Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,996)

Search Parameters:
Keywords = communication cost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1881 KiB  
Article
Fault Detection in MV Switchgears Through Unsupervised Learning of Temperature Conditions
by Grazia Iadarola, Alessandro Mingotti, Virginia Negri and Susanna Spinsante
Sensors 2025, 25(15), 4818; https://doi.org/10.3390/s25154818 - 5 Aug 2025
Abstract
This paper presents a distributed measurement system intended to effectively monitor the health status of switchgears under varying temperature conditions. In particular, thermocouples are deployed as temperature sensors for the continuous monitoring of a medium-voltage (MV) switchgear. Then, by integrating a low-cost microcontroller [...] Read more.
This paper presents a distributed measurement system intended to effectively monitor the health status of switchgears under varying temperature conditions. In particular, thermocouples are deployed as temperature sensors for the continuous monitoring of a medium-voltage (MV) switchgear. Then, by integrating a low-cost microcontroller unit, the proposed system can implement previously trained unsupervised learning techniques for health status evaluation. This approach enables the early detection of potential faults by identifying anomalous temperature patterns, thus supporting predictive maintenance and extending the lifespan of switchgears. The results show strong clustering performance with low execution times, highlighting the suitability of the method for resource-constrained hardware. Furthermore, onboard temperature processing eliminates the need for data transmission to remote servers, reducing latency and communication overhead while improving system responsiveness. The paper includes a numerical analysis on synthetic data as well as a validation on real measurements. Overall, the presented distributed measurement system offers a scalable and cost-effective solution to enhance the reliability and safety of MV switchgears. Full article
(This article belongs to the Special Issue Sensors Technology Applied in Power Systems and Energy Management)
36 pages, 21951 KiB  
Article
The Collective Dwelling of Cooperative Promotion in Caselas
by Vanda Pereira de Matos and Carlos Alberto Assunção Alho
Buildings 2025, 15(15), 2756; https://doi.org/10.3390/buildings15152756 - 5 Aug 2025
Abstract
To solve the present housing crisis, the Support for Access to Housing Program, in the context of PRR, mainly focuses on social housing to be built or on housing of social interest to be regenerated. To approach this problem, a research question was [...] Read more.
To solve the present housing crisis, the Support for Access to Housing Program, in the context of PRR, mainly focuses on social housing to be built or on housing of social interest to be regenerated. To approach this problem, a research question was raised: “What is the significance of the existing cooperative housing in solving the current housing crisis?” To analyze this issue, a multiple case study was adopted, comparing a collective dwelling of cooperative promotion at controlled costs in Caselas (1980s–1990s) with Expo Urbe (2000–2007) in Parque das Nações, a symbol of the new sustainable cooperative housing, which targets a population with a higher standard of living and thus is excluded from the PRR plan. These cases revealed the discrepancy created by the Cooperative Code of 1998 and its consequences for the urban regeneration of this heritage. They show that Caselas, built in a residential urban neighborhood, is strongly attached to a community, provides good social inclusion for vulnerable groups at more affordable prices, and it is eligible for urban regeneration and reuse (for renting or buying). However, the reuse of Caselcoop’s edifices cannot compromise their cultural and residential values or threaten the individual integrity. Full article
Show Figures

Figure 1

14 pages, 614 KiB  
Article
Development of Cut Scores for Feigning Spectrum Behavior on the Orebro Musculoskeletal Pain Screening Questionnaire and the Perceived Stress Scale: A Simulation Study
by John Edward McMahon, Ashley Craig and Ian Douglas Cameron
J. Clin. Med. 2025, 14(15), 5504; https://doi.org/10.3390/jcm14155504 - 5 Aug 2025
Abstract
Background/Objectives: Feigning spectrum behavior (FSB) is the exaggeration, fabrication, or false imputation of symptoms. It occurs in compensable injury with great cost to society by way of loss of productivity and excessive costs. The aim of this study is to identify feigning [...] Read more.
Background/Objectives: Feigning spectrum behavior (FSB) is the exaggeration, fabrication, or false imputation of symptoms. It occurs in compensable injury with great cost to society by way of loss of productivity and excessive costs. The aim of this study is to identify feigning by developing cut scores on the long and short forms (SF) of the Orebro Musculoskeletal Pain Screening Questionnaire (OMPSQ and OMPSQ-SF) and the Perceived Stress Scale (PSS and PSS-4). Methods: As part of pre-screening for a support program, 40 injured workers who had been certified unfit for work for more than 2 weeks were screened once with the OMPSQ and PSS by telephone by a mental health professional. A control sample comprised of 40 non-injured community members were screened by a mental health professional on four occasions under different aliases, twice responding genuinely and twice simulating an injury. Results: Differences between the workplace injured people and the community sample were compared using ANCOVA with age and gender as covariates, and then receiver operator characteristics (ROCs) were calculated. The OMPSQ and OMPSQ-SF discriminated (ρ < 0.001) between all conditions. All measures discriminated between the simulation condition and workplace injured people (ρ < 0.001). Intraclass correlation demonstrated the PSS, PSS-4, OMPSQ, and OMPSQ-SF were reliable (ρ < 0.001). Area Under the Curve (AUC) was 0.750 for OMPSQ and 0.835 for OMPSQ-SF for work-injured versus simulators. Conclusions: The measures discriminated between injured and non-injured people and non-injured people instructed to simulate injury. Non-injured simulators produced similar scores when they had multiple exposures to the test materials, showing the uniformity of feigning spectrum behavior on these measures. The OMPSQ-SF has adequate discriminant validity and sensitivity to feigning spectrum behavior, making it optimal for telephone screening in clinical practice. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

18 pages, 2763 KiB  
Article
Enhancing Students’ Interest in Physics Concepts with a Low-Cost STEM Tool Focused on Motivation in Rural Areas of Developing Countries
by René Flores-Godínez, Antonio Alarcón-Paredes, Iris Paola Guzmán-Guzmán, Yanik Ixchel Maldonado-Astudillo and Gustavo Adolfo Alonso-Silverio
Educ. Sci. 2025, 15(8), 994; https://doi.org/10.3390/educsci15080994 (registering DOI) - 5 Aug 2025
Abstract
Physics concepts are considered an essential component of STEM (science, technology, engineering, and mathematics) education and fundamental for economic and technological development in the world. However, there can be student academic underperformance, such as the school environment, learning media and infrastructure, student interest [...] Read more.
Physics concepts are considered an essential component of STEM (science, technology, engineering, and mathematics) education and fundamental for economic and technological development in the world. However, there can be student academic underperformance, such as the school environment, learning media and infrastructure, student interest and emotions, as well as social and economic development factors in communities. These problems are even more acute in rural areas of developing countries, where poverty is high and teachers often lack the necessary technological skills. The aim of this study was to evaluate the impact of a low-cost STEM tool focused on motivation in learning, in terms of five variables of interest in physics in rural areas, as well as the durability of the tools used to learn 12 physics concepts. A quasi-experimental study was conducted with the participation of 78 high school students, with an average age of 15.82 years, in a rural area of Guerrero, Mexico. The results showed that using the STEM tool significantly increased students’ interest in learning methodology, active participation, and attitude towards physics, facilitating the teacher’s work. In addition, the 3D construction kit used in the experimentation, besides being low-cost, proved to be affordable and durable, making it ideal for use in rural areas. Full article
(This article belongs to the Special Issue Interdisciplinary Approaches to STEM Education)
Show Figures

Figure 1

21 pages, 5391 KiB  
Article
Application of Computer Simulation to Evaluate Performance Parameters of the Selective Soldering Process
by Maciej Dominik and Marek Kęsek
Appl. Sci. 2025, 15(15), 8649; https://doi.org/10.3390/app15158649 (registering DOI) - 5 Aug 2025
Abstract
The growing complexity of production systems in the technology sector demands advanced tools to ensure efficiency, flexibility, and cost-effectiveness. This study presents the development of a simulation model for a selective soldering line at a technology manufacturing company in Poland, created during an [...] Read more.
The growing complexity of production systems in the technology sector demands advanced tools to ensure efficiency, flexibility, and cost-effectiveness. This study presents the development of a simulation model for a selective soldering line at a technology manufacturing company in Poland, created during an engineering internship. Using FlexSim 24.2 software, the real production process was replicated, including input/output queues, manual insertion (MI) stations, soldering machines, and quality control points. Special emphasis was placed on implementing dynamic process logic via ProcessFlow, enabling detailed modeling of token flow and system behavior. Through experimentation, various configurations were tested to optimize process time and the number of soldering pallets in circulation. The results revealed that reducing pallets from 12 to 8 maintains process continuity while offering cost savings without impacting performance. An intuitive operator panel was also developed, allowing users to adjust parameters and monitor outcomes in real time. The project demonstrates that simulation not only supports operational decision-making and resource planning but also enhances interdisciplinary communication by visually conveying complex workflows. Ultimately, the study confirms that simulation modeling is a powerful and adaptable approach to production optimization, contributing to long-term strategic improvements and innovation in technologically advanced manufacturing environments. Full article
(This article belongs to the Special Issue Integration of Digital Simulation Models in Smart Manufacturing)
Show Figures

Figure 1

17 pages, 12216 KiB  
Article
Green/Blue Initiatives as a Proposed Intermediate Step to Achieve Nature-Based Solutions for Wildfire Risk Management
by Stella Schroeder and Carolina Ojeda Leal
Fire 2025, 8(8), 307; https://doi.org/10.3390/fire8080307 - 5 Aug 2025
Abstract
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To [...] Read more.
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To address these challenges, this exploratory study proposes a new concept: green/blue initiatives. These initiatives represent intermediate steps, encompassing small-scale, community-driven activities that can evolve into recognized NbSs over time. To explore this concept, experiences related to wildfire prevention in the Biobío region of Chile were analyzed through primary and secondary source reviews. The analysis identified three initiatives qualifying as green/blue initiatives: (1) goat grazing in Santa Juana to reduce fuel loads, (2) a restoration prevention farm model in Florida called Faro de Restauración Mahuidanche and (3) the Conservation Landscape Strategy in Nonguén. They were examined in detail using data collected from site visits and interviews. In contrast to Chile’s prevailing wildfire policies, which focus on costly, large-scale fire suppression efforts, these initiatives emphasize the importance of reframing wildfire as a manageable ecological process. Lastly, the challenges and enabling factors for adopting green/blue initiatives are discussed, highlighting their potential to pave the way for future NbS implementation in central Chile. Full article
(This article belongs to the Special Issue Nature-Based Solutions to Extreme Wildfires)
Show Figures

Figure 1

33 pages, 6561 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

17 pages, 1738 KiB  
Article
Evaluation of Optimal Visible Wavelengths for Free-Space Optical Communications
by Modar Dayoub and Hussein Taha
Telecom 2025, 6(3), 57; https://doi.org/10.3390/telecom6030057 - 4 Aug 2025
Abstract
Free-space optical (FSO) communications have emerged as a promising complement to conventional radio-frequency (RF) systems due to their high bandwidth, low interference, and license-free spectrum. Visible-light FSO communication, using laser diodes or LEDs, offers potential for short-range data links, but performance is highly [...] Read more.
Free-space optical (FSO) communications have emerged as a promising complement to conventional radio-frequency (RF) systems due to their high bandwidth, low interference, and license-free spectrum. Visible-light FSO communication, using laser diodes or LEDs, offers potential for short-range data links, but performance is highly wavelength-dependent under varying atmospheric conditions. This study presents an experimental evaluation of three visible laser diodes at 650 nm (red), 532 nm (green), and 405 nm (violet), focusing on their optical output power, quantum efficiency, and modulation behavior across a range of driving currents and frequencies. A custom laboratory testbed was developed using an Atmega328p microcontroller and a Visual Basic control interface, allowing precise control of current and modulation frequency. A silicon photovoltaic cell was employed as the optical receiver and energy harvester. The results demonstrate that the 650 nm red laser consistently delivers the highest quantum efficiency and optical output, with stable performance across electrical and modulation parameters. These findings support the selection of 650 nm as the most energy-efficient and versatile wavelength for short-range, cost-effective visible-light FSO communication. This work provides experimentally grounded insights to guide wavelength selection in the development of energy-efficient optical wireless systems. Full article
(This article belongs to the Special Issue Optical Communication and Networking)
Show Figures

Figure 1

23 pages, 5826 KiB  
Article
Re-Habiting the Rooftops in Ciutat Vella (Barcelona): Co-Designed Low-Cost Solutions for a Social, Technical and Environmental Improvement
by Marta Domènech-Rodríguez, Oriol París-Viviana and Còssima Cornadó
Urban Sci. 2025, 9(8), 304; https://doi.org/10.3390/urbansci9080304 - 4 Aug 2025
Abstract
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this [...] Read more.
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this research develops low-cost, removable, and recyclable prototypes aimed at improving social interaction, technical performance, and environmental conditions. The focus is on vulnerable populations, particularly the elderly. The approach integrates a bottom–up process and scalable solutions presented as a Toolkit of micro-projects. These micro-projects are designed to improve issues related to health, safety, durability, accessibility, energy savings, and acoustics. In addition, several possible material solutions for micro-projects are examined in terms of sustainability and cost. These plug-in interventions are designed for adaptability and replication throughout similar urban contexts and can significantly improve the quality of life for people, especially the elderly, in dense historic environments. Full article
Show Figures

Figure 1

28 pages, 15658 KiB  
Article
Unifying Flood-Risk Communication: Empowering Community Leaders Through AI-Enhanced, Contextualized Storytelling
by Michal Zajac, Connor Kulawiak, Shenglin Li, Caleb Erickson, Nathan Hubbell and Jiaqi Gong
Hydrology 2025, 12(8), 204; https://doi.org/10.3390/hydrology12080204 - 4 Aug 2025
Abstract
Floods pose a growing threat globally, causing tragic loss of life, billions in economic damage annually, and disproportionately affecting socio-economically vulnerable populations. This paper aims to improve flood-risk communication for community leaders by exploring the application of artificial intelligence. We categorize U.S. flood [...] Read more.
Floods pose a growing threat globally, causing tragic loss of life, billions in economic damage annually, and disproportionately affecting socio-economically vulnerable populations. This paper aims to improve flood-risk communication for community leaders by exploring the application of artificial intelligence. We categorize U.S. flood information sources, review communication modalities and channels, synthesize the literature on community leaders’ roles in risk communication, and analyze existing technological tools. Our analysis reveals three key challenges: the fragmentation of flood information, information overload that impedes decision-making, and the absence of a unified communication platform to address these issues. We find that AI techniques can organize data and significantly enhance communication effectiveness, particularly when delivered through infographics and social media channels. Based on these findings, we propose FLAI (Flood Language AI), an AI-driven flood communication platform that unifies fragmented flood data sources. FLAI employs knowledge graphs to structure fragmented data sources and utilizes a retrieval-augmented generation (RAG) framework to enable large language models (LLMs) to produce contextualized narratives, including infographics, maps, and cost–benefit analyses. Beyond flood management, FLAI’s framework demonstrates how AI can transform public service data management and institutional AI readiness. By centralizing and organizing information, FLAI can significantly reduce the cognitive burden on community leaders, helping them communicate timely, actionable insights to save lives and build flood resilience. Full article
Show Figures

Figure 1

26 pages, 2056 KiB  
Article
“(Don’t) Stop the Rising Oil Price”: Mediatization, Digital Discourse, and Fuel Price Controversies in Indonesian Online Media
by Nezar Patria, Budi Irawanto and Ana Nadhya Abrar
Journal. Media 2025, 6(3), 124; https://doi.org/10.3390/journalmedia6030124 - 4 Aug 2025
Abstract
Fuel price increases have long been a contentious issue in Indonesia, sparking intense public and political debates. This study examines how digital media, particularly Kompas.com and Tempo.co, shape public discourse on fuel price hikes through mediatization. Using discourse network analysis, this study compares [...] Read more.
Fuel price increases have long been a contentious issue in Indonesia, sparking intense public and political debates. This study examines how digital media, particularly Kompas.com and Tempo.co, shape public discourse on fuel price hikes through mediatization. Using discourse network analysis, this study compares the political narratives surrounding fuel price increases during the administrations of Susilo Bambang Yudhoyono (2013) and Joko Widodo (2022). The findings reveal a shift in dominant discourse—opposition to price hikes was prominent in both periods, with government authority and economic justification emphasized in 2013, whereas concerns over rising living costs and social unrest dominated in 2022. This study highlights how mediatization has transformed policymaking from deliberative discussions into fragmented media battles, where digital platforms amplify competing narratives rather than facilitating consensus. Kompas.com predominantly featured counter-discourses, while Tempo.co exhibited stronger pro-government narratives in 2013. This study suggests that while digital media plays a crucial role in shaping policy perceptions, it does not necessarily translate into policy influence. It contributes to the broader understanding of the media’s role in policy debates. It underscores the need for more strategic government communication to manage public expectations and mitigate political unrest surrounding fuel price adjustments. Full article
Show Figures

Figure 1

28 pages, 3364 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 56
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

14 pages, 2332 KiB  
Communication
Accurate Wideband RCS Estimation from Limited Field Data Using Infinitesimal Dipole Modeling with Compressive Sensing
by Jeong-Wan Lee, Ye Chan Jung and Sung-Jun Yang
Sensors 2025, 25(15), 4771; https://doi.org/10.3390/s25154771 - 2 Aug 2025
Viewed by 139
Abstract
This communication presents an accurate and computationally efficient approach for wideband radar cross-section (RCS) estimation and scattering point reconstruction using infinitesimal dipole modeling (IDM) with compressive sensing. The proposed method eliminates the need for field sampling at numerous frequency points across the wideband [...] Read more.
This communication presents an accurate and computationally efficient approach for wideband radar cross-section (RCS) estimation and scattering point reconstruction using infinitesimal dipole modeling (IDM) with compressive sensing. The proposed method eliminates the need for field sampling at numerous frequency points across the wideband range through Green’s function adjustment. Additionally, compressive sensing is employed for induced current calculation to reduce both frequency and angular sampling requirements. Numerical validation demonstrates that the method achieves a 50% reduction in field sample data and an 82.3% reduction in IDM processing time while maintaining comparable accuracy through Green’s function adjustment. Furthermore, compared to approaches without compressive sensing, the method shows a 55.1% and a 75.5% reduction in error in averaged RCS for VV-pol and HH-pol, respectively. The proposed method facilitates efficient wideband RCS estimation of various targets while significantly reducing measurement complexity and computational cost. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

16 pages, 1176 KiB  
Article
Evaluating the Use of Rice Husk Ash for Soil Stabilisation to Enhance Sustainable Rural Transport Systems in Low-Income Countries
by Ada Farai Shaba, Esdras Ngezahayo, Goodson Masheka and Kajila Samuel Sakuhuka
Sustainability 2025, 17(15), 7022; https://doi.org/10.3390/su17157022 - 2 Aug 2025
Viewed by 214
Abstract
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily [...] Read more.
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily reliant on rural transport systems, using both motorised but mainly alternative means of transport. However, rural roads often suffer from poor construction due to the use of low-strength, in situ soils and limited financial resources, leading to premature failures and subsequent traffic disruptions with significant economic losses. This study investigates the use of rice husk ash (RHA), a waste byproduct from rice production, as a sustainable supplement to Ordinary Portland Cement (OPC) for soil stabilisation in order to increase durability and sustainability of rural roads, hence limit recurrent maintenance needs and associated transport costs and challenges. To conduct this study, soil samples collected from Mulungushi, Zambia, were treated with combinations of 6–10% OPC and 10–15% RHA by weight. Laboratory tests measured maximum dry density (MDD), optimum moisture content (OMC), and California Bearing Ratio (CBR) values; the main parameters assessed to ensure the quality of road construction soils. Results showed that while the MDD did not change significantly and varied between 1505 kg/m3 and 1519 kg/m3, the OMC increased hugely from 19.6% to as high as 26.2% after treatment with RHA. The CBR value improved significantly, with the 8% OPC + 10% RHA mixture achieving the highest resistance to deformation. These results suggest that RHA can enhance the durability and sustainability of rural roads and hence improve transport systems and subsequently improve socioeconomic factors in rural areas. Full article
Show Figures

Figure 1

62 pages, 4641 KiB  
Review
Pharmacist-Driven Chondroprotection in Osteoarthritis: A Multifaceted Approach Using Patient Education, Information Visualization, and Lifestyle Integration
by Eloy del Río
Pharmacy 2025, 13(4), 106; https://doi.org/10.3390/pharmacy13040106 - 1 Aug 2025
Viewed by 125
Abstract
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection—illustrating how conventional agents, such as glucosamine sulfate [...] Read more.
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection—illustrating how conventional agents, such as glucosamine sulfate and chondroitin sulfate, can potentially restore extracellular matrix (ECM) components, may attenuate catabolic enzyme activity, and might enhance joint lubrication—and explores the delivery challenges posed by avascular cartilage and synovial diffusion barriers. Subsequently, a practical “What–How–When” framework is introduced to guide community pharmacists in risk screening, DMOAD selection, chronotherapeutic dosing, safety monitoring, and lifestyle integration, as exemplified by the CHONDROMOVING infographic brochure designed for diverse health literacy levels. Building on these strategies, the P4–4P Chondroprotection Framework is proposed, integrating predictive risk profiling (physicians), preventive pharmacokinetic and chronotherapy optimization (pharmacists), personalized biomechanical interventions (physiotherapists), and participatory self-management (patients) into a unified, feedback-driven OA care model. To translate this framework into routine practice, I recommend the development of DMOAD-specific clinical guidelines, incorporation of chondroprotective chronotherapy and interprofessional collaboration into health-professional curricula, and establishment of multidisciplinary OA management pathways—supported by appropriate reimbursement structures, to support preventive, team-based management, and prioritization of large-scale randomized trials and real-world evidence studies to validate the long-term structural, functional, and quality of life benefits of synchronized DMOAD and exercise-timed interventions. This comprehensive, precision-driven paradigm aims to shift OA care from reactive palliation to true disease modification, preserving cartilage integrity and improving the quality of life for millions worldwide. Full article
Show Figures

Figure 1

Back to TopTop