Study on Combustion and NOx Emission Characteristics of Low-Quality Coal with Wide Load Based on Fuel Modification
Abstract
:1. Introduction
2. Experimental Section
2.1. Experimental Setup
2.2. Experimental Methods and Sampling Ports
2.3. Fuel Characteristics
2.4. Experimental Conditions
3. Results and Discussion
3.1. Stable Operation Characteristics of FMD
3.2. Fuel Modification Characteristics
3.2.1. The High-Temperature Coal Gas Composition
3.2.2. The High-Temperature Coal Char Reactivity
3.2.3. Combustion Reaction Kinetics
3.3. Combustion Characteristics and NOx Emission
3.3.1. Combustion Temperature Distribution
3.3.2. Combustion Efficiency and NOx Emission
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
MP | Primary Air Flow Rate, Nm3/h |
MS | Secondary Air Flow Rate, Nm3/h |
MB | Burnout Air Flow Rate, Nm3/h |
M | Total Air Flow Rate, Nm3/h |
Qnet,ar | Lower Heating Value, MJ/kg |
UFV | Fluidized Air Velocity, m/s |
Greek letters | |
λp | Primary Air Equivalence Ratio, % |
λS | Secondary Air Equivalence Ratio, % |
λB | Burnout Air Equivalence Ratio, % |
λ | Total Air Equivalence Ratio, % |
η | Combustion Efficiency, % |
Abbreviations | |
CFB | Circulating Fluidized Bed |
CV | Calorific Value, MJ/Nm3 |
FMD | Fuel Modification Device |
HCC | Horizontal Combustion Chamber |
LQC | Low-quality Coal |
SBC | Shenmu Bituminous Coal |
SLC | Shouyang Lean Coal |
TGA | Thermogravimetric analysis |
UFA | Unburned Carbon Content in Fly Ash, % |
VCC | Vertical Combustion Chamber |
References
- Rousseau, P.; Laubscher, R. A thermofluid network-based model for heat transfer in membrane walls of pulverized coal boiler furnaces. Therm. Sci. Eng. Prog. 2021, 18, 100547. [Google Scholar] [CrossRef]
- Ming, H.; Lin, M.; Gao, C.; Zhang, N.; Xie, L.; Mou, Y. Towards the prospect of carbon-neutral power system 2060: A Power-Meteorology-Society systematic view. Heliyon 2024, 10, e27970. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Liu, M.; Chen, W.; Yan, J. CO2 emission characteristics modeling and low-carbon scheduling of thermal power units under peak shaving conditions. Fuel 2024, 373, 132339. [Google Scholar] [CrossRef]
- Li, L.; Meng, Y.; Yuan, X.; Li, J. Peak shaving strategy optimization based on load forecasting: Evidence from Anhui Provence, China. J. Energy Storage 2024, 90, 111818. [Google Scholar] [CrossRef]
- Kanca, A. Investigation on pyrolysis and combustion characteristics of low quality lignite, cotton waste, and their blends by TGA-FTIR. Fuel 2020, 263, 116517. [Google Scholar] [CrossRef]
- Wang, J.; Kuang, M.; Zhao, X.; Wu, H.; Ti, S.; Chen, C.; Jiao, L. Trends of the low-NOx and high-burnout combustion characteristics in a cascade-arch, W-shaped flame furnace regarding with the staged-air angle. Energy 2020, 212, 118768. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhu, J.; Lyu, Q. Experimental study on preheating and combustion characteristics of pulverized anthracite coal. Fuel 2013, 113, 122–127. [Google Scholar] [CrossRef]
- Orszulik, E.; Sliwinska, A. Combustion of hard coal and alternative fuels in a boiler with an innovative retort burner. Combust. Sci. Technol. 2019, 191, 555–569. [Google Scholar] [CrossRef]
- Bielowicz, B. Petrographic characteristics of coal gasification and combustion by-products from high volatile bituminous coa. Energies 2020, 13, 4374. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Zhang, M.; Zeng, L.; Li, Z. Combustion stability, burnout and NOx emissions of the 300 MW down-fired boiler with bituminous coal: Load variation and low-load comparison with anthracite. Fuel 2021, 295, 120641. [Google Scholar] [CrossRef]
- Tuttle, J.; Vesel, R.; Alagarsamy, S.; Blackburn, L.; Powell, K. Sustainable NOx emission reduction at a coal-fired power station through the use of online neural network modeling and particle swarm optimization. Control Eng. Pract. 2019, 93, 104167. [Google Scholar] [CrossRef]
- Ibrahimoglu, B.; Yilmazoglu, M.; Cucen, A. Numerical modelling of repowering of a thermal power plant boiler using plasma combustion systems. Energy 2016, 103, 38–48. [Google Scholar] [CrossRef]
- Zhao, F.; Li, S.; Ren, Y.; Yao, Q.; Yuan, Y. Investigation of mechanisms in plasma-assisted ignition of dispersed coal particle streams. Fuel 2016, 186, 518–524. [Google Scholar] [CrossRef]
- Messerle, V.; Karpenko, E.; Ustimenko, A. Plasma assisted power coal combustion in the furnace of utility boiler: Numerical modeling and full-scale test. Fuel 2014, 126, 294–300. [Google Scholar] [CrossRef]
- Chen, Y.; Kuang, M.; Ge, Z.; Zhao, Y.; Chen, J. Establishing essentially symmetrical combustion plus apparent improvement in burnout and NOx emissions within a down-fired furnace by rearranging its W-shaped flame into a sidewall-dominated pattern. Fuel 2023, 340, 127544. [Google Scholar] [CrossRef]
- Ma, L.; Fang, Q.; Lyu, D.; Zhang, C.; Chen, Y.; Chen, G.; Duan, X.; Wang, X. Reducing NOx emissions for a 600 MWe down-fired pulverized-coal utility boiler by applying a novel combustion system. Environ. Sci. Technol. 2015, 49, 13040–13049. [Google Scholar] [CrossRef]
- Du, H.; Li, Z.; Liu, Z.; Zhang, M.; Huang, C.; Jiang, G.; Chen, Z.; Song, J.; Fang, F.; Su, J.; et al. Industrial measurement of combustion and NOx formation characteristics on a low-grade coal-fired 600 MWe FW down-fired boiler retrofitted with novel low-load stable combustion technology. Fuel 2022, 321, 123926. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Z.; Li, L.; Zeng, L.; Li, Z. Achievement in ultra-low-load combustion stability for an anthracite and down-fired boiler after applying novel swirl burners: From laboratory experiments to industrial applications. Energy 2020, 192, 116623. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Wang, B.; Zeng, L.; Che, M.; Zhang, X.; Li, Z. Anthracite combustion characteristics and NOx formation of a 300 MWe Cross Markdown-fired boiler with swirl burners at different loads after the implementation of a new combustion system. Appl. Energy 2017, 189, 133–141. [Google Scholar] [CrossRef]
- Lyu, Q.; Zhu, J.; Niu, T.; Song, G.; Na, Y. Pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. Fuel Process. Technol. 2008, 89, 1186–1192. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, J.; Lyu, Q. Experimental study on the combustion characteristics and NOx emissions of pulverized anthracite preheated by circulating fluidized bed. J. Therm. Sci. 2011, 20, 355–361. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, S.; Zhu, J.; Liu, Y.; Zhang, J.; Hui, J.; Ding, H.; Cao, X.; Lyu, Q. Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres. Energy 2023, 274, 127419. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y. Numerical optimization of the influence of multiple deep air-staged combustion on the NOx emission in an opposed firing utility boiler using lean coal. Fuel 2020, 269, 116996. [Google Scholar] [CrossRef]
- Guedes, A.; Valentim, B.; Prieto, A. Raman spectroscopy of coal macerals and fluidized bed char morphotypes. Fuel 2012, 97, 443–449. [Google Scholar] [CrossRef]
- Gao, F.; Jia, Z.; Cui, Z.; Li, Y.; Jiang, H. Evolution of macromolecular structure during coal oxidation via FTIR, XRD and Raman. Fuel Process. Technol. 2024, 262, 108114. [Google Scholar] [CrossRef]
- Cheng, C.; Yu, J.; Wang, J.; Ding, L.; Yu, G. In-situ Raman spectroscopy study on coal pyrolysis and subsequent char low temperature oxidation and gasification. Chem. Eng. Sci. 2024, 285, 119619. [Google Scholar] [CrossRef]
- He, Q.; Jiang, X.; Xu, J.; Wang, C.; Jiang, M.; Wang, G.; Jiang, L.; Xu, K.; Wang, Y.; Su, S.; et al. Heterogeneous chemical structures of single pulverized coal particles and their evolution during pyrolysis: Insight from micro-Raman mapping technique. Powder Technol. 2023, 420, 118385. [Google Scholar] [CrossRef]
- Matlala, I.; Moroeng, O.; Kalaitzidis, S.; Wagner, N. Raman Spectroscopy for the characterization of the macromolecular structure of Highveld coals (South Africa). Int. J. Coal Geol. 2024, 288, 104531. [Google Scholar] [CrossRef]
- Wu, X.; Bourbigot, S.; Li, K.; Zou, Y. Co-pyrolysis characteristics and flammability of polylactic acid and acrylonitrile-butadiene-styrene plastic blend using TG, temperature-dependent FTIR, Py-GC/MS and cone calorimeter analyses. Fire Saf. J. 2022, 128, 103543. [Google Scholar] [CrossRef]
- Wang, L.; Ye, T.; Ma, X.; Lin, Y.; Chen, J.; Wang, F.; Ma, P.; Liu, J. Kinetics and products distribution study on the catalytic effect of Zn/HZSM-5 over pyrolysis of chlorella through TG-FTIR and Py-GC/MS. J. Therm. Sci. 2023, 32, 1635–1643. [Google Scholar] [CrossRef]
- Ahmad, M.B.; Su, G.; Li, L.; Ma, J.; Li, X.; Embaye, T.M.; Hu, Z.; Deng, S.; Guo, H.; Wang, X. Co-combustion behaviour of municipal waste and food waste using TG-FTIR and Py-GC/MS: Thermo-kinetic behaviour and gaseous pollutants emission. Fuel 2025, 398, 135552. [Google Scholar] [CrossRef]
- Guo, S.; Deng, X.; Liu, L.; Ge, L.; Lisak, G. Comprehensive analysis of combustion behavior, kinetics, and gas emissions of fungus bran biofuel through torrefaction pretreatment and polypropylene addition. Fuel 2024, 364, 131014. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, X.; Lyu, G.; Li, X.; Yan, J. Analysis of the pyrolysis of solid recovered fuel and its sorted components by using TG-FTIR and DAEM. J. Therm. Sci. 2023, 32, 1671–1683. [Google Scholar] [CrossRef]
- Zhang, T.; Feng, W.; Bai, Z.; Zheng, H.; Dou, H.; Guo, Z.; Kong, L.; Bai, J.; Li, W. Interpretation of interactions between low rank coal and polyethylene during co-pyrolysis from the bond cleavage perspective. J. Energy Inst. 2024, 113, 101529. [Google Scholar] [CrossRef]
Fuel | Ultimate Analysis (wt.%) | Proximate Analysis (wt.%) | Lower Heating Value (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Car | Har | Oar | Nar | Sar | Mar | FCar | Var | Aar | Qnet,ar | |
LQC | 54.76 | 2.27 | 3.64 | 0.82 | 1.09 | 1.10 | 54.92 | 7.66 | 36.32 | 20.41 |
SBC | 61.22 | 5.14 | 20.47 | 1.35 | 0.40 | 4.97 | 55.58 | 33.01 | 6.45 | 23.74 |
SLC | 54.69 | 2.82 | 0.85 | 4.86 | 1.66 | 0.72 | 51.52 | 13.36 | 34.40 | 21.03 |
Item | Unit | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 |
---|---|---|---|---|---|---|---|
Coal type | / | LQC | SBC | ||||
Coal feed rate | kg/h | 71 | 85 | 291 | 81 | 125 | 269 |
Thermal load | MW | 0.40 | 0.48 | 1.66 | 0.53 | 0.82 | 1.77 |
Load percentage | % | 20 | 24 | 83 | 26 | 40 | 88 |
FMD quantity | / | One | Two | Two | One | Two | Two |
MP | Nm3/h | 76 | 87 | 282 | 85 | 123 | 297 |
λP | / | 0.20 | 0.19 | 0.18 | 0.17 | 0.16 | 0.18 |
UFV | m/s | 2.01 | 1.16 | 3.71 | 2.12 | 1.54 | 3.71 |
MS | Nm3/h | 241 | 265 | 925 | 318 | 368 | 957 |
λS | / | 0.63 | 0.58 | 0.59 | 0.64 | 0.48 | 0.58 |
MB | Nm3/h | 176 | 224 | 642 | 229 | 384 | 677 |
λB | / | 0.46 | 0.49 | 0.41 | 0.46 | 0.50 | 0.41 |
M | Nm3/h | 493 | 576 | 1849 | 632 | 875 | 1931 |
λ | / | 1.29 | 1.26 | 1.18 | 1.27 | 1.14 | 1.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, H.; Li, S.; Ouyang, Z.; Zhu, S.; Zeng, X.; Wang, H.; Su, K.; Li, Z. Study on Combustion and NOx Emission Characteristics of Low-Quality Coal with Wide Load Based on Fuel Modification. Energies 2025, 18, 2798. https://doi.org/10.3390/en18112798
Ding H, Li S, Ouyang Z, Zhu S, Zeng X, Wang H, Su K, Li Z. Study on Combustion and NOx Emission Characteristics of Low-Quality Coal with Wide Load Based on Fuel Modification. Energies. 2025; 18(11):2798. https://doi.org/10.3390/en18112798
Chicago/Turabian StyleDing, Hongliang, Shuyun Li, Ziqu Ouyang, Shujun Zhu, Xiongwei Zeng, Hongshuai Wang, Kun Su, and Zhaoyang Li. 2025. "Study on Combustion and NOx Emission Characteristics of Low-Quality Coal with Wide Load Based on Fuel Modification" Energies 18, no. 11: 2798. https://doi.org/10.3390/en18112798
APA StyleDing, H., Li, S., Ouyang, Z., Zhu, S., Zeng, X., Wang, H., Su, K., & Li, Z. (2025). Study on Combustion and NOx Emission Characteristics of Low-Quality Coal with Wide Load Based on Fuel Modification. Energies, 18(11), 2798. https://doi.org/10.3390/en18112798