Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = colony-stimulating factor 1 receptor inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4310 KiB  
Article
Evaluating Triazole-Substituted Pyrrolopyrimidines as CSF1R Inhibitors
by Srinivasulu Cherukupalli, Jan Eickhoff, Carsten Degenhart, Peter Habenberger, Anke Unger, Bård Helge Hoff and Eirik Sundby
Molecules 2025, 30(12), 2641; https://doi.org/10.3390/molecules30122641 - 18 Jun 2025
Viewed by 684
Abstract
6-Aryl-7H-pyrrolo[2,3-d]pyrimidin-4-amines have promising properties as colony-stimulating factor 1 receptor (CSF1R) inhibitors. Inspired by these antagonists, two series of 1,2,3-triazole analogues (28 compounds) were synthesized and evaluated as CSF1R inhibitors. Enzymatic IC50 profiling showed that 27 of the 28 [...] Read more.
6-Aryl-7H-pyrrolo[2,3-d]pyrimidin-4-amines have promising properties as colony-stimulating factor 1 receptor (CSF1R) inhibitors. Inspired by these antagonists, two series of 1,2,3-triazole analogues (28 compounds) were synthesized and evaluated as CSF1R inhibitors. Enzymatic IC50 profiling showed that 27 of the 28 derivatives had lower IC50 than the reference drug PLX-3397. Three derivatives displayed CSF1R Ba/F3 cellular IC50 well below 1 µM. Profiling of the most promising triazole analogue (compound 27a) toward a panel of kinases reveals a high selectivity for CSF1R with respect to its family kinases, but 27a also inhibits ABL, SRC, and YES kinases. Molecular docking of 27a toward two CSF1R X-ray structures identified two different ligand-inverted binding poses, which triggers interest for further investigations. Full article
Show Figures

Graphical abstract

19 pages, 1401 KiB  
Article
Design and Synthesis of Pyridine-Based Pyrrolo[2,3-d]pyrimidine Analogs as CSF1R Inhibitors: Molecular Hybridization and Scaffold Hopping Approach
by Srinivasulu Cherukupalli, Carsten Degenhart, Peter Habenberger, Anke Unger, Jan Eickhoff, Bård Helge Hoff and Eirik Sundby
Pharmaceuticals 2025, 18(6), 814; https://doi.org/10.3390/ph18060814 - 28 May 2025
Viewed by 1586
Abstract
Background/Objectives: Colony stimulating factor 1 receptor kinase (CSF1R) is a well-validated molecular target in drug discovery for various reasons. Based on the structure of an early lead molecule identified in our lab and the marketed drug Pexidartinib (PLX3397), we merged fragments of [...] Read more.
Background/Objectives: Colony stimulating factor 1 receptor kinase (CSF1R) is a well-validated molecular target in drug discovery for various reasons. Based on the structure of an early lead molecule identified in our lab and the marketed drug Pexidartinib (PLX3397), we merged fragments of Pexidartinib with our pyrrolo[2,3-d]pyrimidine nucleus, and the idea was supported by initial molecular docking studies. Thus, several new compounds were synthesized with Pexidartinib fragments on C4, C5, and C6 on the pyrrolopyrimidine scaffold using molecular hybridization. Methods: Nine final products were synthesized using a combination of Buchwald-Hartwig and Suzuki-Miyaura cross-coupling reactions in three to four steps and in good yields. The analogues were subsequently profiled as CSF1R inhibitors in enzymatic and cellular assays, and ADME properties were evaluated for some derivatives. Results: N-Methyl-N-(3-methylbenzyl)-6-(6-((pyridin-3-ylmethyl)amino)pyridin-3-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (12b) emerged as the most potent CSF1R inhibitor, showing low-nanomolar enzymatic activity, cellular efficacy, and favorable ADME properties, highlighting its promise as a lead compound for further development. Conclusions: These findings suggest that combining structural elements from previously reported CSF1R inhibitors such as Pexidartinib could guide the development of improved drug candidates targeting this kinase. Full article
(This article belongs to the Special Issue Design and Synthesis of Small Molecule Kinase Inhibitors)
Show Figures

Graphical abstract

15 pages, 7382 KiB  
Article
Pharmacological Inhibition of Microglial Proliferation Supports Blood–Brain Barrier Integrity in Experimental Autoimmune Encephalomyelitis
by Nozha Borjini, Mercedes Fernandez, Luciana Giardino, Lydia Sorokin and Laura Calzà
Cells 2025, 14(6), 414; https://doi.org/10.3390/cells14060414 - 12 Mar 2025
Cited by 1 | Viewed by 1066
Abstract
Blood–brain barrier dysfunction (BBB) is a primary characteristic of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). We have previously shown that blocking microglial proliferation using GW2580, a selective inhibitor of CSF1R (Colony stimulating factor 1 receptor), reduced disease progression [...] Read more.
Blood–brain barrier dysfunction (BBB) is a primary characteristic of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). We have previously shown that blocking microglial proliferation using GW2580, a selective inhibitor of CSF1R (Colony stimulating factor 1 receptor), reduced disease progression and severity and prevented the relapse phase. However, whether this was due to effects of GW2580 on the functional integrity of the BBB was not determined. Therefore, here, we examine BBB properties in rats during EAE under GW2580 treatment. Our data suggest that blocking early microglial proliferation through selective targeting of CSF1R signaling has a therapeutic effect in EAE by protecting BBB integrity and reducing peripheral immune cell infiltration. Taken together, our results identify a novel mechanism underlying the effects of GW2580, which could offer a novel therapy for MS. Full article
(This article belongs to the Special Issue Emerging Roles of Glial Cells in Human Health and Disease)
Show Figures

Graphical abstract

14 pages, 1059 KiB  
Article
Bombesin Receptor Subtype-3 Regulates Tumor Growth by HER2 Tyrosine Phosphorylation in a Reactive Oxygen Species-Dependent Manner in Lung Cancer Cells
by Terry W. Moody, Irene Ramos-Alvarez, Samuel A. Mantey and Robert T. Jensen
Targets 2025, 3(1), 7; https://doi.org/10.3390/targets3010007 - 20 Feb 2025
Viewed by 881
Abstract
Bombesin receptor subtype-3 (BRS-3) is a type 1 G-protein-coupled receptor (GPCR). BRS-3 is an orphan GPCR that is structurally related to neuromedin B and gastrin-releasing peptide receptors. When activated, BRS-3 causes phosphatidylinositol turnover in lung cancer cells. BRS-3 stimulates tyrosine the phosphorylation of [...] Read more.
Bombesin receptor subtype-3 (BRS-3) is a type 1 G-protein-coupled receptor (GPCR). BRS-3 is an orphan GPCR that is structurally related to neuromedin B and gastrin-releasing peptide receptors. When activated, BRS-3 causes phosphatidylinositol turnover in lung cancer cells. BRS-3 stimulates tyrosine the phosphorylation of the epidermal growth-factor receptor (ErbB1); however, it is unknown whether it transactivates ErbB2/HER2. Adding the nonpeptide BRS-3 allosteric agonist MK-5046 or the peptide agonist BA1 to the lung cancer cell line NCI-H727 or to BRS-3-transfected NCI-H1299 lung cancer cells increased the tyrosine phosphorylation of HER2/ERK2. This increase was antagonized by the BRS-3 peptide antagonist Bantag-1 and the small-molecule BRS-3 antagonist ML-18. The increase in HER2/ERK phosphorylation caused by MK-5046 was inhibited by the ROS inhibitors N-acetylcysteine and Tiron (superoxide scavengers). Adding MK-5046 to lung cancer cells increased reactive oxygen species, which was inhibited by NAC or Tiron. MK-5046 and BA1 increased non-small lung cancer cell (NSCLC) colony formation, whereas Bantag-1/ML-18 inhibited proliferation. These results indicate that in lung cancer cells, the activation of BRS-3 regulates HER2 transactivation in an ROS-dependent manner, which can mediate tumor growth. These results raise the possibility that the use of HER2-inhibiting compounds alone or in combination with other agents could represent a novel approach to the treatment of these tumors. Full article
Show Figures

Figure 1

17 pages, 2391 KiB  
Article
Synthetic Routes to 2-aryl-1H-pyrrolo[2,3-b]pyridin-4-amines: Cross-Coupling and Challenges in SEM-Deprotection
by Srinivas Reddy Merugu, Sigrid Selmer-Olsen, Camilla Johansen Kaada, Eirik Sundby and Bård Helge Hoff
Molecules 2024, 29(19), 4743; https://doi.org/10.3390/molecules29194743 - 7 Oct 2024
Viewed by 2318
Abstract
7-Azaindoles are compounds of considerable medicinal interest. During development of the structure–activity relationship for inhibitors of the colony stimulated factor 1 receptor tyrosine kinase (CSF1R), a specific 2-aryl-1H-pyrrolo[2,3-b]pyridin-4-amine was needed. Two different synthetic strategies were evaluated, in which the [...] Read more.
7-Azaindoles are compounds of considerable medicinal interest. During development of the structure–activity relationship for inhibitors of the colony stimulated factor 1 receptor tyrosine kinase (CSF1R), a specific 2-aryl-1H-pyrrolo[2,3-b]pyridin-4-amine was needed. Two different synthetic strategies were evaluated, in which the order of the key C-C and C-N cross-coupling steps differed. The best route relied on a chemoselective Suzuki–Miyaura cross-coupling at C-2 on a 2-iodo-4-chloropyrrolopyridine intermediate, and subsequently a Buchwald–Hartwig amination with a secondary amine at C-4. Masking of hydroxyl and pyrroles proved essential to succeed with the latter transformation. The final trimethylsilylethoxymethyl (SEM) deprotection step was challenging, as release of formaldehyde gave rise to different side products, most interestingly a tricyclic eight-membered 7-azaindole. The target 2-aryl-1H-pyrrolo[2,3-b]pyridin-4-amine (compound 3c) proved to be 20-fold less potent than the reference inhibitor, confirming the importance of the N-3 in the pyrrolopyrimidine parent compound for efficient CSF1R inhibition. Full article
Show Figures

Graphical abstract

13 pages, 1024 KiB  
Review
The Role of Rosavin in the Pathophysiology of Bone Metabolism
by Piotr Wojdasiewicz, Paweł Turczyn, Anna Lach-Gruba, Łukasz A. Poniatowski, Daryush Purrahman, Mohammad-Reza Mahmoudian-Sani and Dariusz Szukiewicz
Int. J. Mol. Sci. 2024, 25(4), 2117; https://doi.org/10.3390/ijms25042117 - 9 Feb 2024
Cited by 10 | Viewed by 4976
Abstract
Rosavin, a phenylpropanoid in Rhodiola rosea’s rhizome, and an adaptogen, is known for enhancing the body’s response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin [...] Read more.
Rosavin, a phenylpropanoid in Rhodiola rosea’s rhizome, and an adaptogen, is known for enhancing the body’s response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin ring formation, and reduces the expression of osteoclastogenesis-related genes such as cathepsin K, calcitonin receptor (CTR), tumor necrosis factor receptor-associated factor 6 (TRAF6), tartrate-resistant acid phosphatase (TRAP), and matrix metallopeptidase 9 (MMP-9). It also impedes the nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), c-Fos, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways and blocks phosphorylation processes crucial for bone resorption. Moreover, rosavin promotes osteogenesis and osteoblast differentiation and increases mouse runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) expression. In vivo studies show its effectiveness in enhancing bone mineral density (BMD) in postmenopausal osteoporosis (PMOP) mice, restraining osteoclast maturation, and increasing the active osteoblast percentage in bone tissue. It modulates mRNA expressions by increasing eukaryotic translation elongation factor 2 (EEF2) and decreasing histone deacetylase 1 (HDAC1), thereby activating osteoprotective epigenetic mechanisms, and alters many serum markers, including decreasing cross-linked C-telopeptide of type I collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRACP5b), receptor activator for nuclear factor κ B ligand (RANKL), macrophage-colony-stimulating factor (M-CSF), and TRAP, while increasing alkaline phosphatase (ALP) and OCN. Additionally, when combined with zinc and probiotics, it reduces pro-osteoporotic matrix metallopeptidase 3 (MMP-3), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α), and enhances anti-osteoporotic interleukin 10 (IL-10) and tissue inhibitor of metalloproteinase 3 (TIMP3) expressions. This paper aims to systematically review rosavin’s impact on bone tissue metabolism, exploring its potential in osteoporosis prevention and treatment, and suggesting future research directions. Full article
Show Figures

Figure 1

23 pages, 26979 KiB  
Review
Diffuse-Type Tenosynovial Giant Cell Tumor: What Are the Important Findings on the Initial and Follow-Up MRI?
by Woo Suk Choi, Seul Ki Lee, Jee-Young Kim and Yuri Kim
Cancers 2024, 16(2), 402; https://doi.org/10.3390/cancers16020402 - 17 Jan 2024
Cited by 7 | Viewed by 5911
Abstract
Tenosynovial giant cell tumor (TSGCT) is a rare soft tissue tumor that involves the synovial lining of joints, bursae, and tendon sheaths, primarily affecting young patients (usually in the fourth decade of life). The tumor comprises two subtypes: the localized type (L-TSGCT) and [...] Read more.
Tenosynovial giant cell tumor (TSGCT) is a rare soft tissue tumor that involves the synovial lining of joints, bursae, and tendon sheaths, primarily affecting young patients (usually in the fourth decade of life). The tumor comprises two subtypes: the localized type (L-TSGCT) and the diffuse type (D-TSGCT). Although these subtypes share histological and genetic similarities, they present a different prognosis. D-TSGCT tends to exhibit local aggressiveness and a higher recurrence rate compared to L-TSGCT. Magnetic resonance imaging (MRI) is the preferred diagnostic tool for both the initial diagnosis and for treatment planning. When interpreting the initial MRI of a suspected TSGCT, it is essential to consider: (i) the characteristic findings of TSGCT—evident as low to intermediate signal intensity on both T1- and T2-weighted images, with a blooming artifact on gradient-echo sequences due to hemosiderin deposition; (ii) the possibility of D-TSGCT—extensive involvement of the synovial membrane with infiltrative margin; and (iii) the resectability and extent—if resectable, synovectomy is performed; if not, a novel systemic therapy involving colony-stimulating factor 1 receptor inhibitors is administered. In the interpretation of follow-up MRIs of D-TSGCTs after treatment, it is crucial to consider both tumor recurrence and potential complications such as osteoarthritis after surgery as well as the treatment response after systemic treatment. Given its prevalence in young adult patents and significant impact on patients’ quality of life, clinical trials exploring new agents targeting D-TSGCT are currently underway. Consequently, understanding the characteristic MRI findings of D-TSGCT before and after treatment is imperative. Full article
(This article belongs to the Special Issue Advances in Bone Tumor and Sarcoma)
Show Figures

Figure 1

13 pages, 2097 KiB  
Review
CSF-1R in Cancer: More than a Myeloid Cell Receptor
by Francesca Cersosimo, Silvia Lonardi, Cristina Ulivieri, Paolo Martini, Andrea Morrione, William Vermi, Antonio Giordano and Emanuele Giurisato
Cancers 2024, 16(2), 282; https://doi.org/10.3390/cancers16020282 - 9 Jan 2024
Cited by 17 | Viewed by 4581
Abstract
Colony-stimulating factor 1 receptor (CFS-1R) is a myeloid receptor with a crucial role in monocyte survival and differentiation. Its overexpression is associated with aggressive tumors characterized by an immunosuppressive microenvironment and poor prognosis. CSF-1R ligands, IL-34 and M-CSF, are produced by many cells [...] Read more.
Colony-stimulating factor 1 receptor (CFS-1R) is a myeloid receptor with a crucial role in monocyte survival and differentiation. Its overexpression is associated with aggressive tumors characterized by an immunosuppressive microenvironment and poor prognosis. CSF-1R ligands, IL-34 and M-CSF, are produced by many cells in the tumor microenvironment (TME), suggesting a key role for the receptor in the crosstalk between tumor, immune and stromal cells in the TME. Recently, CSF-1R expression was reported in the cell membrane of the cancer cells of different solid tumors, capturing the interest of various research groups interested in investigating the role of this receptor in non-myeloid cells. This review summarizes the current data available on the expression and activity of CSF-1R in different tumor types. Notably, CSF-1R+ cancer cells have been shown to produce CSF-1R ligands, indicating that CSF-1R signaling is positively regulated in an autocrine manner in cancer cells. Recent research demonstrated that CSF-1R signaling enhances cell transformation by supporting tumor cell proliferation, invasion, stemness and drug resistance. In addition, this review covers recent therapeutic strategies, including monoclonal antibodies and small-molecule inhibitors, targeting the CSF-1R and designed to block the pro-oncogenic role of CSF-1R in cancer cells. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

20 pages, 4179 KiB  
Article
CXCR2-Blocking Has Context-Sensitive Effects on Rat Glioblastoma Cell Line Outgrowth (S635) in an Organotypic Rat Brain Slice Culture Depending on Microglia-Depletion (PLX5622) and Dexamethasone Treatment
by Johannes Falter, Annette Lohmeier, Petra Eberl, Eva-Maria Stoerr, Janne Koskimäki, Lena Falter, Jakob Rossmann, Tobias Mederer, Nils Ole Schmidt and Martin Proescholdt
Int. J. Mol. Sci. 2023, 24(23), 16803; https://doi.org/10.3390/ijms242316803 - 27 Nov 2023
Cited by 2 | Viewed by 1734
Abstract
In glioblastoma (GBM), the interplay of different immune cell subtypes, cytokines, and/or drugs shows high context-dependencies. Interrelations between the routinely applied dexamethasone (Dex) and microglia remain elusive. Here, we exploited rat organotypic brain slice co-cultures (OBSC) to examine the effects on a rat [...] Read more.
In glioblastoma (GBM), the interplay of different immune cell subtypes, cytokines, and/or drugs shows high context-dependencies. Interrelations between the routinely applied dexamethasone (Dex) and microglia remain elusive. Here, we exploited rat organotypic brain slice co-cultures (OBSC) to examine the effects on a rat GBM cell line (S635) outgrowth resulting from the presence of Dex and pretreatment with the colony-stimulating factor receptor 1 (CSF1-R) inhibitor PLX5622: in native OBSC (without PLX5622-pretreatment), a diminished S635 spheroid outgrowth was observable, whereas Dex-treatment enhanced outgrowth in this condition compared to PLX5622-pretreated OBSC. Screening the supernatants of our model with a proteome profiler, we found that CXCL2 was differentially secreted in a Dex- and PLX5622-dependent fashion. To analyze causal interrelations, we interrupted the CXCL2/CXCR2-axis: in the native OBSC condition, CXCR2-blocking resulted in increased outgrowth, in combination with Dex, we found potentiated outgrowth. No effect was found in the PLX5622-pretreated. Our method allowed us to study the influence of three different factors—dexamethasone, PLX5622, and CXCL2—in a well-controlled, simplified, and straight-forward mechanistic manner, and at the same time in a more realistic ex vivo scenario compared to in vitro studies. In our model, we showed a GBM outgrowth enhancing synergism between CXCR2-blocking and Dex-treatment in the native condition, which was levelled by PLX5622-pretreatment. Full article
Show Figures

Figure 1

11 pages, 2215 KiB  
Article
Bone Morphogenetic Protein 13 Has Protumorigenic Effects on Hepatocellular Carcinoma Cells In Vitro
by Vanessa Kersten, Tatjana Seitz, Judith Sommer, Wolfgang E. Thasler, Anja Bosserhoff and Claus Hellerbrand
Int. J. Mol. Sci. 2023, 24(13), 11059; https://doi.org/10.3390/ijms241311059 - 4 Jul 2023
Cited by 1 | Viewed by 2296
Abstract
Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrosis and, thus, build the “soil” for hepatocarcinogenesis. Furthermore, HSCs are known to promote the progression of hepatocellular carcinoma (HCC), but the molecular mechanisms are only incompletely understood. Recently, we newly described [...] Read more.
Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrosis and, thus, build the “soil” for hepatocarcinogenesis. Furthermore, HSCs are known to promote the progression of hepatocellular carcinoma (HCC), but the molecular mechanisms are only incompletely understood. Recently, we newly described the expression of bone morphogenetic protein 13 (BMP13) by HSCs in fibrotic liver tissue. In addition, BMP13 has mostly been studied in the context of cartilage and bone repair, but not in liver disease or cancer. Thus, we aimed to analyze the expression and function of BMP13 in HCC. Expression analyses revealed high BMP13-expression in activated human HSCs, but not in human HCC-cell-lines. Furthermore, analysis of human HCC tissues showed a significant correlation between BMP13 and α-smooth muscle actin (α-SMA), and immunofluorescence staining confirmed the co-localization of BMP13 and α-SMA, indicating activated HSCs as the cellular source of BMP13 in HCC. Stimulation of HCC cells with recombinant BMP13 increased the expression of the inhibitors of differentiation 1 (ID1) and 2 (ID2), which are known targets of BMP-signaling and cell-cycle promotors. In line with this, BMP13-stimulation caused an induced SMAD 1/5/9 and extracellular signal-regulated kinase (ERK) phosphorylation, as well as reduced expression of cyclin-dependent kinase inhibitors 1A (CDKN1A) and 2A (CDKN2A). Furthermore, stimulation with recombinant BMP13 led to increased proliferation and colony size formation of HCC cells in clonogenicity assays. The protumorigenic effects of BMP13 on HCC cells were almost completely abrogated by the small molecule dorsomorphin 1 (DMH1), which selectively blocks the intracellular kinase domain of ALK2 and ALK3, indicating that BMP13 acts via these BMP type I receptors on HCC cells. In summary, this study newly identifies stroma-derived BMP13 as a potential new tumor promotor in HCC and indicates this secreted growth-factor as a possible novel therapeutic target in HCC. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Liver Cancer)
Show Figures

Figure 1

20 pages, 4965 KiB  
Article
A Novel Selective Axl/Mer/CSF1R Kinase Inhibitor as a Cancer Immunotherapeutic Agent Targeting Both Immune and Tumor Cells in the Tumor Microenvironment
by Yeejin Jeon, Hwankyu Kang, Yeongin Yang, Dongsik Park, Baejung Choi, Jeongjun Kim, Jaeseung Kim and Kiyean Nam
Cancers 2022, 14(19), 4821; https://doi.org/10.3390/cancers14194821 - 2 Oct 2022
Cited by 14 | Viewed by 4310
Abstract
Although immune checkpoint blockade (ICB) represents a major breakthrough in cancer immunotherapy, only a limited number of patients with cancer benefit from ICB-based immunotherapy because most immune checkpoint inhibitors (ICIs) target only T cell activation. Therefore, targeting non-T cell components in the tumor [...] Read more.
Although immune checkpoint blockade (ICB) represents a major breakthrough in cancer immunotherapy, only a limited number of patients with cancer benefit from ICB-based immunotherapy because most immune checkpoint inhibitors (ICIs) target only T cell activation. Therefore, targeting non-T cell components in the tumor microenvironment (TME) can help subvert resistance and increase the applications of ICB-based therapy. Axl and Mer are involved in the carcinogenesis of multiple types of cancer by modulating immune and biological behaviors within tumors. Colony stimulating factor 1 receptor (CSF1R) mediates tumorigenesis in the TME by enhancing tumor associated macrophage (TAM) and myeloid-derived suppressor cell (MDSC) infiltration, facilitating immune escape. Therefore, the simultaneous inhibition of Axl, Mer, and CSF1R kinases may improve therapeutic efficacy by targeting non-T cell components in the TME. Here, we present Q702, a selective, potent small molecule inhibitor targeting Axl, Mer, and CSF1R, for oral administration. Q702 induced antitumor activity in syngeneic tumor mouse models by: remodeling the TME toward immune stimulation; expanding M1 macrophage and CD8 T cell populations and decreasing M2 macrophage and MDSC populations in the TME; and increasing MHC class I and E-cadherin expression in tumor cells. Thus, Q702 may have great potential to broaden the coverage of populations benefiting from ICB-based immunotherapy. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

14 pages, 3536 KiB  
Brief Report
Microglia Depletion from Primary Glial Cultures Enables to Accurately Address the Immune Response of Astrocytes
by Mariana Van Zeller, Ana M. Sebastião and Cláudia A. Valente
Biomolecules 2022, 12(5), 666; https://doi.org/10.3390/biom12050666 - 4 May 2022
Cited by 10 | Viewed by 3960
Abstract
Astrocytes are the most abundant cells in the CNS parenchyma and play an essential role in several brain functions, such as the fine-tuning of synaptic transmission, glutamate uptake and the modulation of immune responses, among others. Much of the knowledge on the biology [...] Read more.
Astrocytes are the most abundant cells in the CNS parenchyma and play an essential role in several brain functions, such as the fine-tuning of synaptic transmission, glutamate uptake and the modulation of immune responses, among others. Much of the knowledge on the biology of astrocytes has come from the study of rodent primary astrocytic cultures. Usually, the culture is a mixed population of astrocytes and a small proportion of microglia. However, it is critical to have a pure culture of astrocytes if one wants to address their inflammatory response. If present, microglia sense the stimulus, rapidly proliferate and react to it, making it unfeasible to assess the individual responsiveness of astrocytes. Microglia have been efficiently eliminated in vivo through PLX-3397, a colony-stimulating factor-1 receptor (CSF-1R) inhibitor. In this work, the effectiveness of PLX-3397 in eradicating microglia from primary mixed glial cultures was evaluated. We tested three concentrations of PLX-3397—0.2 μM, 1 μM and 5 μM—and addressed its impact on the culture yield and viability of astrocytes. PLX-3397 is highly efficient in eliminating microglia without affecting the viability or response of cultured astrocytes. Thus, these highly enriched monolayers of astrocytes allow for the more accurate study of their immune response in disease conditions. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

15 pages, 2650 KiB  
Article
Synthesis and Evaluation of a 18F-Labeled Ligand for PET Imaging of Colony-Stimulating Factor 1 Receptor
by Hyeokjin Lee, Ji-Hun Park, Hyunjung Kim, Sang-keun Woo, Joon Young Choi, Kyung-Han Lee and Yearn Seong Choe
Pharmaceuticals 2022, 15(3), 276; https://doi.org/10.3390/ph15030276 - 23 Feb 2022
Cited by 14 | Viewed by 3792
Abstract
Neuroinflammation involves activation of glial cells in the brain, and activated microglia play a particularly important role in neurodegenerative diseases such as Alzheimer’s disease (AD). In this study, we developed 5-cyano-N-(4-(4-(2-[18F]fluoroethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]1) for PET imaging [...] Read more.
Neuroinflammation involves activation of glial cells in the brain, and activated microglia play a particularly important role in neurodegenerative diseases such as Alzheimer’s disease (AD). In this study, we developed 5-cyano-N-(4-(4-(2-[18F]fluoroethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]1) for PET imaging of colony-stimulating factor 1 receptor (CSF1R), an emerging target for neuroinflammation imaging. Non-radioactive ligand 1 exhibited binding affinity comparable to that of a known CSF1R inhibitor, 5-cyano-N-(4-(4-methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide (CPPC). Therefore, we synthesized radioligand [18F]1 by radiofluorination of chlorine-substituted precursor 7 in 13–15% decay-corrected radiochemical yield. Dynamic PET/CT images showed higher uptake in the lipopolysaccharide (LPS)-treated mouse brain than in control mouse brain. Ex vivo biodistribution study conducted at 45 min after radioligand injection showed that the brain uptake in LPS mice increased by 78% compared to that of control mice and was inhibited by 22% in LPS mice pretreated with CPPC, indicating specificity of [18F]1 for CSF1R. A metabolism study demonstrated that the radioligand underwent little metabolism in the mouse brain. Taken together, these results suggest that [18F]1 may hold promise as a radioligand for CSF1R imaging. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Figure 1

19 pages, 2736 KiB  
Article
Cellular Localization of Kynurenine 3-Monooxygenase in the Brain: Challenging the Dogma
by Korrapati V. Sathyasaikumar, Verónica Pérez de la Cruz, Benjamín Pineda, Gustavo Ignacio Vázquez Cervantes, Daniela Ramírez Ortega, David W. Donley, Paul L. Severson, Brian L. West, Flaviano Giorgini, Jonathan H. Fox and Robert Schwarcz
Antioxidants 2022, 11(2), 315; https://doi.org/10.3390/antiox11020315 - 4 Feb 2022
Cited by 18 | Viewed by 4180
Abstract
Kynurenine 3-monooxygenase (KMO), a key player in the kynurenine pathway (KP) of tryptophan degradation, regulates the synthesis of the neuroactive metabolites 3-hydroxykynurenine (3-HK) and kynurenic acid (KYNA). KMO activity has been implicated in several major brain diseases including Huntington’s disease (HD) and schizophrenia. [...] Read more.
Kynurenine 3-monooxygenase (KMO), a key player in the kynurenine pathway (KP) of tryptophan degradation, regulates the synthesis of the neuroactive metabolites 3-hydroxykynurenine (3-HK) and kynurenic acid (KYNA). KMO activity has been implicated in several major brain diseases including Huntington’s disease (HD) and schizophrenia. In the brain, KMO is widely believed to be predominantly localized in microglial cells, but verification in vivo has not been provided so far. Here, we examined KP metabolism in the brain after depleting microglial cells pharmacologically with the colony stimulating factor 1 receptor inhibitor PLX5622. Young adult mice were fed PLX5622 for 21 days and were euthanized either on the next day or after receiving normal chow for an additional 21 days. Expression of microglial marker genes was dramatically reduced on day 22 but had fully recovered by day 43. In both groups, PLX5622 treatment failed to affect Kmo expression, KMO activity or tissue levels of 3-HK and KYNA in the brain. In a parallel experiment, PLX5622 treatment also did not reduce KMO activity, 3-HK and KYNA in the brain of R6/2 mice (a model of HD with activated microglia). Finally, using freshly isolated mouse cells ex vivo, we found KMO only in microglia and neurons but not in astrocytes. Taken together, these data unexpectedly revealed that neurons contain a large proportion of functional KMO in the adult mouse brain under both physiological and pathological conditions. Full article
(This article belongs to the Special Issue Tryptophan Metabolism in Health and Disease)
Show Figures

Figure 1

13 pages, 2365 KiB  
Article
Unlike Brief Inhibition of Microglia Proliferation after Spinal Cord Injury, Long-Term Treatment Does Not Improve Motor Recovery
by Gaëtan Poulen, Sylvain Bartolami, Harun N. Noristani, Florence E. Perrin and Yannick N. Gerber
Brain Sci. 2021, 11(12), 1643; https://doi.org/10.3390/brainsci11121643 - 13 Dec 2021
Cited by 9 | Viewed by 3098
Abstract
Microglia are major players in scar formation after an injury to the spinal cord. Microglia proliferation, differentiation, and survival are regulated by the colony-stimulating factor 1 (CSF1). Complete microglia elimination using CSF1 receptor (CSF1R) inhibitors worsens motor function recovery after spinal injury (SCI). [...] Read more.
Microglia are major players in scar formation after an injury to the spinal cord. Microglia proliferation, differentiation, and survival are regulated by the colony-stimulating factor 1 (CSF1). Complete microglia elimination using CSF1 receptor (CSF1R) inhibitors worsens motor function recovery after spinal injury (SCI). Conversely, a 1-week oral treatment with GW2580, a CSF1R inhibitor that only inhibits microglia proliferation, promotes motor recovery. Here, we investigate whether prolonged GW2580 treatment further increases beneficial effects on locomotion after SCI. We thus assessed the effect of a 6-week GW2580 oral treatment after lateral hemisection of the spinal cord on functional recovery and its outcome on tissue and cellular responses in adult mice. Long-term depletion of microglia proliferation after SCI failed to improve motor recovery and had no effect on tissue reorganization, as revealed by ex vivo diffusion-weighted magnetic resonance imaging. Six weeks after SCI, GW2580 treatment decreased microglial reactivity and increased astrocytic reactivity. We thus demonstrate that increasing the duration of GW2580 treatment is not beneficial for motor recovery after SCI. Full article
(This article belongs to the Special Issue The Function of Microglia in Neurodegenerative Diseases)
Show Figures

Graphical abstract

Back to TopTop