Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,448)

Search Parameters:
Keywords = combined noise effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3167 KiB  
Article
A Sustainability-Oriented Assessment of Noise Impacts on University Dormitories: Field Measurements, Student Survey, and Modeling Analysis
by Xiaoying Wen, Shikang Zhou, Kainan Zhang, Jianmin Wang and Dongye Zhao
Sustainability 2025, 17(15), 6845; https://doi.org/10.3390/su17156845 - 28 Jul 2025
Abstract
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three [...] Read more.
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three representative major urban universities in a major provincial capital city in China and designed and implemented a comprehensive questionnaire and surveyed 1005 students about their perceptions of their acoustic environment. We proposed and applied a sustainability–health-oriented, multidimensional assessment framework to assess the acoustic environment of the dormitories and student responses to natural sound, technological sounds, and human-made sounds. Using the Structural Equation Modeling (SEM) approach combined with the field measurements and student surveys, we identified three categories and six factors on student health and well-being for assessing the acoustic environment of university dormitories. The field data indicated that noise levels at most of the measurement points exceeded the recommended or regulatory thresholds. Higher noise impacts were observed in early mornings and evenings, primarily due to traffic noise and indoor activities. Natural sounds (e.g., wind, birdsong, water flow) were highly valued by students for their positive effect on the students’ pleasantness and satisfaction. Conversely, human and technological sounds (traffic noise, construction noise, and indoor noise from student activities) were deemed highly disturbing. Gender differences were evident in the assessment of the acoustic environment, with male students generally reporting higher levels of the pleasantness and preference for natural sounds compared to female students. Educational backgrounds showed no significant influence on sound perceptions. The findings highlight the need for providing actionable guidelines for dormitory ecological design, such as integrating vertical greening in dormitory design, water features, and biodiversity planting to introduce natural soundscapes, in parallel with developing campus activity standards and lifestyle during noise-sensitive periods. The multidimensional assessment framework will drive a sustainable human–ecology–sound symbiosis in university dormitories, and the category and factor scales to be employed and actions to improve the level of student health and well-being, thus, providing a reference for both research and practice for sustainable cities and communities. Full article
Show Figures

Figure 1

18 pages, 3278 KiB  
Article
A Hybrid 3D Localization Algorithm Based on Meta-Heuristic Weighted Fusion
by Dongfang Mao, Guoping Jiang and Yun Zhao
Mathematics 2025, 13(15), 2423; https://doi.org/10.3390/math13152423 - 28 Jul 2025
Abstract
This paper presents a hybrid indoor localization framework combining time difference of arrival (TDoA) measurements with a swarm intelligence optimization technique. To address the nonlinear optimization challenges in three-dimensional (3D) indoor localization via TDoA measurements, we systematically evaluate the artificial bee colony (ABC) [...] Read more.
This paper presents a hybrid indoor localization framework combining time difference of arrival (TDoA) measurements with a swarm intelligence optimization technique. To address the nonlinear optimization challenges in three-dimensional (3D) indoor localization via TDoA measurements, we systematically evaluate the artificial bee colony (ABC) algorithm and chimpanzee optimization algorithm (ChOA). Through comprehensive Monte Carlo simulations in a cubic 3D environment with eight beacons, our comparative analysis reveals that the ChOA achieves superior localization accuracy while maintaining computational efficiency. Building upon the ChOA framework, we introduce a multi-beacon fusion strategy incorporating a local outlier factor-based linear weighting mechanism to enhance robustness against measurement noise and improve localization accuracy. This approach integrates spatial density estimation with geometrically consistent weighting of distributed beacons, effectively filtering measurement outliers through adaptive sensor fusion. The experimental results show that the proposed algorithm exhibits excellent convergence performance under the condition of a low population size. Its anti-interference capability against Gaussian white noise is significantly improved compared with the baseline algorithms, and its anti-interference performance against multipath noise is consistent with that of the baseline algorithms. However, in terms of dealing with UWB device failures, the performance of the algorithm is slightly inferior. Meanwhile, the algorithm has relatively good time-lag performance and target-tracking performance. The study provides theoretical insights and practical guidelines for deploying reliable localization systems in complex indoor environments. Full article
Show Figures

Figure 1

25 pages, 837 KiB  
Article
DASF-Net: A Multimodal Framework for Stock Price Forecasting with Diffusion-Based Graph Learning and Optimized Sentiment Fusion
by Nhat-Hai Nguyen, Thi-Thu Nguyen and Quan T. Ngo
J. Risk Financial Manag. 2025, 18(8), 417; https://doi.org/10.3390/jrfm18080417 - 28 Jul 2025
Abstract
Stock price forecasting remains a persistent challenge in time series analysis due to complex inter-stock relationships and dynamic textual signals such as financial news. While Graph Neural Networks (GNNs) can model relational structures, they often struggle with capturing higher-order dependencies and are sensitive [...] Read more.
Stock price forecasting remains a persistent challenge in time series analysis due to complex inter-stock relationships and dynamic textual signals such as financial news. While Graph Neural Networks (GNNs) can model relational structures, they often struggle with capturing higher-order dependencies and are sensitive to noise. Moreover, sentiment signals are typically aggregated using fixed time windows, which may introduce temporal bias. To address these issues, we propose DASF-Net (Diffusion-Aware Sentiment Fusion Network), a multimodal framework that integrates structural and textual information for robust prediction. DASF-Net leverages diffusion processes over two complementary financial graphs—one based on industry relationships, the other on fundamental indicators—to learn richer stock representations. Simultaneously, sentiment embeddings extracted from financial news using FinBERT are aggregated over an empirically optimized window to preserve temporal relevance. These modalities are fused via a multi-head attention mechanism and passed to a temporal forecasting module. DASF-Net integrates daily stock prices and news sentiment, using a 3-day sentiment aggregation window, to forecast stock prices over daily horizons (1–3 days). Experiments on 12 large-cap S&P 500 stocks over four years demonstrate that DASF-Net outperforms competitive baselines, achieving up to 91.6% relative reduction in Mean Squared Error (MSE). Results highlight the effectiveness of combining graph diffusion and sentiment-aware features for improved financial forecasting. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

26 pages, 3125 KiB  
Article
Tomato Leaf Disease Identification Framework FCMNet Based on Multimodal Fusion
by Siming Deng, Jiale Zhu, Yang Hu, Mingfang He and Yonglin Xia
Plants 2025, 14(15), 2329; https://doi.org/10.3390/plants14152329 - 27 Jul 2025
Abstract
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper [...] Read more.
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper proposes a tomato leaf disease recognition framework FCMNet based on multimodal fusion, which combines tomato leaf disease image and text description to enhance the ability to capture disease characteristics. In this paper, the Fourier-guided Attention Mechanism (FGAM) is designed, which systematically embeds the Fourier frequency-domain information into the spatial-channel attention structure for the first time, enhances the stability and noise resistance of feature expression through spectral transform, and realizes more accurate lesion location by means of multi-scale fusion of local and global features. In order to realize the deep semantic interaction between image and text modality, a Cross Vision–Language Alignment module (CVLA) is further proposed. This module generates visual representations compatible with Bert embeddings by utilizing block segmentation and feature mapping techniques. Additionally, it incorporates a probability-based weighting mechanism to achieve enhanced multimodal fusion, significantly strengthening the model’s comprehension of semantic relationships across different modalities. Furthermore, to enhance both training efficiency and parameter optimization capabilities of the model, we introduce a Multi-strategy Improved Coati Optimization Algorithm (MSCOA). This algorithm integrates Good Point Set initialization with a Golden Sine search strategy, thereby boosting global exploration, accelerating convergence, and effectively preventing entrapment in local optima. Consequently, it exhibits robust adaptability and stable performance within high-dimensional search spaces. The experimental results show that the FCMNet model has increased the accuracy and precision by 2.61% and 2.85%, respectively, compared with the baseline model on the self-built dataset of tomato leaf diseases, and the recall and F1 score have increased by 3.03% and 3.06%, respectively, which is significantly superior to the existing methods. This research provides a new solution for the identification of tomato leaf diseases and has broad potential for agricultural applications. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

25 pages, 4296 KiB  
Article
StripSurface-YOLO: An Enhanced Yolov8n-Based Framework for Detecting Surface Defects on Strip Steel in Industrial Environments
by Haomin Li, Huanzun Zhang and Wenke Zang
Electronics 2025, 14(15), 2994; https://doi.org/10.3390/electronics14152994 - 27 Jul 2025
Abstract
Recent advances in precision manufacturing and high-end equipment technologies have imposed ever more stringent requirements on the accuracy, real-time performance, and lightweight design of online steel strip surface defect detection systems. To reconcile the persistent trade-off between detection precision and inference efficiency in [...] Read more.
Recent advances in precision manufacturing and high-end equipment technologies have imposed ever more stringent requirements on the accuracy, real-time performance, and lightweight design of online steel strip surface defect detection systems. To reconcile the persistent trade-off between detection precision and inference efficiency in complex industrial environments, this study proposes StripSurface–YOLO, a novel real-time defect detection framework built upon YOLOv8n. The core architecture integrates an Efficient Cross-Stage Local Perception module (ResGSCSP), which synergistically combines GSConv lightweight convolutions with a one-shot aggregation strategy, thereby markedly reducing both model parameters and computational complexity. To further enhance multi-scale feature representation, this study introduces an Efficient Multi-Scale Attention (EMA) mechanism at the feature-fusion stage, enabling the network to more effectively attend to critical defect regions. Moreover, conventional nearest-neighbor upsampling is replaced by DySample, which produces deeper, high-resolution feature maps enriched with semantic content, improving both inference speed and fusion quality. To heighten sensitivity to small-scale and low-contrast defects, the model adopts Focal Loss, dynamically adjusting to sample difficulty. Extensive evaluations on the NEU-DET dataset demonstrate that StripSurface–YOLO reduces FLOPs by 11.6% and parameter count by 7.4% relative to the baseline YOLOv8n, while achieving respective improvements of 1.4%, 3.1%, 4.1%, and 3.0% in precision, recall, mAP50, and mAP50:95. Under adverse conditions—including contrast variations, brightness fluctuations, and Gaussian noise—SteelSurface-YOLO outperforms the baseline model, delivering improvements of 5.0% in mAP50 and 4.7% in mAP50:95, attesting to the model’s robust interference resistance. These findings underscore the potential of StripSurface–YOLO to meet the rigorous performance demands of real-time surface defect detection in the metal forging industry. Full article
Show Figures

Figure 1

30 pages, 890 KiB  
Review
From Block-Oriented Models to the Koopman Operator: A Comprehensive Review on Data-Driven Chemical Reactor Modeling
by Mustapha Kamel Khaldi, Mujahed Al-Dhaifallah, Ibrahim Aljamaan, Fouad Mohammad Al-Sunni, Othman Taha and Abdullah Alharbi
Mathematics 2025, 13(15), 2411; https://doi.org/10.3390/math13152411 - 26 Jul 2025
Viewed by 32
Abstract
Some chemical reactors exhibit coupled dynamics with multiple equilibrium points and strong nonlinearities. The accurate modeling of these dynamics is crucial to optimal control and increasing the reactor’s economic performance. While neural networks can effectively handle complex nonlinearities, they sacrifice interpretability. Alternatively, block-oriented [...] Read more.
Some chemical reactors exhibit coupled dynamics with multiple equilibrium points and strong nonlinearities. The accurate modeling of these dynamics is crucial to optimal control and increasing the reactor’s economic performance. While neural networks can effectively handle complex nonlinearities, they sacrifice interpretability. Alternatively, block-oriented Hammerstein–Wiener models and Koopman operator-based linear predictors combine nonlinear representation with linear dynamics, offering a gray-box identification approach. This paper comprehensively reviews recent advancements in both the Hammerstein–Wiener and Koopman operator methods and benchmarks their accuracy against neural network-based approaches to modeling a large-scale industrial Fluid Catalytic Cracking fractionator. Furthermore, Monte Carlo simulations are employed to validate performance under varying signal-to-noise ratios. The results demonstrate that the Koopman bilinear model significantly outperforms the other methods in terms of accuracy and robustness. Full article
14 pages, 2878 KiB  
Article
A Peak Current Mode Boost DC-DC Converter with Hybrid Spread Spectrum
by Xing Zhong, Jianhai Yu, Yongkang Shen and Jinghu Li
Micromachines 2025, 16(8), 862; https://doi.org/10.3390/mi16080862 - 26 Jul 2025
Viewed by 69
Abstract
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. [...] Read more.
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. This paper proposes a boost converter utilizing Pulse Width Modulation (PWM) with peak current mode control to address the EMI issues inherent in the switching operation of DC-DC converters. The converter incorporates a Hybrid Spread Spectrum (HSS) technique to effectively mitigate EMI noise. The HSS combines a 1.2 MHz pseudo-random spread spectrum with a 9.4 kHz triangular periodic spread spectrum. At a standard switching frequency of 2 MHz, the spread spectrum range is set to ±7.8%. Simulations conducted using a 0.5 μm Bipolar Complementary Metal-Oxide-Semiconductor Double-diffused Metal-Oxide-Semiconductor (BCD) process demonstrate that the HSS technique reduces EMI around the switching frequency by 12.29 dBμV, while the converter’s efficiency decreases by less than 1%. Full article
Show Figures

Figure 1

19 pages, 3392 KiB  
Article
Denoising Algorithm for High-Resolution and Large-Range Phase-Sensitive SPR Imaging Based on PFA
by Zihang Pu, Xuelin Wang, Wanwan Chen, Zhexian Liu and Peng Wang
Sensors 2025, 25(15), 4641; https://doi.org/10.3390/s25154641 - 26 Jul 2025
Viewed by 56
Abstract
Phase-sensitive surface plasmon resonance (SPR) detection is widely employed in molecular dynamics studies and SPR imaging owing to its real-time capability, high sensitivity, and compatibility with imaging systems. A key research objective is to achieve higher measurement resolution of refractive index under optimal [...] Read more.
Phase-sensitive surface plasmon resonance (SPR) detection is widely employed in molecular dynamics studies and SPR imaging owing to its real-time capability, high sensitivity, and compatibility with imaging systems. A key research objective is to achieve higher measurement resolution of refractive index under optimal dynamic range conditions. We present an enhanced SPR phase imaging system combining a quad-polarization filter array for phase differential detection with a novel polarization pair, block matching, and 4D filtering (PPBM4D) algorithm to extend the dynamic range and enhance resolution. By extending the BM3D framework, PPBM4D leverages inter-polarization correlations to generate virtual measurements for each channel in the quad-polarization filter, enabling more effective noise suppression through collaborative filtering. The algorithm demonstrates 57% instrumental noise reduction and achieves 1.51 × 10−6 RIU resolution (1.333–1.393 RIU range). The system’s algorithm performance is validated through stepwise NaCl solution switching experiments (0.0025–0.08%) and protein interaction assays (0.15625–20 μg/mL). This advancement establishes a robust framework for high-resolution SPR applications across a broad dynamic range, particularly benefiting live-cell imaging and high-throughput screening. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

27 pages, 1481 KiB  
Article
Integration of Associative Tokens into Thematic Hyperspace: A Method for Determining Semantically Significant Clusters in Dynamic Text Streams
by Dmitriy Rodionov, Boris Lyamin, Evgenii Konnikov, Elena Obukhova, Gleb Golikov and Prokhor Polyakov
Big Data Cogn. Comput. 2025, 9(8), 197; https://doi.org/10.3390/bdcc9080197 - 25 Jul 2025
Viewed by 159
Abstract
With the exponential growth of textual data, traditional topic modeling methods based on static analysis demonstrate limited effectiveness in tracking the dynamics of thematic content. This research aims to develop a method for quantifying the dynamics of topics within text corpora using a [...] Read more.
With the exponential growth of textual data, traditional topic modeling methods based on static analysis demonstrate limited effectiveness in tracking the dynamics of thematic content. This research aims to develop a method for quantifying the dynamics of topics within text corpora using a thematic signal (TS) function that accounts for temporal changes and semantic relationships. The proposed method combines associative tokens with original lexical units to reduce thematic entropy and information noise. Approaches employed include topic modeling (LDA), vector representations of texts (TF-IDF, Word2Vec), and time series analysis. The method was tested on a corpus of news texts (5000 documents). Results demonstrated robust identification of semantically meaningful thematic clusters. An inverse relationship was observed between the level of thematic significance and semantic diversity, confirming a reduction in entropy using the proposed method. This approach allows for quantifying topic dynamics, filtering noise, and determining the optimal number of clusters. Future applications include analyzing multilingual data and integration with neural network models. The method shows potential for monitoring information flows and predicting thematic trends. Full article
Show Figures

Figure 1

18 pages, 3717 KiB  
Article
A Hybrid LMD–ARIMA–Machine Learning Framework for Enhanced Forecasting of Financial Time Series: Evidence from the NASDAQ Composite Index
by Jawaria Nasir, Hasnain Iftikhar, Muhammad Aamir, Hasnain Iftikhar, Paulo Canas Rodrigues and Mohd Ziaur Rehman
Mathematics 2025, 13(15), 2389; https://doi.org/10.3390/math13152389 - 25 Jul 2025
Viewed by 194
Abstract
This study proposes a novel hybrid forecasting approach designed explicitly for long-horizon financial time series. It incorporates LMD (Local Mean Decomposition), SD (Signal Decomposition), and sophisticated machine learning methods. The framework for the NASDAQ Composite Index begins by decomposing the original time series [...] Read more.
This study proposes a novel hybrid forecasting approach designed explicitly for long-horizon financial time series. It incorporates LMD (Local Mean Decomposition), SD (Signal Decomposition), and sophisticated machine learning methods. The framework for the NASDAQ Composite Index begins by decomposing the original time series into stochastic and deterministic components using the LMD approach. This method effectively separates linear and nonlinear signal structures. The stochastic components are modeled using ARIMA to represent linear temporal dynamics, while the deterministic components are projected using cutting-edge machine learning methods, including XGBoost, Random Forest (RF), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs). This study employs various statistical metrics to evaluate the predictive ability across both short-term noise and long-term trends, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Directional Statistic (DS). Furthermore, the Diebold–Mariano test is used to determine the statistical significance of any forecast improvements. Empirical results demonstrate that the hybrid LMD–ARIMA–SD–XGBoost model consistently outperforms alternative configurations in terms of prediction accuracy and directional consistency. These findings demonstrate the advantages of integrating decomposition-based signal filtering with ensemble machine learning to improve the robustness and generalizability of long-term forecasting. This study presents a scalable and adaptive approach for modeling complex, nonlinear, and high-dimensional time series, thereby contributing to the enhancement of intelligent forecasting systems in the economic and financial sectors. As far as the authors are aware, this is the first study to combine XGBoost and LMD in a hybrid decomposition framework for forecasting long-horizon stock indexes. Full article
Show Figures

Figure 1

21 pages, 4388 KiB  
Article
An Omni-Dimensional Dynamic Convolutional Network for Single-Image Super-Resolution Tasks
by Xi Chen, Ziang Wu, Weiping Zhang, Tingting Bi and Chunwei Tian
Mathematics 2025, 13(15), 2388; https://doi.org/10.3390/math13152388 - 25 Jul 2025
Viewed by 166
Abstract
The goal of single-image super-resolution (SISR) tasks is to generate high-definition images from low-quality inputs, with practical uses spanning healthcare diagnostics, aerial imaging, and surveillance systems. Although cnns have considerably improved image reconstruction quality, existing methods still face limitations, including inadequate restoration of [...] Read more.
The goal of single-image super-resolution (SISR) tasks is to generate high-definition images from low-quality inputs, with practical uses spanning healthcare diagnostics, aerial imaging, and surveillance systems. Although cnns have considerably improved image reconstruction quality, existing methods still face limitations, including inadequate restoration of high-frequency details, high computational complexity, and insufficient adaptability to complex scenes. To address these challenges, we propose an Omni-dimensional Dynamic Convolutional Network (ODConvNet) tailored for SISR tasks. Specifically, ODConvNet comprises four key components: a Feature Extraction Block (FEB) that captures low-level spatial features; an Omni-dimensional Dynamic Convolution Block (DCB), which utilizes a multidimensional attention mechanism to dynamically reweight convolution kernels across spatial, channel, and kernel dimensions, thereby enhancing feature expressiveness and context modeling; a Deep Feature Extraction Block (DFEB) that stacks multiple convolutional layers with residual connections to progressively extract and fuse high-level features; and a Reconstruction Block (RB) that employs subpixel convolution to upscale features and refine the final HR output. This mechanism significantly enhances feature extraction and effectively captures rich contextual information. Additionally, we employ an improved residual network structure combined with a refined Charbonnier loss function to alleviate gradient vanishing and exploding to enhance the robustness of model training. Extensive experiments conducted on widely used benchmark datasets, including DIV2K, Set5, Set14, B100, and Urban100, demonstrate that, compared with existing deep learning-based SR methods, our ODConvNet method improves Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the visual quality of SR images is also improved. Ablation studies further validate the effectiveness and contribution of each component in our network. The proposed ODConvNet offers an effective, flexible, and efficient solution for the SISR task and provides promising directions for future research. Full article
Show Figures

Figure 1

35 pages, 3157 KiB  
Article
Federated Unlearning Framework for Digital Twin–Based Aviation Health Monitoring Under Sensor Drift and Data Corruption
by Igor Kabashkin
Electronics 2025, 14(15), 2968; https://doi.org/10.3390/electronics14152968 - 24 Jul 2025
Viewed by 181
Abstract
Ensuring data integrity and adaptability in aircraft health monitoring (AHM) is vital for safety-critical aviation systems. Traditional digital twin (DT) and federated learning (FL) frameworks, while effective in enabling distributed, privacy-preserving fault detection, lack mechanisms to remove the influence of corrupted or adversarial [...] Read more.
Ensuring data integrity and adaptability in aircraft health monitoring (AHM) is vital for safety-critical aviation systems. Traditional digital twin (DT) and federated learning (FL) frameworks, while effective in enabling distributed, privacy-preserving fault detection, lack mechanisms to remove the influence of corrupted or adversarial data once these have been integrated into global models. This paper proposes a novel FL–DT–FU framework that combines digital twin-based subsystem modeling, federated learning for collaborative training, and federated unlearning (FU) to support the post hoc correction of compromised model contributions. The architecture enables real-time monitoring through local DTs, secure model aggregation via FL, and targeted rollback using gradient subtraction, re-aggregation, or constrained retraining. A comprehensive simulation environment is developed to assess the impact of sensor drift, label noise, and adversarial updates across a federated fleet of aircraft. The experimental results demonstrate that FU methods restore up to 95% of model accuracy degraded by data corruption, significantly reducing false negative rates in early fault detection. The proposed system further supports auditability through cryptographic logging, aligning with aviation regulatory standards. This study establishes federated unlearning as a critical enabler for resilient, correctable, and trustworthy AI in next-generation AHM systems. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Emerging Applications)
Show Figures

Figure 1

23 pages, 5107 KiB  
Article
Linear Rolling Guide Surface Wear-State Identification Based on Multi-Scale Fuzzy Entropy and Random Forest
by Conghui Nie, Changguang Zhou, Tieqiang Wang, Xiaoyi Wang, Huaxi Zhou and Hutian Feng
Lubricants 2025, 13(8), 323; https://doi.org/10.3390/lubricants13080323 - 24 Jul 2025
Viewed by 140
Abstract
As a critical precision transmission element in numerical control (NC) machines, the linear rolling guide (LRG) suffers from surface wear degradation, which significantly impairs machining accuracy and operational reliability. Despite its importance, effective identification methods for LRG degradation remain limited. In this study, [...] Read more.
As a critical precision transmission element in numerical control (NC) machines, the linear rolling guide (LRG) suffers from surface wear degradation, which significantly impairs machining accuracy and operational reliability. Despite its importance, effective identification methods for LRG degradation remain limited. In this study, a hybrid approach combining multi-scale fuzzy entropy (MFE) with a gray wolf-optimized random forest (GWO-RF) algorithm was proposed to identify the surface wear state of the LRG. Preload degradation and vibration signals were collected at three surface wear stages throughout the LGR’s service life. The vibration signals were decomposed and reconstructed using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), followed by multi-scale fuzzy entropy analysis of the reconstructed signals. After dimensionality reduction via kernel principal component analysis (KPCA), the processed features were fed into the GWO-RF model for classification. Experimental results demonstrated a recognition accuracy of 97.9%. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

20 pages, 4960 KiB  
Article
A Fault Diagnosis Method for Planetary Gearboxes Using an Adaptive Multi-Bandpass Filter, RCMFE, and DOA-LSSVM
by Xin Xia, Aiguo Wang and Haoyu Sun
Symmetry 2025, 17(8), 1179; https://doi.org/10.3390/sym17081179 - 23 Jul 2025
Viewed by 121
Abstract
Effective fault feature extraction and classification methods serve as the foundation for achieving the efficient fault diagnosis of planetary gearboxes. Considering the vibration signals of planetary gearboxes that contain both symmetrical and asymmetrical components, this paper proposes a novel feature extraction method integrating [...] Read more.
Effective fault feature extraction and classification methods serve as the foundation for achieving the efficient fault diagnosis of planetary gearboxes. Considering the vibration signals of planetary gearboxes that contain both symmetrical and asymmetrical components, this paper proposes a novel feature extraction method integrating an adaptive multi-bandpass filter (AMBPF) and refined composite multi-scale fuzzy entropy (RCMFE). And a dream optimization algorithm (DOA)–least squares support vector machine (LSSVM) is also proposed for fault classification. Firstly, the AMBPF is proposed, which can effectively and adaptively separate the meshing frequencies, harmonic frequencies, and their sideband frequency information of the planetary gearbox, and is combined with RCMFE for fault feature extraction. Secondly, the DOA is employed to optimize the parameters of the LSSVM, aiming to enhance its classification efficiency. Finally, the fault diagnosis of the planetary gearbox is achieved by the AMBPF, RCMFE, and DOA-LSSVM. The experimental results demonstrate that the proposed method achieves significantly higher diagnostic efficiency and exhibits superior noise immunity in planetary gearbox fault diagnosis. Full article
(This article belongs to the Special Issue Symmetry in Fault Detection and Diagnosis for Dynamic Systems)
Show Figures

Figure 1

30 pages, 13059 KiB  
Article
Verifying the Effects of the Grey Level Co-Occurrence Matrix and Topographic–Hydrologic Features on Automatic Gully Extraction in Dexiang Town, Bayan County, China
by Zhuo Chen and Tao Liu
Remote Sens. 2025, 17(15), 2563; https://doi.org/10.3390/rs17152563 - 23 Jul 2025
Viewed by 188
Abstract
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of [...] Read more.
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of the grey level co-occurrence matrix (GLCM) and topographic–hydrologic features on automatic gully extraction and guide future practices in adjacent regions. To accomplish this, GaoFen-2 (GF-2) satellite imagery and high-resolution digital elevation model (DEM) data were first collected. The GLCM and topographic–hydrologic features were generated, and then, a gully label dataset was built via visual interpretation. Second, the study area was divided into training, testing, and validation areas, and four practices using different feature combinations were conducted. The DeepLabV3+ and ResNet50 architectures were applied to train five models in each practice. Thirdly, the trainset gully intersection over union (IOU), test set gully IOU, receiver operating characteristic curve (ROC), area under the curve (AUC), user’s accuracy, producer’s accuracy, Kappa coefficient, and gully IOU in the validation area were used to assess the performance of the models in each practice. The results show that the validated gully IOU was 0.4299 (±0.0082) when only the red (R), green (G), blue (B), and near-infrared (NIR) bands were applied, and solely combining the topographic–hydrologic features with the RGB and NIR bands significantly improved the performance of the models, which boosted the validated gully IOU to 0.4796 (±0.0146). Nevertheless, solely combining GLCM features with RGB and NIR bands decreased the accuracy, which resulted in the lowest validated gully IOU of 0.3755 (±0.0229). Finally, by employing the full set of RGB and NIR bands, the GLCM and topographic–hydrologic features obtained a validated gully IOU of 0.4762 (±0.0163) and tended to show an equivalent improvement with the combination of topographic–hydrologic features and RGB and NIR bands. A preliminary explanation is that the GLCM captures the local textures of gullies and their backgrounds, and thus introduces ambiguity and noise into the convolutional neural network (CNN). Therefore, the GLCM tends to provide no benefit to automatic gully extraction with CNN-type algorithms, while topographic–hydrologic features, which are also original drivers of gullies, help determine the possible presence of water-origin gullies when optical bands fail to tell the difference between a gully and its confusing background. Full article
Show Figures

Figure 1

Back to TopTop