariance matrices. To evaluate the quad-pol SAR data reconstruction performance, both polarimetric target decomposition and terrain classification are adopted. Experimental studies are conducted on the ALOS/PALSAR and UAVSAR datasets. The qualitative and quantitative experimental results demonstrate the superiority of the proposed method. The reconstructed quad-pol SAR data can better sense buildings’ double-bounce scattering changes before and after a disaster. Furthermore, the reconstructed quad-pol SAR data of the proposed method achieve a 97.08% classification accuracy, which is 1.25% higher than that of dual-pol SAR data. Full article
Show Figures

Figure 1

15 pages, 6296 KiB  
Technical Note
Region-Based Sea Ice Mapping Using Compact Polarimetric Synthetic Aperture Radar Imagery with Learned Features and Contextual Information
by Saeid Taleghanidoozdoozan, Linlin Xu and David A. Clausi
Remote Sens. 2023, 15(12), 3199; https://doi.org/10.3390/rs15123199 - 20 Jun 2023
Cited by 1 | Viewed by 2023
Abstract
Operational sea ice maps are usually generated manually using dual-polarization (DP) synthetic aperture radar (SAR) satellite imagery, but there is strong interest in automating this process. Recently launched satellites offer compact polarimetry (CP) imagery that provides more comprehensive polarimetric information compared to DP, [...] Read more.
Operational sea ice maps are usually generated manually using dual-polarization (DP) synthetic aperture radar (SAR) satellite imagery, but there is strong interest in automating this process. Recently launched satellites offer compact polarimetry (CP) imagery that provides more comprehensive polarimetric information compared to DP, which compels the use of CP for automated classification of SAR sea ice imagery. Existing sea ice scene classification algorithms using CP imagery rely on handcrafted features, while neural networks offer the potential of features that are more discriminating. We have developed a new and effective sea ice classification algorithm that leverages the nature of CP data. First, a residual-based convolutional neural network (ResCNN) is implemented to classify each pixel. In parallel, an unsupervised segmentation is performed to generate regions based on CP statistical properties. Regions are assigned a single class label by majority voting using the ResCNN output. For testing, quad-polarimetric (QP) SAR sea ice scenes from the RADARSAT Constellation Mission (RCM) are used, and QP, DP, CP, and reconstructed QP modes are compared for classification accuracy, while also comparing them to other classification approaches. Using CP achieves an overall accuracy of 96.86%, which is comparable to QP (97.16%), and higher than reconstructed QP and DP data by about 2% and 10%, respectively. The implemented algorithm using CP imagery provides an improved option for automated sea ice mapping. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

20 pages, 24131 KiB  
Article
A Refined Model for Quad-Polarimetric Reconstruction from Compact Polarimetric Data
by Rui Guo, Xiaopeng Zhao, Bo Zang, Yi Liang, Jian Bai and Liang Guo
Remote Sens. 2022, 14(20), 5226; https://doi.org/10.3390/rs14205226 - 19 Oct 2022
Cited by 2 | Viewed by 2013
Abstract
As a special dual-polarization technique, compact polarimetric (CP) synthetic aperture radar (SAR) has already been widely studied and installed on some spaceborne systems due to its superiority to quad-polarization; moreover, quad-pol information can be explored and reconstructed from the CP SAR data. In [...] Read more.
As a special dual-polarization technique, compact polarimetric (CP) synthetic aperture radar (SAR) has already been widely studied and installed on some spaceborne systems due to its superiority to quad-polarization; moreover, quad-pol information can be explored and reconstructed from the CP SAR data. In this paper, a refined model is proposed to estimate the quad-pol information for the CP mode. This model involves CP decomposition, wherein the polarization degree is introduced as the volume scattering model parameter. Moreover, a power-weighted model for the co-polarized coherence coefficient is proposed to avoid the iterative approach in pseudo-quad-pol information reconstruction. Experiments were implemented on the simulated Gaofen-3 and ALOS-2 data collected over San Francisco. Compared with typical reconstruction models, the proposed refined model shows its superiority in estimating the quad-pol information. Furthermore, terrain classification experiments using a complex-value convolutional neural network (CV-CNN) were performed on AIRSAR Flevoland data to validate the reconstruction effectiveness for classification applications. Full article
(This article belongs to the Special Issue SAR Images Processing and Analysis)
Show Figures

Graphical abstract

21 pages, 15453 KiB  
Article
Oil Spill Detection by CP SAR Based on the Power Entropy Decomposition
by Sheng Gao, Sijie Li and Hongli Liu
Remote Sens. 2022, 14(19), 5030; https://doi.org/10.3390/rs14195030 - 9 Oct 2022
Cited by 6 | Viewed by 2347
Abstract
In recent years, marine oil spills have adversely affected the marine economy and ecosystem, and the detection of marine oil slicks has attracted great attention. Combining different polarimetric features for better oil spill detection is a topic that needs to be studied in [...] Read more.
In recent years, marine oil spills have adversely affected the marine economy and ecosystem, and the detection of marine oil slicks has attracted great attention. Combining different polarimetric features for better oil spill detection is a topic that needs to be studied in depth. Previous studies have shown that the compact polarimetric (CP) synthetic aperture radar (SAR) can be effectively applied to the detection of sea surface oil spill due to its own ability, which is conducive to the extraction of sea surface oil slick. In this paper, we apply the power–entropy (PE) decomposition theory, which decomposes the total scattered power according to the entropy contribution of each cell in the response, to CP SAR data for oil spill detection. The purpose of this study is to enhance the oil slick and the separability of the sea. As a result, an oil spill detection method based on the low-entropy radiation amplitude parameter lesa is proposed. We compare lesa with the other five popular polarimetric features and validate by quantitative evaluation that lesa is superior to other types of polarization feature parameters under different band data. Moreover, the random forest classification is performed on the feature map and achieves the visualization results of oil spill detection. The experimental results show that the lesa can combine the information of the two polarimetric characteristic parameters of entropy and total scattering power, and can clearly indicate the oil slick information under different scenarios. Full article
Show Figures

Figure 1

18 pages, 6265 KiB  
Article
Scattering Intensity Analysis and Classification of Two Types of Rice Based on Multi-Temporal and Multi-Mode Simulated Compact Polarimetric SAR Data
by Xianyu Guo, Junjun Yin, Kun Li, Jian Yang and Yun Shao
Remote Sens. 2022, 14(7), 1644; https://doi.org/10.3390/rs14071644 - 29 Mar 2022
Cited by 5 | Viewed by 2430
Abstract
Because transmitting polarization can be an arbitrary elliptical wave, and theoretically, there are numerous possibilities of hybrid dual-pol modes, therefore, it is necessary to explore the feature recognition and classification ability of compact polarimetric (CP) parameters under different transmitting and receiving modes to [...] Read more.
Because transmitting polarization can be an arbitrary elliptical wave, and theoretically, there are numerous possibilities of hybrid dual-pol modes, therefore, it is necessary to explore the feature recognition and classification ability of compact polarimetric (CP) parameters under different transmitting and receiving modes to different ground objects. In this paper, we first simulated, extracted, and analyzed the scattering intensity of two types of rice of six temporal CP synthetic aperture radar (SAR) data under three transmitting modes. Then, during different phenology stages, the optimal parameters for distinguishing transplanting hybrid rice (T–H) and direct-sown japonica rice (D–J) were acquired. Finally, a decision tree classification model was established based on the optimal parameters to carry out the fine classification of the two types of rice and to verify the results. The results showed that this strategy can obtain a high classification accuracy for the two types of rice with an overall classification accuracy of more than 95% and a kappa coefficient of more than 0.94. In addition, and importantly, we found that the CP parameters in the 1103 period (harvest stage) were the best CP parameters to distinguish the two types of rice, followed by the 0730 (seedling–elongation stage), 0612 (seedling stage), and 0916 (heading–flowering stage) periods. Full article
Show Figures

Figure 1

22 pages, 2722 KiB  
Article
Hybrid Compact Polarimetric SAR Calibration Considering the Amplitude and Phase Coefficients Inconsistency
by Wentao Hou, Fengjun Zhao, Xiuqing Liu, Dacheng Liu, Yonghui Han, Yao Gao and Robert Wang
Remote Sens. 2022, 14(2), 416; https://doi.org/10.3390/rs14020416 - 17 Jan 2022
Cited by 2 | Viewed by 2276
Abstract
Calibration using corner reflectors is an effective way to estimate the distortion parameters of hybrid compact polarimetric (HCP) synthetic aperture radar (SAR) systems. However, the existing literature lacks a discussion on the inconsistency of the amplitude and phase coefficients between measured scattering vectors [...] Read more.
Calibration using corner reflectors is an effective way to estimate the distortion parameters of hybrid compact polarimetric (HCP) synthetic aperture radar (SAR) systems. However, the existing literature lacks a discussion on the inconsistency of the amplitude and phase coefficients between measured scattering vectors of different corner reflectors. In response to this problem, this paper first proves that this inconsistency will seriously deteriorate the estimation accuracy of polarimetric distortion parameters. Based on the optimization algorithm, two calibration schemes for simultaneously estimating the traditional distortion parameters and the amplitude/phase coefficients are proposed while ignoring crosstalk (ICT) and considering crosstalk (CCT). In the process of distortion parameter estimation, the idea of “optimizing while compensating” is adopted to eliminate the problem of uneven echo intensity. Simulation results show that both schemes can eliminate the influence of the inconsistency of amplitude and phase coefficients, and estimate distortion parameters accurately. When the received crosstalk level is lower than −30 dB, the ICT scheme can accurately estimate polarimetric distortion parameters. The CCT scheme has a wider application range of crosstalk and can work well when the crosstalk level is lower than −20 dB, but it also has a higher requirement for the signal-to-clutter ratio (SCR). When SCR is greater than 35 dB, the CCT scheme yields higher estimation accuracy than the ICT scheme. In addition, the effectiveness of the calibration schemes is verified based on the L-band measured data acquired by the Aerospace Information Research Institute, Chinese Academy of Sciences. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

19 pages, 7823 KiB  
Article
The RADARSAT Constellation Mission Core Applications: First Results
by Mohammed Dabboor, Ian Olthof, Masoud Mahdianpari, Fariba Mohammadimanesh, Mohammed Shokr, Brian Brisco and Saeid Homayouni
Remote Sens. 2022, 14(2), 301; https://doi.org/10.3390/rs14020301 - 10 Jan 2022
Cited by 22 | Viewed by 6527
Abstract
The Canadian RADARSAT Constellation Mission (RCM) has passed its early operation phase with the performance evaluation being currently active. This evaluation aims to confirm that the innovative design of the mission’s synthetic aperture radar (SAR) meets the expectations of intended users. In this [...] Read more.
The Canadian RADARSAT Constellation Mission (RCM) has passed its early operation phase with the performance evaluation being currently active. This evaluation aims to confirm that the innovative design of the mission’s synthetic aperture radar (SAR) meets the expectations of intended users. In this study, we provide an overview of initial results obtained for three high-priority applications; flood mapping, sea ice analysis, and wetland classification. In our study, the focus is on results obtained using not only linear polarization, but also the adopted Compact Polarimetric (CP) architecture in RCM. Our study shows a promising level of agreement between RCM and RADARSAT-2 performance in flood mapping using dual-polarized HH-HV SAR data over Red River, Manitoba, suggesting smooth continuity between the two satellite missions for operational flood mapping. Visual analysis of coincident RCM CP and RADARSAT-2 dual-polarized HH-HV SAR imagery over the Resolute Passage, Canadian Central Arctic, highlighted an improved contrast between sea ice classes in dry ice winter conditions. A statistical analysis using selected sea ice samples confirmed the increased contrast between thin and both rough and deformed ice in CP SAR. This finding is expected to enhance Canadian Ice Service’s (CIS) operational visual analysis of sea ice in RCM SAR imagery for ice chart production. Object-oriented classification of a wetland area in Newfoundland and Labrador by fusion of RCM dual-polarized VV-VH data and Sentinel-2 optical imagery revealed promising classification results, with an overall accuracy of 91.1% and a kappa coefficient of 0.87. Marsh presented the highest user’s and producer’s accuracies (87.77% and 82.08%, respectively) compared to fog, fen, and swamp. Full article
(This article belongs to the Special Issue RADARSAT Constellation Mission (RCM))
Show Figures

Figure 1

18 pages, 8893 KiB  
Article
Fine Classification of Rice Paddy Based on RHSI-DT Method Using Multi-Temporal Compact Polarimetric SAR Data
by Xianyu Guo, Junjun Yin, Kun Li and Jian Yang
Remote Sens. 2021, 13(24), 5060; https://doi.org/10.3390/rs13245060 - 13 Dec 2021
Cited by 6 | Viewed by 2809
Abstract
In recent years, the compact polarimetric (CP) synthetic aperture radar (SAR) has become a hotspot of SAR Earth observation. Meanwhile, CP SAR provides both relatively rich polarization information and large swath-width for rice mapping. Fine classification of rice paddy plays an important role [...] Read more.
In recent years, the compact polarimetric (CP) synthetic aperture radar (SAR) has become a hotspot of SAR Earth observation. Meanwhile, CP SAR provides both relatively rich polarization information and large swath-width for rice mapping. Fine classification of rice paddy plays an important role in growth monitoring, pest prevention and yield estimation of rice. In this study, the multi-temporal CP SAR data were firstly simulated by fully polarimetric RADARSAT-2 data, and 22 CP parameters from each of the six temporal CP SAR data were extracted. Then we built a rice height-sensitive index (RHSI). Furthermore, a decision tree (DT) method was established by using the optimal CP parameters based on RHSI. Finally, the classification results of rice paddy based on DT and support vector machine (SVM) methods were compared. Results showed that the RHSI-DT method could obtain better results, with an overall accuracy of 97.94% and a kappa coefficient of 0.973, which was 2% higher and 0.03 larger than those of the SVM method. Besides, we found that the surface scattering of m-χ decomposition (m-χ_s (0627)) and ΔShannon entropy intensity Hi (Hi (1015)-Hi (0627)) were highly effective parameters to distinguish paddies of transplanting hybrid rice (T-H) and direct-sown japonica rice (D-J). Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

22 pages, 15869 KiB  
Article
Performance Analysis of Ocean Eddy Detection and Identification by L-Band Compact Polarimetric Synthetic Aperture Radar
by Sijing Shu, Ji Yang, Chuanxun Yang, Hongda Hu, Wenlong Jing, Yiqiang Hu and Yong Li
Remote Sens. 2021, 13(23), 4905; https://doi.org/10.3390/rs13234905 - 3 Dec 2021
Cited by 5 | Viewed by 2703
Abstract
The automatic detection and analysis of ocean eddies has become a popular research topic in physical oceanography during the last few decades. Compact polarimetric synthetic aperture radar (CP SAR), an emerging polarimetric SAR system, can simultaneously acquire richer polarization information of the target [...] Read more.
The automatic detection and analysis of ocean eddies has become a popular research topic in physical oceanography during the last few decades. Compact polarimetric synthetic aperture radar (CP SAR), an emerging polarimetric SAR system, can simultaneously acquire richer polarization information of the target and achieve large bandwidth observations. It has inherent advantages in ocean observation and is bound to become an ideal data source for ocean eddy observation and research. In this study, we simulated the CP data with L-band ALOS PALSAR fully polarimetric data. We assessed the detection and classification potential of ocean eddies from CP SAR by analyzing 50 CP features for 2 types of ocean eddies (“black”and “white”) based on the Euclidean distance and further carried out eddy detection and eddy information extraction experiments. The results showed that among the 50 CP features, the dihedral component power (Pd), shannon entropy (SEI), double bounce (Dbl), Stokes parameters (g0 and g3), eigenvalue (l1), lambda, RVoG parameter (ms), shannon entropy (SE), surface scattering component (Ps), and σHH all performed better for detecting “white” eddies. Moreover, the H-A combination parameter (1mHA), entropy, shannon entropy (SEP, SEI, and SE), probability (p2), polarization degree (m), anisotropy, probability (p1), double bounce (Dbl), H-A combination parameter (H1mA), circular polarization ratio (CPR), and σVV were better CP features for detecting “black” eddies. Full article
(This article belongs to the Special Issue RADARSAT Constellation Mission (RCM))
Show Figures

Figure 1

Back to TopTop