Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = combustion chamber modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5818 KB  
Article
CFD Analysis of the Influence of Some Intake Port Aerodynamic Modification into in-Cylinder Flow Processes and Flame Propagation in the Combustion Chamber of a Spark Ignition IC Engine
by Zoran Masoničić, Radivoje Pešić, Aleksandar Davinić, Slobodan Savić, Ivan Lazović and Siniša Dragutinović
Energies 2026, 19(1), 229; https://doi.org/10.3390/en19010229 - 31 Dec 2025
Viewed by 191
Abstract
It has long been known that inlet port geometry plays a crucial role in regulating in-cylinder flow processes, significantly affecting combustion efficiency and engine emissions. This paper elucidates the effects of an intake port geometry modification, specifically the implementation of a novel moving [...] Read more.
It has long been known that inlet port geometry plays a crucial role in regulating in-cylinder flow processes, significantly affecting combustion efficiency and engine emissions. This paper elucidates the effects of an intake port geometry modification, specifically the implementation of a novel moving deflector to intensify tangential intake flow, on fluid flow patterns, combustion stage, and exhaust emissions in a spark-ignited internal combustion engine. The analysis was performed using multi-dimensional numerical modeling of reactive flow, where the numerical domain was extended to the complete intake system to explicitly encompass the modification. The numerical model was validated against experimental data, showing excellent agreement, with differences in peak in-cylinder pressure and peak rate of heat release (RHR) kept below 3% and the moment of peak pressure being nearly identical to the experimental results. During the induction stroke, the effects of implemented modification through intensification of intake jet were clearly legible, pursued by deflection of smaller side vortices in the vicinity of the bottom dead-center. During compression, the attenuation of the effects of the earlier established macro flow was encountered and some negative effects of the increased intake jet were elucidated. During combustion the existence of “flame dominated fluid flow” controlled primarily by turbulence diffusion was encountered. Negative effects on exhaust emissions were elucidated as well. As the combustion process in spark ignition internal combustion engines is primarily controlled by turbulent diffusion, proper identification of influential types of organized flows is a challenging but very important task. The advantages offered by the application of numerical modeling in these situations are clear. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

22 pages, 2171 KB  
Article
Performance of Hydrotreated Vegetable Oil–Diesel Blends: Ignition and Combustion Insights
by Hubert Kuszewski, Artur Jaworski and Dariusz Szpica
Energies 2025, 18(22), 5962; https://doi.org/10.3390/en18225962 - 13 Nov 2025
Viewed by 870
Abstract
Hydrotreated vegetable oil (HVO) is a second-generation biofuel with physicochemical properties similar to conventional diesel. Composed mainly of n-paraffins, it offers favorable autoignition characteristics. Produced by hydrotreating vegetable oils or animal fats, including waste sources such as used cooking oil, HVO contributes to [...] Read more.
Hydrotreated vegetable oil (HVO) is a second-generation biofuel with physicochemical properties similar to conventional diesel. Composed mainly of n-paraffins, it offers favorable autoignition characteristics. Produced by hydrotreating vegetable oils or animal fats, including waste sources such as used cooking oil, HVO contributes to lower greenhouse gas emissions and waste utilization. Thanks to its similarity to diesel, it can be used directly or in blends without engine modifications. Blending reduces fossil fuel use and pollutant emissions while maintaining engine performance. This study investigates the autoignition behavior of diesel, neat HVO, and HVO–diesel blends containing 25%, 50%, and 75% HVO by volume. Experiments were conducted in a constant-volume combustion chamber at 550 °C and 650 °C to simulate engine-relevant conditions. Autoignition quality was assessed using ignition delay, combustion delay, average and maximum pressure rise rate, maximum pressure rise, apparent heat release rate, and derived cetane number. The results show that higher HVO content increases the sensitivity of ignition delay, combustion delay, and average pressure rise rate to lower chamber temperature. In addition, a linear increase in derived cetane number was observed with increasing HVO concentration, providing new insights into ignition and combustion behavior of renewable fuel blends. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

25 pages, 7487 KB  
Article
Study on Combustion and NOx Emission Characteristics of Low-Quality Coal with Wide Load Based on Fuel Modification
by Hongliang Ding, Shuyun Li, Ziqu Ouyang, Shujun Zhu, Xiongwei Zeng, Hongshuai Wang, Kun Su and Zhaoyang Li
Energies 2025, 18(11), 2798; https://doi.org/10.3390/en18112798 - 27 May 2025
Cited by 2 | Viewed by 1131
Abstract
Enhancing the operational flexibility and environmental performance of coal-fired boilers under wide-load conditions presents a critical challenge in China’s low-carbon transition, particularly for low-quality coals (LQCs) with abundant reserves, poor combustibility, and high NOx emissions. To overcome the intrinsically low reactivity of [...] Read more.
Enhancing the operational flexibility and environmental performance of coal-fired boilers under wide-load conditions presents a critical challenge in China’s low-carbon transition, particularly for low-quality coals (LQCs) with abundant reserves, poor combustibility, and high NOx emissions. To overcome the intrinsically low reactivity of LQC, peak-shaving performance and combustion behavior were systematically investigated on an MW-grade pilot-scale test platform employing the fuel modification strategy in this study. Stable fuel modification was achieved without any auxiliary energy for LQCs and Shenmu bituminous coal (SBC) across a load range of 20~83% and 26~88%, respectively, demonstrating the excellent fuel reactivity and strengthened release control of volatile and nitrogenous species. The modified LQC exhibited ignition, combustion, and burnout characteristics comparable to Shouyang lean coal (SLC), enabling a “dimensionality-reduction utilization” strategy. The double-side fuel modification device (FMD) operation maintained axially symmetric temperatures (<1250 °C) in horizontal combustion chambers, while single-side operation caused thermal asymmetry, with peak temperatures skewed toward the FMD side (<1200 °C). Original NOx emissions were effectively suppressed, remaining below 106.89 mg/m3 (@6%O2) for LQC and 122.76 mg/m3 (@6%O2) for SBC over broad load ranges, and even achieved ultra-low original NOx emissions (<50 mg/m3). Distinct load-dependent advantages were observed for each coal type: SBC favored high-load thermal uniformity and low-load NOx abatement, whereas LQC exhibited the inverse trend. These findings underscore the importance of a load-adaptive coal selection and FMD operation mode. This study provides both theoretical insights and engineering guidance for retrofitting coal-fired power units toward flexible, low-emission operation under deep peak-shaving scenarios. Full article
Show Figures

Figure 1

19 pages, 8482 KB  
Article
Numerical Simulation and Analysis of Semi-Industrial Retrofit for Tangentially Fired Boilers with Slag-Tap Technology
by Qinglong Wu, Fan Fang, Jingyu Guan, Lingkun Zhu, Yang Chen and Lei Deng
Energies 2024, 17(24), 6331; https://doi.org/10.3390/en17246331 - 16 Dec 2024
Cited by 1 | Viewed by 1177
Abstract
High-alkali Zhundong coal presents significant challenges for power generation, due to its propensity for fouling and slagging. This study investigates a retrofit of a 300 MW tangentially fired boiler with the integration of a slag-tap chamber to improve combustion performance. Computational fluid dynamics [...] Read more.
High-alkali Zhundong coal presents significant challenges for power generation, due to its propensity for fouling and slagging. This study investigates a retrofit of a 300 MW tangentially fired boiler with the integration of a slag-tap chamber to improve combustion performance. Computational fluid dynamics (CFD) simulations are employed to examine the influence of this modification on combustion dynamics and the effects of Zhundong coal blending ratios on heat and mass transfer. The results demonstrate that the retrofit facilitates stable airflow recirculation, optimizing combustion efficiency with a peak temperature of 2080 K in the combustion chamber. The flue gas temperature decreases to approximately 1650 K upon exit, which can be attributed to the slag catcher cooling. The integration of the liquid slagging chamber significantly mitigates slag formation, while enhancing oxygen and CO2 distribution throughout the furnace. As the blending ratio of Zhundong coal increases, oxygen concentrations rise in the bottom burner region, indicating improved air–fuel mixing. With a 30% Zhundong coal ratio, the combustion chamber temperature increases by 3%, and flow velocity in the upper and middle furnace sections decreases by 15%, leading to enhanced combustion intensity. This retrofit demonstrates substantial improvements in combustion stability, slagging control, and the efficient utilization of high-alkali coal. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 7973 KB  
Article
A Study on the Influence of Radial Spoiler Arrangement on the Combustion Process of Wankel Rotor Engines
by Yaoyao Shi, Liangyu Li, Ye Tian and Run Zou
Processes 2024, 12(8), 1646; https://doi.org/10.3390/pr12081646 - 5 Aug 2024
Cited by 1 | Viewed by 1400
Abstract
Wankel rotor engines are widely used in various fields due to their high power density and simple structure. This paper presents the optimisation of the Wankel rotor engine by simple modifications of the structure. We propose a radial spoiler arrangement scheme that can [...] Read more.
Wankel rotor engines are widely used in various fields due to their high power density and simple structure. This paper presents the optimisation of the Wankel rotor engine by simple modifications of the structure. We propose a radial spoiler arrangement scheme that can affect the flame propagation speed and reaction severity by altering the flow field distribution and pre-reaction distribution in the cylinder. By comparing the effects of four layout schemes on flame propagation speed and reaction intensity, including no spoilers, radial spoilers deflected at an angle of 10° in the negative direction of the Z-axis, radial spoilers deflected at an angle of 10° in the positive direction of the Z-axis, and radial spoilers arranged at the centre of the rotor combustion chamber, the benefits of different layout schemes were evaluated. We conducted a study on the influence of the arrangement of radial spoilers on the combustion process of a Wankel rotary engine through theoretical calculations. This helps to reduce engine vibration, improve engine operation stability, and enhance engine performance. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 7147 KB  
Article
The Influence of Powering a Compression Ignition Engine with HVO Fuel on the Specific Emissions of Selected Toxic Exhaust Components
by Piotr Orliński, Mieczysław Sikora, Mateusz Bednarski and Maciej Gis
Appl. Sci. 2024, 14(13), 5893; https://doi.org/10.3390/app14135893 - 5 Jul 2024
Cited by 6 | Viewed by 2481
Abstract
The aim of the research was to determine the potential of hydrotreated vegetable oil (HVO) in reducing nitrogen oxides and particulate matter emissions from the Perkins 854E-E34TA compression ignition engine. The concentrations of these toxic exhaust gas components were measured using the following [...] Read more.
The aim of the research was to determine the potential of hydrotreated vegetable oil (HVO) in reducing nitrogen oxides and particulate matter emissions from the Perkins 854E-E34TA compression ignition engine. The concentrations of these toxic exhaust gas components were measured using the following analyzers: AVL CEB II (for NOx concentration measurement) and Horiba Mexa 1230 PM (for PM measurement). The measurements were carried out in the ESC test on a compression ignition engine with direct fuel injection and a turbocharger. The engine had a common rail fuel supply system and met the Stage IIIB/Tier 4 exhaust emission standard. Two fuels were used in the tests: diesel fuel (DF) and hydrotreated vegetable oil (HVO). As part of the experiment, the basic indicators of engine operation were also determined (torque, effective power, and fuel consumption) and selected parameters of the combustion process, such as the instantaneous pressure of the working medium in the combustion chamber, maximum pressures and temperatures in the combustion chamber, and the heat release rate (HRR), were calculated. The tests were carried out in accordance with the ESC test because the authors wanted to determine how the new generation HVO fuel, powering a modern combustion engine with a common rail fuel system, would perform in a stationary emission test. Based on the obtained research results, the authors concluded that HVO fuel can replace diesel fuel in diesel engines even without major modifications or changes in engine settings. Full article
(This article belongs to the Special Issue Alternative Fuels in Future Energy System)
Show Figures

Figure 1

20 pages, 3338 KB  
Article
Combustion Efficiency of Various Forms of Solid Biofuels in Terms of Changes in the Method of Fuel Feeding into the Combustion Chamber
by Małgorzata Dula, Artur Kraszkiewicz and Stanisław Parafiniuk
Energies 2024, 17(12), 2853; https://doi.org/10.3390/en17122853 - 10 Jun 2024
Cited by 8 | Viewed by 2515
Abstract
This study analyzes the combustion of pellets and briquettes made of plant biomass in low-power heating devices powered periodically with fuel being placed on the grate, as well as after modification using an automatic fuel feeding system in the gutter burner. The use [...] Read more.
This study analyzes the combustion of pellets and briquettes made of plant biomass in low-power heating devices powered periodically with fuel being placed on the grate, as well as after modification using an automatic fuel feeding system in the gutter burner. The use of herbaceous biomass in the form of pellets in low-power heating devices with automatic fuel feeding and combustion in a gutter burner is not widely promoted and popular. Therefore, this study used four types of herbaceous waste biomass (wheat straw, rye straw, oat straw and hay) and one type of woody waste biomass (birch sawdust) for testing. The basic chemical characteristics were determined for the raw materials. After appropriate preparation, the selected starting materials were subjected to briquetting and pelleting processes. Selected physical properties were also determined for the obtained biofuels. Biofuels made from birch sawdust had the lowest heat value (16.34 MJ·kg−1), although biofuels made from wheat, rye and hay straw had a slightly lower calorific value, respectively: 16.29; 16.28 and 16.26 MJ·kg−1. However, the calorific value of oat straw biofuels was only 15.47 MJ kg−1. Moreover, the ash content for herbaceous biomass was 2–4 times higher than for woody biomass. Similar differences between herbaceous and woody biomass were also observed for the nitrogen and sulfur content. To burn the prepared biofuels, a domestic grate-fired biomass boiler was used, periodically fed with portions of fuel in the form of pellets or briquettes (type A tests), which was then modified with a gutter burner enabling the automatic feeding of fuel in the form of pellets (type B tests). During the combustion tests with simultaneous timing, the concentration of CO2, CO, NO and SO2 in the exhaust gases was examined and the temperature of the supplied air and exhaust gases was measured. The stack loss (qA), combustion efficiency index (CEI) and toxicity index (TI) were also calculated. The research shows that the use of automatic fuel feeding stabilizes the combustion process. The combustion process is balanced between herbaceous and woody biomass biofuels. Disparities in CO2, CO and Tgas emissions are decreasing. However, during type B tests, an increase in NO emissions is observed. At the same time, the research conducted indicates that the combustion of herbaceous biomass pellets with their automatic feeding into the combustion chamber is characterized by an increase in combustion efficiency, indicating that when the combustion process is automated, they are a good replacement for wood biofuels—both pellets and briquettes. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

18 pages, 9686 KB  
Article
Regression Rate and Combustion Efficiency of Composite Hybrid Rocket Grains Based on Modular Fuel Units
by Junjie Pan, Xin Lin, Zezhong Wang, Ruoyan Wang, Kun Wu, Jinhu Liang and Xilong Yu
Aerospace 2024, 11(4), 262; https://doi.org/10.3390/aerospace11040262 - 28 Mar 2024
Cited by 2 | Viewed by 3476
Abstract
This study investigated combustion characteristics of composite fuel grains designed based on a modular fuel unit strategy. The modular fuel unit comprised a periodical helical structure with nine acrylonitrile–butadiene–styrene helical blades. A paraffin-based fuel was embedded between adjacent blades. Two modifications of the [...] Read more.
This study investigated combustion characteristics of composite fuel grains designed based on a modular fuel unit strategy. The modular fuel unit comprised a periodical helical structure with nine acrylonitrile–butadiene–styrene helical blades. A paraffin-based fuel was embedded between adjacent blades. Two modifications of the helical structure framework were researched. One mirrored the helical blades, and the other periodically extended the helical blades by perforation. A laboratory-scale hybrid rocket engine was used to investigate combustion characteristics of the fuel grains at an oxygen mass flux of 2.1–6.0 g/(s·cm2). Compared with the composite fuel grain with periodically extended helical blades, the modified composite fuel grains exhibited higher regression rates and a faster rise of regression rates as the oxygen mass flux increased. At an oxygen mass flux of 6.0 g/(s·cm2), the regression rate of the composite fuel grains with perforation and mirrored helical blades increased by 8.0% and 14.1%, respectively. The oxygen-to-fuel distribution of the composite fuel grain with mirrored helical blades was more concentrated, and its combustion efficiency was stable. Flame structure characteristics in the combustion chamber were visualized using a radiation imaging technique. A rapid increase in flame thickness of the composite fuel grains based on the modular unit was observed, which was consistent with their high regression rates. A simplified numerical simulation was carried out to elucidate the mechanism of the modified modular units on performance enhancement of the composite hybrid rocket grains. Full article
(This article belongs to the Special Issue Hybrid Rocket Engines)
Show Figures

Figure 1

17 pages, 10139 KB  
Article
Advanced Numerical Analysis of In-Cylinder Combustion and NOx Formation Using Different Chamber Geometries
by Arun Teja Doppalapudi and Abul Kalam Azad
Fire 2024, 7(2), 35; https://doi.org/10.3390/fire7020035 - 24 Jan 2024
Cited by 9 | Viewed by 3298
Abstract
In diesel engines, emission formation inside the combustion chamber is a complex phenomenon. The combustion events inside the chamber occur in microseconds, affecting the overall engine performance and emissions characteristics. This study opted for using computational fluid dynamics (CFD) to investigate the combustion [...] Read more.
In diesel engines, emission formation inside the combustion chamber is a complex phenomenon. The combustion events inside the chamber occur in microseconds, affecting the overall engine performance and emissions characteristics. This study opted for using computational fluid dynamics (CFD) to investigate the combustion patterns and how these events affect nitrogen oxide (NOx) emissions. In this study, a diesel engine model with a flat combustion chamber (FCC) was developed for the simulation. The simulation result of the heat release rate (HRR) and cylinder pressure was validated with the experimental test data (the engine test was conducted at 1500 rpm at full load conditions). The validated model and its respective boundary conditions were used to investigate the effect of modified combustion chamber profiles on NOx emissions. Modified chambers, such as a bathtub combustion chamber (BTCC) and a shallow depth chamber (SCC), were developed, and their combustion events were analysed with respect to the FCC. This study revealed that combustion events such as fuel distribution, unburnt mass fractions, temperature and turbulent zones directly impact NOx emissions. The modified chambers controlled the spread of combustion and provided better fuel distribution, improving engine performance and combustion rates. The SCC (63.2 bar) showed peak pressure rates compared to the FCC (63.02 bar) and BTCC (62.72 bar). This study concluded that the SCC showed better results than other chambers. This study further recommends conducting lean fuel mixture combustion with chamber modifications and optimising fuel spray, such as by adjusting the fuel injection profile, spray angle and injection timing, which has a better tendency to create complete combustion. Full article
(This article belongs to the Special Issue State of the Art in Combustion and Flames)
Show Figures

Figure 1

16 pages, 2799 KB  
Article
Flue Gas Recirculation System for Biomass Heating Boilers—Research and Technical Applications for Reductions in Nitrogen Oxides (NOx) Emissions
by Bartosz Ciupek, Rafał Urbaniak, Dobrosława Kinalska and Zbigniew Nadolny
Energies 2024, 17(1), 259; https://doi.org/10.3390/en17010259 - 4 Jan 2024
Cited by 12 | Viewed by 4189
Abstract
The paper discusses the results of investigations of the change in thermal and emission-related parameters of a heating boiler fueled with biomass after a modification with a proprietary flue gas recirculation system made for this type of equipment. The results provide insight into [...] Read more.
The paper discusses the results of investigations of the change in thermal and emission-related parameters of a heating boiler fueled with biomass after a modification with a proprietary flue gas recirculation system made for this type of equipment. The results provide insight into the combustion process with a multistage flue gas recirculation that materially affected the boiler operation: a reduction in the mass concentration of nitrogen oxides (NOx) by reducing the combustion temperature. The authors also observed a reduction in the emission of particulate matters (PM) and carbon monoxide (CO). For the investigations, the authors used a heating boiler fitted with an automatic fuel feed (timber pellets) and a proprietary patented flue gas recirculation system (Polish patent Pat. 243395) for low power solid fuel heating boilers. Aside from the measurement of the mass concentration of the emitted pollutants, the research focused on the measurements of the temperature inside the combustion chamber, the temperature of the flue gas and the level of oxygen in the flue gas. The aim of the research was to confirm the validity of using the flue gas recirculation technique to reduce emissions of harmful substances from biomass heating boilers, as a technique not previously used for this group of devices. Moreover, the aim of the research was to test an original engineering solution, in the form of a flue gas distribution valve, and investigate its effect on reducing NOx emissions and improving other thermal and emission parameters of the boiler. The obtained research results confirm the validity of the chosen actions and provide a positive premise for the practical use of this technology in solid fuel heating boilers. Full article
Show Figures

Figure 1

24 pages, 6984 KB  
Article
Custom-Designed Pre-Chamber: Investigating the Effects on Small SI Engine in Active and Passive Modes
by Paolo Sementa, Cinzia Tornatore, Francesco Catapano, Silvana Di Iorio and Bianca Maria Vaglieco
Energies 2023, 16(13), 5097; https://doi.org/10.3390/en16135097 - 1 Jul 2023
Cited by 7 | Viewed by 3600
Abstract
This work shows the results of an experimental campaign carried out in two spark ignition engines, a small optical research engine and its commercial counterpart, using a turbulent ignition system (pre-chamber) specifically designed for small engines. Advanced optical techniques and conventional methods were [...] Read more.
This work shows the results of an experimental campaign carried out in two spark ignition engines, a small optical research engine and its commercial counterpart, using a turbulent ignition system (pre-chamber) specifically designed for small engines. Advanced optical techniques and conventional methods were used to study the combustion process under various operating conditions. The pre-chamber operated actively in the research engine and passively in the commercial engine. Results showed that the pre-chamber configuration resulted in an increase in indicated mean effective pressure (IMEP) and a decrease in the coefficient of variation (CoV) of IMEP. These improvements compensated for challenges such as slow methane combustion rate, poor lean burn capability, and air displacement. In addition, the pre-chamber configuration exhibited lower fuel consumption and specific exhaust emissions compared to the standard ignition system. The novelty of this work lies in the successful implementation of the turbulent ignition system as a retrofit solution for SI engines, showing improved combustion efficiency and lower emissions. The study goes beyond previous efforts by demonstrating the benefits of the pre-chamber configuration in small engines without requiring extensive modifications. The results provide valuable insights into the automotive industry’s pursuit of engine optimization and highlight the significance of innovative approaches for spark ignition engines in contributing to sustainable mobility. Full article
Show Figures

Figure 1

18 pages, 7610 KB  
Article
Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine
by Arun Teja Doppalapudi, Abul Kalam Azad and Mohammad Masud Kamal Khan
Energies 2023, 16(6), 2586; https://doi.org/10.3390/en16062586 - 9 Mar 2023
Cited by 13 | Viewed by 3347
Abstract
This study numerically analyses the effects of chamber modifications to investigate the improvement of in-cylinder combustion characteristics of the diesel engine using a computational fluid dynamics (CFD) approach. Five different modified chambers, namely, the double swirl combustion chamber (DSCC), bathtub combustion chamber (BTCC), [...] Read more.
This study numerically analyses the effects of chamber modifications to investigate the improvement of in-cylinder combustion characteristics of the diesel engine using a computational fluid dynamics (CFD) approach. Five different modified chambers, namely, the double swirl combustion chamber (DSCC), bathtub combustion chamber (BTCC), double toroidal re-entrant combustion chamber (DTRCC), shallow depth combustion chamber (SCC), and stepped bowl combustion chamber (SBCC) were developed and compared with a reference flat combustion chamber (FCC). The effects of chamber modifications on temperature formation, velocity distribution, injection profiles, and in-cylinder turbulent motions (swirl and tumble ratio) were investigated. During the compression stroke, near top dead centre, the SCC showed a peak temperature of 970 K, followed by the FCC (968 K), SBCC (967 K), and DTRCC (748 K to 815 K). The DSCC and the SCC showed a high swirl ratio above 0.6, whereas the DTRCC and the BTCC showed a high tumble ratio of approximately 0.4. This study found that the SCC, BTCC, and DSCC have better combustion rates than the FCC in terms of temperature, heat release rate, and velocity distribution. However, the DTRCC showed poor temperature formation rates and rapid heat release rates (approx. 150 J/°CA), which can lead to rapid combustion and knocking tendencies. In conclusion, the DSCC and the SCC showed better combustion rates than the other chambers. In addition, turbulent motions inside the chambers avoided combustion in crevice regions. This study recommends avoiding chambers with wider bowls in order to prevent uneven combustion across the cylinder. Furthermore, split bowls such as the DSCC, along with adjusted injection rates, can provide better results in terms of combustion. Full article
Show Figures

Figure 1

27 pages, 6344 KB  
Review
Application of Planar Laser-Induced Fluorescence for Interfacial Transfer Phenomena
by Vladimir Dulin, Andrey Cherdantsev, Roman Volkov and Dmitriy Markovich
Energies 2023, 16(4), 1877; https://doi.org/10.3390/en16041877 - 14 Feb 2023
Cited by 6 | Viewed by 5115
Abstract
The present review describes the current achievements in the applications of a planar laser-induced fluorescence (PLIF) method for the diagnostics of liquid films, bubbles, individual droplets, and sprays. Such flows are related with strongly curved interphases, which often results in additional high errors [...] Read more.
The present review describes the current achievements in the applications of a planar laser-induced fluorescence (PLIF) method for the diagnostics of liquid films, bubbles, individual droplets, and sprays. Such flows are related with strongly curved interphases, which often results in additional high errors during the PLIF data quantification because of laser light reflection, refraction, and absorption. The present review demonstrates that a two-color PLIF approach and a PLIF modification for regularly structured illumination resolves the reflection- and refraction-caused errors. The latter modification ensures proper phase separation in the measurement cross-section and visualization of the interface dynamics. The former approach provides the accurate evaluation of the local temperature and concentration both in liquid and gaseous phases even in the case of strong variations of the laser sheet intensity. With intensified cameras, the PLIF method is used for multi-parameter diagnostics of the two-phase combustion of sprays in combustion chambers with optical access. It visualizes and quantifies the liquid fuel evaporation and mixing, to measure temperature in the gas and liquid phases and to reveal the regions of pollutant formation. The PLIF technique can also be easily combined with a particle image (or tracking) velocimetry method, to evaluate local heat and mass transfer. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process)
Show Figures

Figure 1

14 pages, 7100 KB  
Article
Test Stand for a Motor Vehicle Powered by Different Fuels
by Dawid Tatarynow, Rafał Longwic, Przemysław Sander, Łukasz Zieliński, Michał Trojgo, Wincenty Lotko and Paweł Lonkwic
Appl. Sci. 2022, 12(20), 10683; https://doi.org/10.3390/app122010683 - 21 Oct 2022
Cited by 3 | Viewed by 3304
Abstract
This article discusses current testing methods for motor vehicle engines. Traction engines have so far been tested, for example, according to WLTP (Worldwide Harmonized Light Vehicle Test Procedure) driving tests, but due to the “VW—gate” incident, these are now to be supplemented by [...] Read more.
This article discusses current testing methods for motor vehicle engines. Traction engines have so far been tested, for example, according to WLTP (Worldwide Harmonized Light Vehicle Test Procedure) driving tests, but due to the “VW—gate” incident, these are now to be supplemented by RDE (Real Driving Emissions) tests, conducted under real road conditions. The analyses of the state of knowledge and the directions of research to date unequivocally indicate the need for the construction of a stand that allows: testing of a complete vehicle admitted to traffic; testing of a motor vehicle with the possibility of simulating real operating conditions; load setting with the possibility of its regulation; feeding the engine with various fuels; modification of the software of controllers having a direct impact on the control strategies of the engine; transmission and traction control system; reading, recording and analysis of the parameters of the operation of control systems in real time; detailed recording and analysis of the combustion process occurring directly in the combustion chamber; and the measurement of emitted toxic substances. On a bench with the above features, tests were carried out on a diesel motor vehicle, which were based on recording changes in the parameters of the combustion and injection process. The tests were conducted under static and dynamic conditions. Tests under static conditions were conducted on a chassis dynamometer. They consisted of indicating the engine for different fuel dose control maps. The vehicle equipped with the test engine was driven at a constant speed on the chassis dynamometer and loaded with a drag force of 130 Nm. Tests under dynamic conditions were conducted under real traffic conditions. They were limited to the presentation of results under static conditions. The main results of the tests are given in the conclusion and include a general summary. In particular, the presented results of the diesel tests demonstrate an attempt to adapt the engine to co-power with hydrogen. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

24 pages, 1970 KB  
Review
Combustion, Pyrolysis, and Gasification of Waste-Derived Fuel Slurries, Low-Grade Liquids, and High-Moisture Waste: Review
by Ksenia Vershinina, Galina Nyashina and Pavel Strizhak
Appl. Sci. 2022, 12(3), 1039; https://doi.org/10.3390/app12031039 - 20 Jan 2022
Cited by 40 | Viewed by 10772
Abstract
The article discusses the modern achievements in the field of thermal recovery of industrial and municipal waste. The average accumulation rate and calorific value of typical wastes were analyzed. The focus is on the opportunities to exploit the energy potential of high-moisture waste, [...] Read more.
The article discusses the modern achievements in the field of thermal recovery of industrial and municipal waste. The average accumulation rate and calorific value of typical wastes were analyzed. The focus is on the opportunities to exploit the energy potential of high-moisture waste, low-grade liquid components, and fuel slurries. We consider the relevant results in the field of combustion, pyrolysis, and gasification of such fuels. The main attention is paid to synergistic effects, the influence of additives, and external conditions on the process performance. Vortex combustion chambers, boilers with burners, and nozzles for fuel injection, grate, and fluidized bed boilers can be used for the combustion of waste-derived liquid, high-moisture, and slurry fuels. The following difficulties are possible: long ignition delay, incomplete combustion, low combustion temperature and specific calorific value, high emissions (including particulate matter, polycyclic aromatic hydrocarbons), fast slagging, and difficult spraying. A successful solution to these problems is possible due to the use of auxiliary fuel; boiler modifications; oxy-fuel combustion; and the preparation of multi-component fuels, including the use of additives. An analysis of methods of waste recovery in the composition of slurries for fuel gas production showed that there are several main areas of research: pyrolysis and gasification of coal–water slurry with additives of oil waste; study of the influence of external conditions on the characteristics of final products; and the use of specialized additives and catalysts to improve the efficiency of the pyrolysis and gasification. The prospects for improving the characteristics of thermochemical conversion of such fuels are highlighted. Full article
Show Figures

Graphical abstract

Back to TopTop