Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = comb drive actuators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8091 KiB  
Article
An FEM Study on Minimizing Electrostatic Cross-Talk in a Comb Drive Micro Mirror Array
by Andreas Neudert, Peter Duerr and Mario Nitzsche
Micromachines 2024, 15(8), 942; https://doi.org/10.3390/mi15080942 - 24 Jul 2024
Viewed by 2724
Abstract
We are developing a phase-modulating micro mirror-array spatial light modulator to be used for real holography within the EU-funded project REALHOLO, featuring millions of pixels that can be individually positioned in a piston mode at a large frame rate. We found earlier that [...] Read more.
We are developing a phase-modulating micro mirror-array spatial light modulator to be used for real holography within the EU-funded project REALHOLO, featuring millions of pixels that can be individually positioned in a piston mode at a large frame rate. We found earlier that an electrostatic comb-drive array offers the best performance for the actuators: sufficient yoke forces for fast switching even at low voltages compatible with the CMOS addressing backplane. In our first design, the well-known electrostatic cross-talk issue had already been much smaller than would have been possible for parallel-plate actuators, but it was still larger than the precision requirements for high-image-quality holography. In this paper, we report on our analysis of the crucial regions for the electrostatic cross-talk and ways to reduce it while observing manufacturing constraints as well as avoiding excessively high field strengths that might lead to electrical breakdown. Finally, we present a solution that, in FEM simulations, reduces the remaining cross-talk to well below the required specification limit. This solution can be manufactured without any additional processing steps and suffers only a very small reduction of the yoke forces. Full article
Show Figures

Figure 1

3 pages, 1736 KiB  
Abstract
Tilted Triangular Springs with Constant-Force Reaction
by Lisa Schmitt, Philip Schmitt and Martin Hoffmann
Proceedings 2024, 97(1), 222; https://doi.org/10.3390/proceedings2024097222 - 6 Jun 2024
Viewed by 3767
Abstract
Guiding mechanisms are among the most elementary components of in-plane micro-electro-mechanical systems (MEMS). Usually, a spring is desired that is compliant in only one direction and stiff in other directions. We introduce triangular springs with a preset tilting angle. The tilting angle lowers [...] Read more.
Guiding mechanisms are among the most elementary components of in-plane micro-electro-mechanical systems (MEMS). Usually, a spring is desired that is compliant in only one direction and stiff in other directions. We introduce triangular springs with a preset tilting angle. The tilting angle lowers the force reaction in the displacement direction and implements a constant-force reaction whereby the maximum selectivity of the tilted triangular spring is shifted to larger displacements. Thus, the tilted triangular springs can increase the lateral stability of comb-drive actuators. We show tilted triangular springs exhibiting constant forces in a deflection range of about 75 µm to 175 µm. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

11 pages, 8249 KiB  
Article
Highly Selective Tilted Triangular Springs with Constant Force Reaction
by Lisa Schmitt, Philip Schmitt and Martin Hoffmann
Sensors 2024, 24(5), 1677; https://doi.org/10.3390/s24051677 - 5 Mar 2024
Viewed by 1307
Abstract
Guiding mechanisms are among the most elementary components of MEMS. Usually, a spring is required to be compliant in only one direction and stiff in all other directions. We introduce triangular springs with a preset tilting angle. The tilting angle lowers the reaction [...] Read more.
Guiding mechanisms are among the most elementary components of MEMS. Usually, a spring is required to be compliant in only one direction and stiff in all other directions. We introduce triangular springs with a preset tilting angle. The tilting angle lowers the reaction force and implements a constant reaction force. We show the influence of the tilting angle on the reaction force, on the spring stiffness and spring selectivity. Furthermore, we investigate the influence of the different spring geometry parameters on the spring reaction force. We experimentally show tilted triangular springs exhibiting constant force reactions in a large deflection range and a comb-drive actuator guided by tilted triangular springs. Full article
(This article belongs to the Special Issue Eurosensors 2023 Selected Papers)
Show Figures

Figure 1

18 pages, 6450 KiB  
Article
Design and Analysis of Optomechanical Micro-Gyroscope for Angular-Vibration Detection
by Jamal N. A. Hassan, Wenyi Huang, Xing Yan, Senyu Zhang, Dingwei Chen, Guangjun Wen and Yongjun Huang
Photonics 2024, 11(2), 186; https://doi.org/10.3390/photonics11020186 - 18 Feb 2024
Cited by 3 | Viewed by 2996
Abstract
Micro-gyroscopes based on the Coriolis principle are widely employed in inertial navigation, motion control, and vibration analysis applications. Conventional micro-gyroscopes often exhibit limitations, including elevated noise levels and suboptimal performance metrics. Conversely, the advent of cavity optomechanical system technology heralds an innovative approach [...] Read more.
Micro-gyroscopes based on the Coriolis principle are widely employed in inertial navigation, motion control, and vibration analysis applications. Conventional micro-gyroscopes often exhibit limitations, including elevated noise levels and suboptimal performance metrics. Conversely, the advent of cavity optomechanical system technology heralds an innovative approach to micro-gyroscope development. This method enhances the device’s capabilities, offering elevated sensitivity, augmented precision, and superior resolution. This paper presents our main contributions which include a novel dual-frame optomechanical gyroscope, a unique photonic crystal cavity design, and advanced numerical simulation and optimization methods. The proposed design utilizes an optical cavity formed between dual oscillating frames, whereby input rotation induces a measurable phase shift via optomechanical coupling. Actuation of the frames is achieved electrostatically via an interdigitated comb-drive design. Through theoretical modeling based on cavity optomechanics and finite element simulation, the operating principle and performance parameters are evaluated in detail. The results indicate an expected angular rate sensitivity of 22.8 mV/°/s and an angle random walk of 7.1 × 10−5 °/h1/2, representing superior precision to existing micro-electromechanical systems gyroscopes of comparable scale. Detailed analysis of the optomechanical transduction mechanism suggests this dual-frame approach could enable angular vibration detection with resolution exceeding state-of-the-art solutions. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

17 pages, 6081 KiB  
Article
Driving Principle and Stability Analysis of Vertical Comb-Drive Actuator for Scanning Micromirrors
by Yameng Shan, Lei Qian, Junduo Wang, Kewei Wang, Peng Zhou, Wenchao Li and Wenjiang Shen
Micromachines 2024, 15(2), 226; https://doi.org/10.3390/mi15020226 - 31 Jan 2024
Cited by 4 | Viewed by 2790
Abstract
We have developed a manufacturing process for micromirrors based on microelectromechanical systems (MEMS) technology. The process involves designing an electrostatic vertically comb-driven actuator and utilizing a self-alignment process to produce a height difference between the movable comb structure and the fixed comb structure [...] Read more.
We have developed a manufacturing process for micromirrors based on microelectromechanical systems (MEMS) technology. The process involves designing an electrostatic vertically comb-driven actuator and utilizing a self-alignment process to produce a height difference between the movable comb structure and the fixed comb structure of the micromirror. To improve the stability of the micromirror, we propose four instability models in micromirror operation with the quasi-static driving principle and structure of the micromirror considered, which can provide a basic guarantee for the performance of vertical comb actuators. This analysis pinpoints factors leading to instability, including the left and right gap of the movable comb, the torsion beams of the micromirror, and the comb-to-beams distance. Ultimately, the voltages at which device failure occurs can be determined. We successfully fabricated a one-dimensional micromirror featuring a 0.8 mm mirror diameter and a 30 μm device layer thickness. The height difference between the movable and fixed comb structures was 10 μm. The micromirror was able to achieve a static mechanical angle of 2.25° with 60 V@DC. Stable operation was observed at voltages below 60 V, in close agreement with the theoretical calculations and simulations. At the driving voltage of 80 V, we observed the longitudinal displacement movement of the comb fingers. Furthermore, at a voltage of 129 V, comb adhesion occurred, resulting in device failure. This failure voltage corresponds to the lateral torsional failure voltage. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 4813 KiB  
Article
On the Dependency of the Electromechanical Response of Rotary MEMS/NEMS on Their Embedded Flexure Hinges’ Geometry
by Alessio Buzzin, Lorenzo Giannini, Gabriele Bocchetta, Andrea Notargiacomo, Ennio Giovine, Andrea Scorza, Rita Asquini, Giampiero de Cesare and Nicola Pio Belfiore
Micromachines 2023, 14(12), 2229; https://doi.org/10.3390/mi14122229 - 12 Dec 2023
Cited by 6 | Viewed by 1573
Abstract
This paper investigates how the electromechanical response of MEMS/NEMS devices changes when the geometrical characteristics of their embedded flexural hinges are modified. The research is dedicated particularly to MEMS/NEMS devices which are actuated by means of rotary comb-drives. The electromechanical behavior of a [...] Read more.
This paper investigates how the electromechanical response of MEMS/NEMS devices changes when the geometrical characteristics of their embedded flexural hinges are modified. The research is dedicated particularly to MEMS/NEMS devices which are actuated by means of rotary comb-drives. The electromechanical behavior of a chosen rotary device is assessed by studying the rotation of the end effector, the motion of the comb-drive mobile fingers, the actuator’s maximum operating voltage, and the stress sustained by the flexure when the flexure’s shape, length, and width change. The results are compared with the behavior of a standard revolute joint. Outcomes demonstrate that a linear flexible beam cannot perfectly replace the revolute joint as it induces a translation that strongly facilitates the pull-in phenomenon and significantly increases the risk of ruptures of the comb-drives. On the other hand, results show how curved beams provide a motion that better resembles the revolute motion, preserving the structural integrity of the device and avoiding the pull-in phenomenon. Finally, results also show that the end effector motion approaches most precisely the revolute motion when a fine tuning of the beam’s length and width is performed. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

13 pages, 4862 KiB  
Article
A Scale Factor Calibration Method for MEMS Resonant Accelerometers Based on Virtual Accelerations
by Zhaoyang Zhai, Xingyin Xiong, Liangbo Ma, Zheng Wang, Kunfeng Wang, Bowen Wang, Mingjiang Zhang and Xudong Zou
Micromachines 2023, 14(7), 1408; https://doi.org/10.3390/mi14071408 - 12 Jul 2023
Cited by 7 | Viewed by 2668
Abstract
This paper presents a scale factor calibration method based on virtual accelerations generated by electrostatic force. This method uses a series of voltage signals to simulate the inertial forces caused by the acceleration input, rather than frequent and laborious calibrations with high-precision instruments. [...] Read more.
This paper presents a scale factor calibration method based on virtual accelerations generated by electrostatic force. This method uses a series of voltage signals to simulate the inertial forces caused by the acceleration input, rather than frequent and laborious calibrations with high-precision instruments. The error transfer model of this method is systematically analyzed, and the geometrical parameters of this novel micromachined resonant accelerometer (MRA) are optimized. The experimental results demonstrate that, referring to the traditional earth’s gravitational field tumble calibration method, the error of the scale factor calibration is 0.46% within ±1 g by using our method. Moreover, the scale factor is compensated by virtual accelerations. After compensation, the maximum temperature drift of the scale factor decreases from 2.46 Hz/g to 1.02 Hz/g, with a temperature range from 40 °C to 80 °C. Full article
(This article belongs to the Special Issue MEMS Inertial Sensors, 2nd Edition)
Show Figures

Figure 1

22 pages, 23349 KiB  
Article
Non-Inchworm Electrostatic Cooperative Micro-Stepper-Actuator Systems with Long Stroke
by Lisa Schmitt, Peter Conrad, Alexander Kopp, Christoph Ament and Martin Hoffmann
Actuators 2023, 12(4), 150; https://doi.org/10.3390/act12040150 - 30 Mar 2023
Cited by 3 | Viewed by 2478
Abstract
In this paper, we present different microelectromechanical systems based on electrostatic actuators, and demonstrate their capacity to achieve large and stepwise displacements using a cooperative function of the actuators themselves. To explore this, we introduced micro-stepper actuators to our experimental systems, both with [...] Read more.
In this paper, we present different microelectromechanical systems based on electrostatic actuators, and demonstrate their capacity to achieve large and stepwise displacements using a cooperative function of the actuators themselves. To explore this, we introduced micro-stepper actuators to our experimental systems, both with and without a guiding spring mechanism; mechanisms with such guiding springs can be applied to comb-drive and parallel-plate actuators. Our focus was on comparing various guiding spring designs, so as to increase the actuator displacement. In addition, we present systems based on cascaded actuators; these are converted to micromechanical digital-to-analog converters (DAC). With DACs, the number of actuators (and thus the complexity of the digital control) are significantly reduced in comparison to analog stepper-actuators. We also discuss systems that can achieve even larger displacements by using droplet-based bearings placed on an array of aluminum electrodes, rather than guiding springs. By commutating the voltages within these electrode arrays, the droplets follow the activated electrodes, carrying platforms atop themselves as they do so. This process thus introduces new applications for springless large displacement stepper-actuators. Full article
(This article belongs to the Special Issue Cooperative Microactuator Devices and Systems)
Show Figures

Figure 1

13 pages, 3520 KiB  
Article
Demonstration of Heterogeneous Structure for Fabricating a Comb-Drive Actuator for Cryogenic Applications
by Gaopeng Xue, Masaya Toda, Xinghui Li, Bing Li and Takahito Ono
Micromachines 2022, 13(8), 1287; https://doi.org/10.3390/mi13081287 - 11 Aug 2022
Cited by 1 | Viewed by 2392
Abstract
This study presents an experimental demonstration of the motion characteristics of a comb-drive actuator fabricated from heterogeneous structure and applied for cryogenic environments. Here, a silicon wafer is anodically bonded onto a glass substrate, which is considered to be a conventional heterogeneous structure [...] Read more.
This study presents an experimental demonstration of the motion characteristics of a comb-drive actuator fabricated from heterogeneous structure and applied for cryogenic environments. Here, a silicon wafer is anodically bonded onto a glass substrate, which is considered to be a conventional heterogeneous structure and is commonly adopted for fabricating comb-drive actuators owing to the low-cost fabrication. The displacement sensor, also with comb-finger configuration, is utilized to monitor the motion characteristics in real time at low temperatures. The irregular motions, including displacement fluctuation and lateral sticking, are observed at specific low temperatures. This can be attributed to the different thermal expansion coefficients of two materials in the heterogeneous structure, further leading to structural deformation at low temperatures. The support spring in a comb-drive actuator is apt to be deformed because of suspended flexible structures, which affect the stiffness of the support spring and generate irregular yield behavior. The irregular yield behavior at low temperatures can be constrained by enhancing the stiffness of the support spring. Finally, we reveal that there are limited applications of the heterogeneous-structure-based comb-drive actuator in cryogenic environments, and simultaneously point out that the material substrate of silicon on the insulator is replaceable based on the homogeneous structure with a thin SiO2 layer. Full article
Show Figures

Figure 1

12 pages, 2195 KiB  
Article
Realization of Three-Dimensionally MEMS Stacked Comb Structures for Microactuators Using Low-Temperature Multi-Wafer Bonding with Self-Alignment Techniques in CMOS-Compatible Processes
by Adrian J. T. Teo and King Ho Holden Li
Micromachines 2021, 12(12), 1481; https://doi.org/10.3390/mi12121481 - 29 Nov 2021
Cited by 4 | Viewed by 3559
Abstract
A high-aspect-ratio three-dimensionally (3D) stacked comb structure for micromirror application is demonstrated by wafer bonding technology in CMOS-compatible processes in this work. A vertically stacked comb structure is designed to circumvent any misalignment issues that could arise from multiple wafer bonding. These out-of-plane [...] Read more.
A high-aspect-ratio three-dimensionally (3D) stacked comb structure for micromirror application is demonstrated by wafer bonding technology in CMOS-compatible processes in this work. A vertically stacked comb structure is designed to circumvent any misalignment issues that could arise from multiple wafer bonding. These out-of-plane comb drives are used for the bias actuation to achieve a larger tilt angle for micromirrors. The high-aspect-ratio mechanical structure is realized by the deep reactive ion etching of silicon, and the notching effect in silicon-on-insulator (SOI) wafers is minimized. The low-temperature bonding of two patterned wafers is achieved with fusion bonding, and a high bond strength up to 2.5 J/m2 is obtained, which sustains subsequent processing steps. Furthermore, the dependency of resonant frequency on device dimensions is studied systematically, which provides useful guidelines for future design and application. A finalized device fabricated here was also tested to have a resonant frequency of 17.57 kHz and a tilt angle of 70° under an AC bias voltage of 2 V. Full article
(This article belongs to the Special Issue Top-Down Micro- or Nanofabrication and Its Applications)
Show Figures

Figure 1

18 pages, 107169 KiB  
Article
Design and Dynamic Modeling of a 3-RPS Compliant Parallel Robot Driven by Voice Coil Actuators
by Chuchao Wang, Shizhou Lu, Caiyi Zhang, Jun Gao, Bin Zhang and Shu Wang
Micromachines 2021, 12(12), 1442; https://doi.org/10.3390/mi12121442 - 25 Nov 2021
Cited by 6 | Viewed by 3494
Abstract
In order to increase the driving force of the voice coil actuator while reducing its size and mass, the structural parameters of the coil and magnet in the actuator are optimized by combing Biot–Savart law with Lagrangian interpolation. A 30 mm × 30 [...] Read more.
In order to increase the driving force of the voice coil actuator while reducing its size and mass, the structural parameters of the coil and magnet in the actuator are optimized by combing Biot–Savart law with Lagrangian interpolation. A 30 mm × 30 mm × 42 mm robot based on a 3-RPS parallel mechanism driven by voice coil actuators is designed. The Lagrangian dynamic equation of the robot is established, and the mapping relationship between the driving force and the end pose is explored. The results of dynamic analysis are simulated and verified by the ADAMS software. The mapping relationship between the input current and the end pose is concluded by taking the driving force as the intermediate variable. The robot can bear a load of 10 g. The maximum axial displacement of the robot can reach 9 mm, and the maximum pitch angle and return angle can reach 40 and 35 degrees, respectively. The robot can accomplish forward movement through vibration, and the maximum average velocity can reach 4.1 mm/s. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

21 pages, 16099 KiB  
Article
Design, Fabrication, Testing and Simulation of a Rotary Double Comb Drives Actuated Microgripper
by Nicola Pio Belfiore, Alvise Bagolini, Andrea Rossi, Gabriele Bocchetta, Federica Vurchio, Rocco Crescenzi, Andrea Scorza, Pierluigi Bellutti and Salvatore Andrea Sciuto
Micromachines 2021, 12(10), 1263; https://doi.org/10.3390/mi12101263 - 17 Oct 2021
Cited by 22 | Viewed by 2987
Abstract
This paper presents the development of a new microgripper actuated by means of rotary-comb drives equipped with two cooperating fingers arrays. The microsystem presents eight CSFH flexures (Conjugate Surface Flexure Hinge) that allow the designer to assign a prescribed motion to the gripping [...] Read more.
This paper presents the development of a new microgripper actuated by means of rotary-comb drives equipped with two cooperating fingers arrays. The microsystem presents eight CSFH flexures (Conjugate Surface Flexure Hinge) that allow the designer to assign a prescribed motion to the gripping tips. In fact, the adoption of multiple CSFHs gives rise to the possibility of embedding quite a complex mechanical structure and, therefore, increasing the number of design parameters. For the case under study, a double four-bar linkage in a mirroring configuration was adopted. The presented microgripper has been fabricated by using a hard metal mask on a Silicon-on-Insulator (SOI) wafer, subject to DRIE (Deep Reactive Ion Etching) process, with a vapor releasing final stage. Some prototypes have been obtained and then tested in a lab. Finally, the experimental results have been used in order to assess simulation tools that can be used to minimize the amount of expensive equipment in operational environments. Full article
(This article belongs to the Special Issue Microgrippers)
Show Figures

Figure 1

13 pages, 11187 KiB  
Article
Design and Characterization of an Electrostatic Constant-Force Actuator Based on a Non-Linear Spring System
by Anna Christina Thewes, Philip Schmitt, Philipp Löhler and Martin Hoffmann
Actuators 2021, 10(8), 192; https://doi.org/10.3390/act10080192 - 11 Aug 2021
Cited by 7 | Viewed by 3871
Abstract
In recent years, tissue engineering with mechanical stimulation has received considerable attention. In order to manipulate tissue samples, there is a need for electromechanical devices, such as constant-force actuators, with integrated deflection measurement. In this paper, we present an electrostatic constant-force actuator allowing [...] Read more.
In recent years, tissue engineering with mechanical stimulation has received considerable attention. In order to manipulate tissue samples, there is a need for electromechanical devices, such as constant-force actuators, with integrated deflection measurement. In this paper, we present an electrostatic constant-force actuator allowing the generation of a constant force and a simultaneous displacement measurement intended for tissue characterization. The system combines a comb drive structure and a constant-force spring system. A theoretical overview of both subsystems, as well as actual measurements of a demonstrator system, are provided. Based on the silicon-on-insulator technology, the fabrication process of a moveable system with an extending measurement tip is shown. Additionally, we compare measurement results with simulations. Our demonstrator reaches a constant-force of 79 ± 2 μN at an operating voltage of 25 V over a displacement range of approximately 40 μm, and the possibility of adjusting the constant-force by changing the voltage is demonstrated. Full article
(This article belongs to the Special Issue Cooperative Microactuator Systems)
Show Figures

Figure 1

14 pages, 5756 KiB  
Article
Development of an Electrostatic Comb-Driven MEMS Scanning Mirror for Two-Dimensional Raster Scanning
by Qiang Wang, Weimin Wang, Xuye Zhuang, Chongxi Zhou and Bin Fan
Micromachines 2021, 12(4), 378; https://doi.org/10.3390/mi12040378 - 1 Apr 2021
Cited by 20 | Viewed by 3999
Abstract
Microelectromechanical System (MEMS)-based scanning mirrors are important optical devices that have been employed in many fields as a low-cost and miniaturized solution. In recent years, the rapid development of Light Detection and Ranging (LiDAR) has led to opportunities and challenges for MEMS scanners. [...] Read more.
Microelectromechanical System (MEMS)-based scanning mirrors are important optical devices that have been employed in many fields as a low-cost and miniaturized solution. In recent years, the rapid development of Light Detection and Ranging (LiDAR) has led to opportunities and challenges for MEMS scanners. In this work, we propose a 2D electrostatically actuated micro raster scanner with relatively large aperture. The 2D scanner combines a resonant scanning axis driven by an in-plane comb and a quasistatic scanning axis driven by a vertical comb, which is achieved by raising the moving comb finger above the fixed comb finger through the residual stress gradient. The analytic formula for the resonant axis frequency, based on the mechanical coupling of two oscillation modes, is derived and compared with finite element simulation. A prototype is designed, fabricated, and tested, and an overall optical Field-of-View (FoV) of about 60° × 4° is achieved. Finally, some possibilities for further improvement or optimization are discussed. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 8349 KiB  
Article
Position Estimator Design for a MEMS Top-Drive Electrostatic Rotary Actuator
by Jemin Woo, Bongsu Hahn and Changsun Ahn
Sensors 2020, 20(24), 7081; https://doi.org/10.3390/s20247081 - 10 Dec 2020
Cited by 2 | Viewed by 3844
Abstract
The capacitance and rotor angle of a MEMS top-drive electrostatic rotary actuator do not have a linear relationship due to the non-ignorable fringe effect and low aspect ratio of the electrodes. Therefore, the position estimation is not as straightforward as that for a [...] Read more.
The capacitance and rotor angle of a MEMS top-drive electrostatic rotary actuator do not have a linear relationship due to the non-ignorable fringe effect and low aspect ratio of the electrodes. Therefore, the position estimation is not as straightforward as that for a comb-drive linear actuator or a side-drive rotary actuator. The reason is that the capacitance is a nonlinear and periodic function of the rotor angle and is affected by the three-phase input voltages. Therefore, it cannot be approximated as a simple two-plate capacitor. Sensing the capacitance between a rotor and a stator is another challenge. The capacitance can be measured in the electrodes (stators), but the electrodes also have to perform actuation, so a method is needed to combine actuation and sensing. In this study, a nonlinear capacitance model was derived as a data-driven model that effectively represents the nonlinear capacitance with sufficient accuracy. To measure the capacitance accurately, the stator parts for actuation and those for sensing are separated. Using the nonlinear model and the capacitance measurement, an unscented Kalman filter was designed to mitigate the large estimation error due to the periodic nonlinearity. The proposed method shows stable and accurate estimation that cannot be achieved with a simple two-plate capacitor model. The proposed approach can be applied to a similar system with highly nonlinear capacitance. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop