Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = commercially pure titanium (c.p. Ti)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8640 KB  
Article
Grain Size and Electrochemical Surface Modification Effects on Corrosion, Biological, and Technological Properties of CP Titanium Implants
by Josef Hlinka, Daniel Cvejn, Ludek Dluhos, Vaclav Babuska, Kristina Cabanova, Jana Dvorakova, Anastasia Volodarskaja, Ruslan Z. Valiev, Nadimul H. Faisal, Katerina Peterek Dedkova, Renata Palupcikova and Vlastimil Vodarek
J. Funct. Biomater. 2025, 16(12), 439; https://doi.org/10.3390/jfb16120439 - 25 Nov 2025
Viewed by 792
Abstract
Commercially pure (CP) titanium is widely used for long-term biomedical implants due to its high biocompatibility and corrosion resistance. However, its relatively low strength limits its use in highly loaded applications. Ultrafine-grained (UFG) titanium obtained through severe plastic deformation offers enhanced mechanical performance [...] Read more.
Commercially pure (CP) titanium is widely used for long-term biomedical implants due to its high biocompatibility and corrosion resistance. However, its relatively low strength limits its use in highly loaded applications. Ultrafine-grained (UFG) titanium obtained through severe plastic deformation offers enhanced mechanical performance while maintaining the stability of CP titanium. This study investigates how electrochemical surface modification by anodization affects the corrosion, biological performance, and technological behavior of UFG titanium. TiO2 layers with nanotubular and nanoporous morphologies were produced at anodization voltages between 20 and 60 V. Corrosion tests in physiological solution confirmed stable passive behavior with corrosion rates below 4 µm year−1, and surface wettability increased markedly with anodization. Osteoblast-like MG-63 cells exhibited good viability on all anodized surfaces, with improved adhesion and proliferation on samples anodized at 60 V. The porous TiO2 layers were successfully intercalated with dimethyl sulfoxide and ibuprofen, demonstrating potential for local drug delivery. Implantation simulations on real Nanoimplant® prototypes confirmed sufficient mechanical stability of the anodized layer. Overall, the optimized anodization of UFG titanium enhances its biological response while maintaining corrosion resistance, supporting its clinical use in long-term dental and orthopedic implants with integrated drug-release functionality. Full article
(This article belongs to the Special Issue Biomaterials Applied in Dental Sciences)
Show Figures

Graphical abstract

20 pages, 1472 KB  
Article
Corrosion Behavior of Electrochemical and Thermal Treated Titanium into Artificial Saliva: Effect of pH and Fluoride Concentration
by Faiza Kakaa, Mosbah Ferkhi, Ammar Khaled, Sabah Amira and Marielle Eyraud
Corros. Mater. Degrad. 2025, 6(4), 52; https://doi.org/10.3390/cmd6040052 - 15 Oct 2025
Viewed by 867
Abstract
This work investigates and compare the corrosion behavior in artificial saliva of oxide thin films grown on commercially pure titanium (cp-Ti), via electrochemical oxidation (EO) in sulphate bath at 1 V and thermal treatment (TT) at 450 °C, for durations between 20 min [...] Read more.
This work investigates and compare the corrosion behavior in artificial saliva of oxide thin films grown on commercially pure titanium (cp-Ti), via electrochemical oxidation (EO) in sulphate bath at 1 V and thermal treatment (TT) at 450 °C, for durations between 20 min and 4 h. The goal is to determine which method and duration provide the optimal protection for titanium against degradation in dental environment particularly in varying fluoride concentration and acidity. Surface characterizations were performed through morphological and microstructural analysis using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical behavior was conducted in Fusayama-Meyer solution (pH = 6.50 and T = 37 °C) using potentiodynamic polarization curve (PPC) and electrochemical impedance spectroscopy (EIS), under varying pH and fluoride ion concentrations. The results demonstrated that a 3-h duration treatment provided the optimal corrosion resistance for both EO and TT processes. The pH of the environment influenced corrosion performance markedly: both acidic (pH 2.5) and basic (pH 9.0) conditions increased Icorr and decreased Rp, indicating degradation of the passive oxide layer outside neutral conditions. Similarly, increasing fluoride concentrations (1000; 5000; and 12,300 ppm) significantly impaired corrosion resistance. At 12,300 ppm F, untreated Ti showed severe degradation, with EIS revealing the formation of a porous outer layer and a weakened inner barrier layer (Rf = 33 W·cm2 for the outer layer and Rct = 21 kW·cm2 for the barrier layer). In contrast, the TT-treated surface remained highly protective even under these aggressive conditions, with minimal surface damage and the highest resistances for both the outer and the inner layers (Rf = 1610 kW·cm2; Rct = 1583 kW·cm2), significantly outperforming the EO film. These findings highlight the superior performance of thermal oxidation at 450 °C for 3 h as a promising surface treatment for enhancing the corrosion resistance of titanium in fluoride-rich oral environments. Understanding these strategies helps improve the longevity and security of titanium dental implants. Full article
Show Figures

Figure 1

15 pages, 7616 KB  
Article
Wear Behavior and Friction Mechanism of Titanium–Cerium Alloys: Influence of CeO2 Precipitate
by Sohee Yun, Dongmin Shin, Kichang Bae, Narim Park, Jong Woo Won, Chan Hee Park and Junghoon Lee
Metals 2025, 15(10), 1094; https://doi.org/10.3390/met15101094 - 30 Sep 2025
Cited by 1 | Viewed by 632
Abstract
This work investigated the effect of cerium (Ce) addition on the wear behavior of commercially pure titanium (CP-Ti) by varying the Ce content to 0.8, 1.4, and 2.0 wt.%. Alloys were fabricated using plasma arc melting, and wear resistance was evaluated under loads [...] Read more.
This work investigated the effect of cerium (Ce) addition on the wear behavior of commercially pure titanium (CP-Ti) by varying the Ce content to 0.8, 1.4, and 2.0 wt.%. Alloys were fabricated using plasma arc melting, and wear resistance was evaluated under loads of 1 N and 5 N dry sliding condition. Microstructural characterization confirmed the formation of CeO2 precipitates, whose size and distribution varied with the Ce content. The Ti-0.8Ce alloy exhibited the highest hardness (203 HV), showing a 35% increase compared to CP-Ti, and the lowest wear rate reduced by approximately 47% and 22% under 1 N and 5 N loads, respectively. In contrast, Ti-1.4Ce and Ti-2.0Ce formed coarse CeO2 precipitates, which acted as third-body abrasives. Although these alloys showed lower average friction coefficients than CP-Ti (up to 22% reduction), the enhanced abrasive interaction promoted material removal and increased wear rates. Notably, Ti-2.0Ce exhibited the most severe degradation in wear resistance, with wear rates increases of 21% and 27% under 1 N and 5 N loads, respectively. These findings demonstrate that while CeO2 precipitates reduce friction by suppressing direct metal–metal contact, their abrasive nature adversely affects wear resistance when the particle size and volume fraction are excessive. Therefore, 0.8 wt.% Ce was identified as the optimal composition for improving the wear resistance, achieving the best combination of high hardness, low wear rate without excessive third-body abrasion. Full article
(This article belongs to the Special Issue Advanced Ti-Based Alloys and Ti-Based Materials)
Show Figures

Graphical abstract

16 pages, 10468 KB  
Article
Effect of Heat Treatment on In Vitro Cytotoxicity of Ti-Nb-Zr Gum Metal Alloy
by Arash Etemad, Saeed Hasani, Alireza Mashreghi, Fariba Heidari, Parinaz Salehikahrizsangi, Sabine Schwarz, Katarzyna Bloch and Marcin Nabialek
Materials 2025, 18(19), 4473; https://doi.org/10.3390/ma18194473 - 25 Sep 2025
Viewed by 662
Abstract
Strain-induced deformations and phase evolutions are two hidden factors that may influence cytocompatibility of Gum Metal alloys during processing for relevant implant applications. In the present research, changes in cell viability of a new Gum Metal Ti-Nb-Zr alloy in its cold-rolled state and [...] Read more.
Strain-induced deformations and phase evolutions are two hidden factors that may influence cytocompatibility of Gum Metal alloys during processing for relevant implant applications. In the present research, changes in cell viability of a new Gum Metal Ti-Nb-Zr alloy in its cold-rolled state and after heat treatments (at 700, 850, and 900 °C) were investigated by a comprehensive study of microstructural phases and their role in deformation mechanisms as well as mechanical properties. In its cold-rolled state, the alloy showed a lamellar microstructure along with stress-induced α″ martensite and ω phases, as confirmed by optical microscopy (OM) and X-ray diffractometry (XRD) analysis. The instability in the β phase led to a strain-induced martensitic (SIM) transformation from β to α′/α″ phases, causing lower viability of MG-63 cells compared with commercially pure titanium. MG-63 cell viability was significantly higher (p < 0.0001) in the alloy heat-treated at 900 °C compared with those heat-treated at 700 and 850 °C. This can be directly attributed to the increased portion of the stable and dominant β phase. The stabilized β phase greatly improved the alloy’s cellular response by reducing harmful phase interactions and maintaining mechanical compatibility with bone (admissible strain of 1.3%). Importantly, heat treatment at high temperatures (between 850 and 900 °C) effectively converted the stress-induced α″ and ω phases back into a stable β phase matrix as the dominant phase. Full article
Show Figures

Graphical abstract

22 pages, 9122 KB  
Article
Computational Mechanics of Polymeric Materials PEEK and PEKK Compared to Ti Implants for Marginal Bone Loss Around Oral Implants
by Mohammad Afazal, Saba Afreen, Vaibhav Anand and Arnab Chanda
Prosthesis 2025, 7(4), 93; https://doi.org/10.3390/prosthesis7040093 - 1 Aug 2025
Cited by 1 | Viewed by 1911
Abstract
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative [...] Read more.
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative study between existing titanium implants and newer polymeric materials can enhance professionals’ ability to select the most suitable implant for a patient’s treatment. This study aimed to investigate material property advantages of high-performance thermoplastic biopolymers such as PEEK and PEKK, as compared to the time-tested titanium implants, and to find the most suitable and economically fit implant material. Methods: Three distinct implant material properties were assigned—PEEK, PEKK, and commercially pure titanium (CP Ti-55)—to dental implants measuring 5.5 mm by 9 mm, along with two distinct titanium (TI6AL4V) abutments. Twelve three-dimensional (3D) models of bone blocks, representing the mandibular right molar area with Osseo-integrated implants were created. The implant, abutment, and screw were assumed to be linear; elastic, isotropic, and orthotropic properties were attributed to the cancellous and cortical bone. Twelve model sets underwent a three-dimensional finite element analysis to evaluate von Mises stress and total deformation under 250 N vertical and oblique (30 degree) loads on the top surface of each abutment. Results: The study revealed that the time-tested titanium implant outperforms PEEK and PEKK in terms of marginal bone preservation, while PEEK outperforms PEKK. Conclusions: This study will assist dental practitioners in selecting implants from a variety of available materials and will aid researchers in their future research. Full article
Show Figures

Figure 1

27 pages, 3299 KB  
Article
Corrosion Stability and Biological Activity of Anodized cpTi for Dental Application
by Aleksandra S. Popović, Minja Miličić Lazić, Dijana Mitić, Lazar Rakočević, Dragana Jugović, Predrag Živković and Branimir N. Grgur
Metals 2025, 15(7), 817; https://doi.org/10.3390/met15070817 - 21 Jul 2025
Cited by 1 | Viewed by 1016
Abstract
The anodic oxidation of titanium implants is a practical, cost-effective method to enhance implant success, especially due to rising hypersensitivity concerns. This study investigated the electrochemical behavior, surface characteristics, and biocompatibility of anodized commercially pure titanium (cpTi, grade IV). Anodization is performed on [...] Read more.
The anodic oxidation of titanium implants is a practical, cost-effective method to enhance implant success, especially due to rising hypersensitivity concerns. This study investigated the electrochemical behavior, surface characteristics, and biocompatibility of anodized commercially pure titanium (cpTi, grade IV). Anodization is performed on polished, cleaned cpTi sheet samples in 1 M H2SO4 using a constant voltage of 15 V for 15 and 45 min. The color of the oxide layer is evaluated using the CIELab color space, while composition is analyzed by a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). Additionally, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are performed to identify and monitor the phase transformations of the formed titanium oxides. Corrosion measurements are performed in 9 g L−1 NaCl, pH = 7.4, and show the excellent corrosion stability of the anodized samples in comparison with pure titanium. The biological response is assessed by determining mitochondrial activity and gene expression in human fibroblasts. Anodized surfaces, particularly Ti-45, promote higher mitochondrial activity and the upregulation of adhesion-related genes (N-cadherin and Vimentin) in human gingival fibroblasts, indicating improved biocompatibility and the potential for enhanced early soft tissue integration. Full article
Show Figures

Graphical abstract

11 pages, 809 KB  
Article
Antimicrobial Behavior of Surface-Treated Commercially Pure Titanium (CpTi) for Dental Implants in Artificial Saliva—In Vitro Study
by Roshni Bopanna, Neetha J. Shetty, Ashith M. Varadaraj, Himani Kotian, Sameep Shetty and Simran Genescia
Antibiotics 2025, 14(7), 715; https://doi.org/10.3390/antibiotics14070715 - 16 Jul 2025
Cited by 1 | Viewed by 908
Abstract
Background/Objectives:Titanium implant surface modifications enhance osseointegration and prevent microbial colonization, improving implant longevity. Antimicrobial coatings, particularly cerium- and bismuth-doped hydroxyapatite (CeHAp and BiHAp), have gained attention for reducing infection-related complications. This study evaluates the antimicrobial activity of CeHAp and BiHAp coatings on [...] Read more.
Background/Objectives:Titanium implant surface modifications enhance osseointegration and prevent microbial colonization, improving implant longevity. Antimicrobial coatings, particularly cerium- and bismuth-doped hydroxyapatite (CeHAp and BiHAp), have gained attention for reducing infection-related complications. This study evaluates the antimicrobial activity of CeHAp and BiHAp coatings on CpTi compared to untreated CpTi in artificial saliva at pH levels of 4.5, 6.5, and 8. Methods: Antibacterial efficacy against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Candida albicans (C. albicans) was assessed using the broth dilution method. Titanium rods coated with test compounds were incubated in inoculated nutrient broth, and microbial inhibition was determined via optical density at 600 nm. A statistical analysis was performed using the Kruskal–Wallis ANOVA test, the median and Interquartile Range were determined for the variables, and a Dwass–Steel–Critchlow–Fligner intergroup pairwise comparison was conducted. Results: The results showed that both the CeHAp and BiHAp coatings demonstrated significant antimicrobial activity against S. aureus (OD = 0.01) at pH 6.5, which was more pronounced than the activity observed against E. coli (OD = 0.05), with the difference being statistically significant (p = 0.001). The least antimicrobial activity was observed against C. albicans (0.21) at pH 8 (p = 0.001). Conclusion: These findings highlight the pH-dependent effectiveness of BiHAp and CeHAp coatings in inhibiting microbial growth. Their application on titanium implants may enhance antimicrobial properties, contributing to improved dental implant success and broader biomedical applications. Full article
(This article belongs to the Section Antimicrobial Materials and Surfaces)
Show Figures

Figure 1

24 pages, 8807 KB  
Article
Further Studies into the Growth of Small Naturally Occurring Three-Dimensional Cracks in Additively Manufactured and Conventionally Built Materials
by Shareen Chan, Daren Peng, Andrew S. M. Ang, Michael B. Nicholas, Victor K. Champagne, Aron Birt, Alex Michelson, Sean Langan, Jarrod Watts and Rhys Jones
Crystals 2025, 15(6), 544; https://doi.org/10.3390/cryst15060544 - 6 Jun 2025
Viewed by 1311
Abstract
MIL-STD-1530D and the United States Air Force (USAF) Structures Bulletin EZ-SB-19-01 require an ability to predict the growth of naturally occurring three-dimensional cracks with crack depths equal to what they term an equivalent initial damage size (EIDS) of 0.254 mm. This requirement holds [...] Read more.
MIL-STD-1530D and the United States Air Force (USAF) Structures Bulletin EZ-SB-19-01 require an ability to predict the growth of naturally occurring three-dimensional cracks with crack depths equal to what they term an equivalent initial damage size (EIDS) of 0.254 mm. This requirement holds for both additively manufactured and conventionally built parts. The authors have previously presented examples of how to perform such predictions for additively manufactured (AM) Ti-6Al-4V; wire arc additively manufactured (WAAM) 18Ni 250 Maraging steel; and Boeing Space, Intelligence and Weapon Systems laser bed powder fusion (LPBF) Scalmalloy®, which is an additively manufactured Aluminium-Scandium-Mg alloy, using the Hartman-Schijve crack growth equation. In these studies, the constants used were as determined from ASTM E647 standard tests on long cracks, and the fatigue threshold term in the Hartman-Schijve equation was set to a small value (namely, 0.1 MPa √m). This paper illustrates how this approach can also be used to predict the growth of naturally occurring three-dimensional cracks in WAAM CP-Ti (commercially pure titanium) specimens built by Solvus Global as well as in WAAM-built Inconel 718. As in the prior studies mentioned above, the constants used in this analysis were taken from prior studies into the growth of long cracks in conventionally manufactured CP-Ti and in AM Inconel 718, and the fatigue threshold term in these analyses was set to 0.1 MPa √m. These studies are complemented via a prediction of the growth of naturally occurring three-dimensional cracks in conventionally built M300 steel. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

10 pages, 3299 KB  
Article
Superstrength of Nanostructured Ti Grade 4 with Grain Boundary Segregations
by Emil I. Usmanov, Michail Yu. Gutkin, Yinxing Wu, Gang Sha and Ruslan Z. Valiev
Metals 2025, 15(6), 618; https://doi.org/10.3390/met15060618 - 30 May 2025
Cited by 2 | Viewed by 940
Abstract
Severe plastic deformation and subsequent heat treatments yield nanostructured commercially pure (CP) titanium Grade 4 with average grain size of about 100 nm and exceptional strength. To elucidate the underlying strengthening mechanisms in this nanotitanium (nanoTi), this study uses atom probe tomography (APT) [...] Read more.
Severe plastic deformation and subsequent heat treatments yield nanostructured commercially pure (CP) titanium Grade 4 with average grain size of about 100 nm and exceptional strength. To elucidate the underlying strengthening mechanisms in this nanotitanium (nanoTi), this study uses atom probe tomography (APT) to analyze the atomic structure of grain boundaries and assess impurity segregation. Results reveal the formation of grain boundary segregations, primarily composed of iron (Fe) atoms, reaching concentrations up to 3.3 ± 0.2 at% in localized regions. The average width of these segregation layers is 6.13 ± 0.45 nm. The paper considers a mechanism for forming these segregations and discusses relevant theoretical models describing their contribution to the material’s enhanced strength. Full article
Show Figures

Figure 1

13 pages, 4362 KB  
Article
The Effect of N/O Elements on the Microstructure and Mechanical Properties of Ti-N-O Alloys
by Mingqi Shi, Ruiduo Chen, Chengsong Zhang, Zhenzhao Xu, Hanke Hu, Xiaolong Zhou and Guodong Cui
Metals 2025, 15(5), 554; https://doi.org/10.3390/met15050554 - 17 May 2025
Viewed by 951
Abstract
A novel Ti-N-O composite was prepared by powder nitriding/oxynitriding combined with the spark plasma sintering (SPS) method. The effects of N/O on the microstructure and mechanical properties of the Ti-N-O alloy were systematically studied. The results showed that the addition of N/O elements [...] Read more.
A novel Ti-N-O composite was prepared by powder nitriding/oxynitriding combined with the spark plasma sintering (SPS) method. The effects of N/O on the microstructure and mechanical properties of the Ti-N-O alloy were systematically studied. The results showed that the addition of N/O elements significantly improved the mechanical properties of commercially pure titanium (cp-Ti). The hardness reached 298.8 HV0.1 while the yield strength can reach 666 MPa. And, the O element played a leading role in regulating the microstructure and morphology of the Ti-N-O alloy. With the addition of the O element, the microstructure showed an equiaxed structure, and the characterization showed that this region is an O-enriched region, and that a small amount of nano-TiO2 particles appeared in the alloy, which together led to the change in the microstructure. At the same time, more large-angle grain boundaries were generated in the Ti-N-O alloy. This study investigated a new method for the preparation of titanium materials and provides new ideas for researching medical titanium materials. Full article
Show Figures

Graphical abstract

22 pages, 15997 KB  
Article
Simulation and Experimental Validation of Splat Profiles for Cold-Sprayed CP-Ti with Varied Powder Morphology
by Wesley Kean Wah Tai, Martin Eberle, Samuel Pinches, Shareen S. L. Chan, Rohan Chakrabarty, Max Osborne, Daren Peng, Rhys Jones and Andrew S. M. Ang
Appl. Mech. 2025, 6(2), 33; https://doi.org/10.3390/applmech6020033 - 30 Apr 2025
Cited by 2 | Viewed by 1086
Abstract
The cold spray (CS) process has gained momentum as an additive manufacturing technology, due to its low processing temperatures. Computational modelling can accompany CS experiments to optimise deposition parameters, as well as predict coating properties and their final performance. A commonly used plasticity [...] Read more.
The cold spray (CS) process has gained momentum as an additive manufacturing technology, due to its low processing temperatures. Computational modelling can accompany CS experiments to optimise deposition parameters, as well as predict coating properties and their final performance. A commonly used plasticity model is the Johnson–Cook (JC) model; however, its accuracy is limited at the high strain rates typical of cold spray. This study aims to assess the robustness of predictions using a modified JC model, particularly for two material systems of commercially pure titanium (CP-Ti) and Al6061-T6, and feedstock powders of two sizes and three morphologies. CP-Ti powders of spherical and irregular morphologies were sprayed onto CP-Ti substrates using a Titomic TKF1000 cold spray system. The cross-sectional splat profiles and flattening ratios were compared against smoothed particle hydrodynamics (SPH) simulations. The deposition process of particles was simulated using a modified JC model, implemented as an ABAQUS (2020) VUHARD user subroutine programme. The results showed that SPH simulations predicted the depth of impact, the splat profiles and the flattening ratios. Additionally, the simulations indicated that the impacting particle temperature remained below the melting point of CP-Ti throughout the process. Lastly, it was demonstrated that the irregular CP-Ti feedstock showed greater tendency of restitution than spherical feedstock. Full article
Show Figures

Figure 1

14 pages, 8230 KB  
Article
Refinement Mechanism of Ultrafine-Grained CP-Ti Fabricated via Equal-Channel Angular Pressing
by Yanxia Gu, Jinghua Jiang, Aibin Ma and Haoran Wu
Metals 2025, 15(2), 201; https://doi.org/10.3390/met15020201 - 14 Feb 2025
Cited by 1 | Viewed by 1138
Abstract
Grains of commercially pure titanium (CP-Ti) can be refined via rotary-die equal-channel angular pressing (RD-ECAP) to meet higher application requirements. However, the grain refinement mechanism of CP-Ti during RD-ECAP has not been fully studied. Herein, CP-Ti was processed up to four passes by [...] Read more.
Grains of commercially pure titanium (CP-Ti) can be refined via rotary-die equal-channel angular pressing (RD-ECAP) to meet higher application requirements. However, the grain refinement mechanism of CP-Ti during RD-ECAP has not been fully studied. Herein, CP-Ti was processed up to four passes by RD-ECAP to obtain an ultrafine-grained structure. The microstructure evolution, refinement mechanism, and dynamic recrystallization (DRX) behavior was investigated by TEM and EBSD analysis. The results revealed that after two passes, banded structures with numerous LAGBs inside were detected, while after four passes, most grains were equiaxed with HAGBs and the average grain size was about 0.5 μm. The fraction of HAGBs reached 78.6% for the four-pass sample, which was higher than that of two-pass sample. The fraction of deformed grains declined and the proportion of recrystallized grains increased as the pass number increased from two to four. The misorientation gradient analysis showed that subgrains with LAGBs evolved into new grains with HAGBs gradually to generate ultrafine grains. The refinement mechanism of CP-Ti during RD-ECAP can be concluded as continuous DRX (CDRX). In addition, the relationship between DRX type and the processing conditions as well as stacking fault energies (SFEs) of metals was innovatively explored, providing a new approach for predicting microstructure. Full article
Show Figures

Figure 1

15 pages, 3199 KB  
Article
Scratch-Induced Deformation Behavior of Wire-Arc Directed Energy Deposited α-Titanium
by Blanca Palacios, Sohail M. A. K. Mohammed, Tanaji Paul, Gia Garino, Carlos Maribona, Sean Langan and Arvind Agarwal
Materials 2025, 18(3), 724; https://doi.org/10.3390/ma18030724 - 6 Feb 2025
Cited by 1 | Viewed by 1475
Abstract
This study investigates the scratch response of α-phase commercially pure titanium (cp-Ti) produced via wire arc directed energy deposition (WDED), focusing on the thermal history and directional effects. Progressive scratch tests (1–50 N) revealed heterogeneous wear properties between the top and bottom layers, [...] Read more.
This study investigates the scratch response of α-phase commercially pure titanium (cp-Ti) produced via wire arc directed energy deposition (WDED), focusing on the thermal history and directional effects. Progressive scratch tests (1–50 N) revealed heterogeneous wear properties between the top and bottom layers, with the top layer exhibiting higher material recovery (58 ± 5%) and wear volume (5.02 × 10−3 mm3) compared to the bottom layer (42 ± 5% recovery, 4.46 × 10−3 mm3), attributed to slower cooling rates and coarser grains enhancing ductility. The variation in the properties stems from the thermal gradient generated during WDED. Electron backscatter diffraction analysis showed higher kernel average misorientation (KAM) in the bottom layer (0.84° ± 0.49° vs. 0.51° ± 0.44°), affecting plasticity by reducing dislocation and twin boundary mobility. No significant differences were observed between longitudinal and transverse orientations, with coefficients of friction averaging 0.80 ± 0.12 and 0.79 ± 0.13, respectively. Abrasive wear dominated as the primary mechanism, accompanied by subsurface plastic deformation. These findings highlight the significant influence of WDED thermal history in governing scratch resistance and deformation behavior, providing valuable insights for optimizing cp-Ti components for high-performance applications. Full article
Show Figures

Figure 1

16 pages, 971 KB  
Article
Sol-Gel Synthesis of TiO2 from TiOSO4 (Part 2): Kinetics and Photocatalytic Efficiency of Methylene Blue Degradation Under UV Irradiation
by Hayat Khan
Catalysts 2025, 15(1), 64; https://doi.org/10.3390/catal15010064 - 13 Jan 2025
Cited by 5 | Viewed by 3443
Abstract
The sol-gel process was used to create titanium dioxide (TiO2) nanoparticles, a nanocrystalline semiconductor. How several synthesis factors, such as titanium precursor concentration, annealing temperature, and peptization temperature, affected the structural and morphological properties of TiO2 nanoparticles were thoroughly explored. [...] Read more.
The sol-gel process was used to create titanium dioxide (TiO2) nanoparticles, a nanocrystalline semiconductor. How several synthesis factors, such as titanium precursor concentration, annealing temperature, and peptization temperature, affected the structural and morphological properties of TiO2 nanoparticles were thoroughly explored. X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), measurements of the specific surface area and pore size using the BET method, and UV-visible diffuse reflectance spectroscopy were all used in this investigation. The specific surface area determined by BET analysis decreased with increasing calcination temperature. The XRD analysis showed that a composite sample consisting mainly of anatase with minor brookite phases was obtained when the titanium precursor concentration ranged between 0.2 and 0.4 M, whereas a concentration of 0.5 M resulted in the formation of pure anatase. The photocatalytic activity of the synthesized TiO2 powders under different operational parameters was evaluated for the common commercial textile dye, i.e., methylene blue (MB). It was experimented that the model pollutant decoloration follows the Langmuir–Hinshelwood (L-H) model. In view of this detailed research work, it was observed that the TiO2 produced with a titanium precursor concentration of 0.3 M, a pH value of 5 during the peptization step, and an annealing temperature of 600 °C were found to be the best conditions for this catalytic degradation process. When used in conjunction with a TiO2 concentration of 0.04 g/L and a reactor suspension pH value of 6.0, the TiO2 catalyst produced a stunning 98% degradation of methylene blue under these circumstances. Full article
(This article belongs to the Special Issue Remediation of Natural Waters by Photocatalysis)
Show Figures

Figure 1

17 pages, 16276 KB  
Article
Effect of Counterbody Material on the Boundary Lubrication Behavior of Commercially Pure Titanium in a Motor Oil
by Yizhao Liu, Mohammed Al-Shan, Richard Bailey and Yong Sun
Lubricants 2024, 12(12), 439; https://doi.org/10.3390/lubricants12120439 - 10 Dec 2024
Cited by 2 | Viewed by 1743
Abstract
Titanium possesses many useful properties and is a technologically important material in engineering. However, lubrication of titanium has long been a problem that has prevented titanium from being more widely used. This is due to its poor tribological properties, deriving from its high [...] Read more.
Titanium possesses many useful properties and is a technologically important material in engineering. However, lubrication of titanium has long been a problem that has prevented titanium from being more widely used. This is due to its poor tribological properties, deriving from its high tendency towards adhesive wear, material transfer, and abrasive wear. Lubrication is a system engineering which involves material combinations, material surfaces, lubricants, and operating conditions as a system. In this work, the boundary lubrication behavior of commercially pure titanium (CP-Ti) sliding against various counterbody materials in a motor oil (0W-30) was investigated under ball-on-plate reciprocating sliding conditions. The counterbody materials (balls) include CP-Ti, ceramic (Al2O3), steel (AISI 52100), and polymer (nylon). The results show that depending on material combination, the lubricating behavior can be divided into three categories, i.e., (1) lubrication failure (Ti-Ti), (2) improved lubrication but with friction instability (Ti-Al2O3), and (3) effective lubrication (Ti–steel and Ti–nylon). Lubrication failure of the Ti-Ti pair leads to high and unstable friction and severe wear from both the plate and ball, while friction instability of the Ti-Al2O3 pair leads to friction spikes and high wear rates. Effective lubrication of the Ti–steel pair results in low and smooth friction and much-reduced wear rates of the Ti plate by nearly 10,000 times. However, there is a load-dependence of the lubrication effectiveness of the Ti–steel pair. Although the Ti–nylon pair is effectively lubricated in terms of much-reduced friction, the nylon ball suffers from severe wear. The friction and wear mechanisms of the various sliding pairs are discussed in this paper. Full article
Show Figures

Figure 1

Back to TopTop