Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = cold-asphalt mixture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 9391 KB  
Article
Engineering Performance, Environmental and Economic Assessment of Pavement Reconstruction Using Cold In-Place Recycling with Foamed Bitumen: A Municipal Road Case Study
by Justyna Stępień, Anna Chomicz-Kowalska, Krzysztof Maciejewski and Patrycja Wąsik
Materials 2026, 19(1), 83; https://doi.org/10.3390/ma19010083 - 25 Dec 2025
Viewed by 227
Abstract
Modernizing municipal roads requires rehabilitation strategies that ensure adequate structural performance while reducing environmental and economic burdens. Although cold in-place recycling with foamed bitumen (CIR-FB) has been widely investigated, integrated assessments combining mechanistic–empirical modeling with LCA and LCCA remain limited—particularly for municipal roads [...] Read more.
Modernizing municipal roads requires rehabilitation strategies that ensure adequate structural performance while reducing environmental and economic burdens. Although cold in-place recycling with foamed bitumen (CIR-FB) has been widely investigated, integrated assessments combining mechanistic–empirical modeling with LCA and LCCA remain limited—particularly for municipal roads in Central and Eastern Europe, where reclaimed asphalt pavement (RAP) quality, climatic conditions and budget constraints differ from commonly studied regions. This study compares two reconstruction variants for a 1 km road section: a conventional design using virgin materials (V1-N) and a recycling-based alternative (V2-Rc) incorporating RAP from the existing wearing and binder layers and reclaimed aggregate (RA) from the existing base. CIR-FB mixture testing (stiffness ≈ 5.25 GPa; foamed bitumen = 2.5%, cement = 2.0%) was integrated into mechanistic–empirical fatigue analysis, material-flow quantification, LCA and LCCA. The V2-Rc variant achieved a 3–21-fold increase in fatigue life compared to V1-N at equal thickness. Material demand decreased by approximately 27%, demolition waste by approximately 39%, and approximately 92% of the existing pavement was reused in situ. Transport work was reduced five-fold (veh-km) and more than six-fold (t-km). LCA showed a 15.9% reduction in CO2-eq emissions, while LCCA indicated approximately 19% lower construction cost, with advantages remaining robust under ±20% sensitivity. The results demonstrate that CIR-FB, when supported by proper RAP/RA characterization, can substantially improve structural, environmental and economic performance in municipal road rehabilitation. Full article
(This article belongs to the Special Issue Road and Rail Construction Materials: Development and Prospects)
Show Figures

Graphical abstract

23 pages, 2467 KB  
Article
New Type of Asphalt Concrete with Bitumen Emulsion in Terms of Type and Quantity of Binder
by Maciej Krasowski, Przemysław Buczyński, Grzegorz Mazurek and Matúš Kozel
Materials 2025, 18(23), 5437; https://doi.org/10.3390/ma18235437 - 2 Dec 2025
Viewed by 256
Abstract
This paper presents the effect of modifiers on the properties of a mixture of asphalt concrete with bitumen emulsion (ACBE). The mineral-asphalt mixture is the only one that can be produced using the cold-mix technology (CMA). The theoretical part of the article details [...] Read more.
This paper presents the effect of modifiers on the properties of a mixture of asphalt concrete with bitumen emulsion (ACBE). The mineral-asphalt mixture is the only one that can be produced using the cold-mix technology (CMA). The theoretical part of the article details the characteristics of the methods for producing mineral-asphalt mixtures in terms of their production temperature. Thus, hot (HMA), half-warm (H-WMA), warm (WMA) and cold (CMA) mixtures are discussed. The research section presents the design of the asphalt concrete composition with bitumen emulsion, the research methods, the experiment design and the research results. The design of the mixture of asphalt concrete with bitumen emulsion was carried out in accordance with the guidelines set out in EN 13108-31. In the experiment, Portland cement (C), bitumen emulsion (A), synthetic latex (styrene-butadiene rubber SBR) (B) and redispersible polymer powder EVA (polyethylene-co-vinyl acetate) (P) were used as modifiers. Twenty-four mixtures were designed as part of the experiment, according to the 34 experiment design. The following physical and mechanical properties were assessed in the design of the research: air void content Vm, water ab-sorption nw, indirect tensile strength ITS and IT-CY stiffness modulus. When analysing the research results, the authors observed a noticeable impact of the content of asphalt (A) and synthetic latex (B) on the air void content Vm. A significant effect was also observed for the interaction of Portland cement (C) and redispersible polymer powder (P) on the indirect tensile strength ITS. The next step was the optimisation of the ACBE mixture composition, which effect made it possible to identify the optimum amounts of modifiers in the mixture of asphalt concrete with bitumen emulsion (ACBE), which constituted recommendations for the requirements for mixtures of asphalt concrete with bitumen emulsion. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Graphical abstract

22 pages, 11121 KB  
Article
Comprehensive Performance Evaluation of Conductive Asphalt Mixtures Using Multi-Phase Carbon Fillers
by Xiao Zhang, Yafeng Pang, Hongwei Lin and Xiaobo Du
Processes 2025, 13(11), 3752; https://doi.org/10.3390/pr13113752 - 20 Nov 2025
Viewed by 358
Abstract
This study explores the synergistic effects of recycled carbon fiber (RCF) and recycled carbon fiber powder (RCFP) on the performance of conductive asphalt mixtures (CAMs). Laboratory tests were conducted to evaluate optimal asphalt content (OAC), electrical and heating behavior, and key pavement properties, [...] Read more.
This study explores the synergistic effects of recycled carbon fiber (RCF) and recycled carbon fiber powder (RCFP) on the performance of conductive asphalt mixtures (CAMs). Laboratory tests were conducted to evaluate optimal asphalt content (OAC), electrical and heating behavior, and key pavement properties, including rutting, cracking, and freeze–thaw resistance. Results showed that OAC increased with RCF and RCFP dosage due to their high surface area and strong asphalt absorption. The composite achieved stable conductivity, where RCF formed a macro-scale skeleton and RCFP established a micro-bridging network, reducing resistivity to a minimum of 1.60 Ω·m. This dual conductive mechanism significantly enhanced heating efficiency, with a peak rate of 4.85 °C/min at 0.5% RCF + 3% RCFP. Mechanically, RCF provided three-dimensional reinforcement while RCFP improved cohesion, together enhancing high-temperature and freeze–thaw performance. However, low-temperature cracking resistance exhibited a parabolic trend due to the risk of material agglomeration at excessive dosages. Multi-indicator TOPSIS analysis identified 0.4% RCF + 3% RCFP as the optimal composition. Critically, this optimal mixture is also technically and economically feasible, demonstrating an excellent balance characterized by a low specific energy consumption of 2.38 W·h/°C and a competitive cost (≈CNY 528.4/t). This study provides a sustainable, energy-efficient, and multi-functional solution for pavement heating and de-icing in cold regions. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

16 pages, 8188 KB  
Article
Road Performance of Hot Central Plant Versus Hot In-Place Recycling Asphalt Mixtures: A Quantitative Comparison and Adaptability Analysis
by Qinyu Shi, Lixin Zhou and Bo Li
Materials 2025, 18(22), 5149; https://doi.org/10.3390/ma18225149 - 12 Nov 2025
Viewed by 350
Abstract
Despite being crucial for sustainable pavement construction, the widespread application of hot recycled asphalt mixtures in high-grade surface courses is hindered by concerns over their long-term performance, particularly regarding cracking resistance and moisture stability. This study systematically evaluates the road performance of hot [...] Read more.
Despite being crucial for sustainable pavement construction, the widespread application of hot recycled asphalt mixtures in high-grade surface courses is hindered by concerns over their long-term performance, particularly regarding cracking resistance and moisture stability. This study systematically evaluates the road performance of hot central plant recycling (HCPR with 30% RAP) and hot in-place recycling (HIPR with 80% RAP) mixtures, benchmarked against virgin hot mix asphalt (SMA-13), through comprehensive laboratory simulations. The enhancing effect of basalt fibers (BFs) was thoroughly investigated. Results revealed a significant performance trade-off; while the recycled mixtures exhibited superior high-temperature stability (e.g., an 80.7% increase in dynamic stability for HIPR), their cracking resistance substantially decreased with higher RAP content (e.g., reductions of 60.8% in low-temperature flexural strain and 22.1% in intermediate-temperature fracture energy for HIPR). Both recycled mixtures also showed susceptibility to moisture damage, evidenced by stripping in Hamburg wheel-tracking tests. The incorporation of BFs effectively mitigated these deficiencies. It comprehensively improved the performance, enabling the HCPR mixture to meet specifications for severely cold regions and elevating the HIPR mixture to compliance level for cold regions. Furthermore, BF significantly enhanced rutting resistance under coupled hydrothermal conditions. These findings demonstrate that basalt fiber reinforcement can bridge the performance gap of recycled mixtures, thereby expanding their application scope and providing a robust technical basis for selecting and optimizing recycling strategies in high-grade pavement engineering. Full article
(This article belongs to the Special Issue Development of Sustainable Asphalt Materials)
Show Figures

Figure 1

32 pages, 3299 KB  
Article
Mechanistic-Empirical Analysis of LDPE-SBS-Modified Asphalt Concrete Mix with RAP Subjected to Various Traffic and Climatic Loading Conditions
by Muhammad Haris, Asad Naseem, Sarfraz Ahmed, Muhammad Kashif and Ahsan Naseem
Infrastructures 2025, 10(11), 288; https://doi.org/10.3390/infrastructures10110288 - 30 Oct 2025
Viewed by 551
Abstract
The current global economic challenges and resource scarcity necessitate the development of cost-effective and sustainable pavement solutions. This study investigates the performance of asphalt mixtures modified with Low-Density Polyethylene (LDPE) and Styrene–Butadiene–Styrene (SBS) as binder modifiers, and Hydrated Lime (Ca(OH)2) and [...] Read more.
The current global economic challenges and resource scarcity necessitate the development of cost-effective and sustainable pavement solutions. This study investigates the performance of asphalt mixtures modified with Low-Density Polyethylene (LDPE) and Styrene–Butadiene–Styrene (SBS) as binder modifiers, and Hydrated Lime (Ca(OH)2) and Reclaimed Asphalt Pavement (RAP) as aggregate replacements. The research aims to optimize the combination of these materials for enhancing the durability, sustainability, and mechanical properties of asphalt mixtures under various climatic and traffic conditions. Asphalt mixtures were modified with 5% LDPE and 2–6% SBS (by bitumen weight), with 2% Hydrated Lime and 15% RAP added to the mix. The performance of these mixtures was evaluated using the Simple Performance Tester (SPT), focusing on rutting, cracking, and fatigue resistance at varying temperatures and loading frequencies. The NCHRP 09-29 Master Solver was employed to generate master curves for input into the AASHTOWare Mechanistic-Empirical Pavement Design Guide (MEPDG), allowing for an in-depth analysis of the modified mixes under different traffic and climatic conditions. Results indicated that the mix containing 5% LDPE, 2% SBS, 2% Hydrated Lime, and 15% RAP achieved the best performance, reducing rutting, fatigue cracking, and the International Roughness Index (IRI), and improving overall pavement durability. The combination of these modifiers showed enhanced moisture resistance, high-temperature rutting resistance, and improved dynamic modulus. Notably, the study revealed that in warm climates, thicker pavements with this optimal mix exhibited reduced permanent deformation and better fatigue resistance, while in cold climates, the inclusion of 2% SBS further improved the mix’s low-temperature performance. The findings suggest that the incorporation of LDPE, SBS, Hydrated Lime, and RAP offers a sustainable and cost-effective solution for improving the mechanical properties and lifespan of asphalt pavements. Full article
Show Figures

Figure 1

17 pages, 1778 KB  
Article
Experimental and Field Assessment of Mineral–Cement–Emulsion Mixtures Containing Recycled Components
by Elżbieta Szafranko, Magdalena Czyż and Maciej Lis
Materials 2025, 18(21), 4955; https://doi.org/10.3390/ma18214955 - 30 Oct 2025
Viewed by 600
Abstract
This study investigates the performance of mineral–cement–emulsion (MCE) mixtures produced with reclaimed asphalt pavement (RAP) and recycled mineral aggregates for use in road base layers. The aim was to evaluate the mechanical properties, field performance, and key factors influencing the cracking behavior of [...] Read more.
This study investigates the performance of mineral–cement–emulsion (MCE) mixtures produced with reclaimed asphalt pavement (RAP) and recycled mineral aggregates for use in road base layers. The aim was to evaluate the mechanical properties, field performance, and key factors influencing the cracking behavior of these sustainable cold-recycled mixtures. Approximately 160 laboratory tests were performed to determine indirect tensile strength (ITS), stiffness modulus (IT-CY), bulk density, and air-void content. The MCE mixture achieved an average ITS of 1.09 MPa and stiffness modulus of 5873 MPa after 28 days of curing, confirming compliance with design requirements. The field investigation of a test section showed good structural integrity and compaction, although several transverse cracks developed during the first year of service. The mechanistic interpretation attributed these cracks to combined cement hydration shrinkage and thermal contraction effects. The results indicate that MCE mixtures made with recycled materials can meet technical specifications while reducing environmental impact, provided that binder proportions and curing conditions are carefully optimized. Full article
Show Figures

Figure 1

19 pages, 2844 KB  
Article
Statistical Analysis of the Tensile Strength of Cold Recycled Cement-Treated Materials and Its Influence on Pavement Design
by William Fedrigo, Thaís Radünz Kleinert, Gabriel Grassioli Schreinert, Lélio Antônio Teixeira Brito and Washington Peres Núñez
Infrastructures 2025, 10(11), 284; https://doi.org/10.3390/infrastructures10110284 - 24 Oct 2025
Viewed by 543
Abstract
The tensile behavior of cold recycled cement-treated mixtures (CRCTMs), typically produced through full-depth reclamation (FDR), is critical for pavement design. Since no universal design method exists, different tests are applied, leading to varying results. In this context, this study aimed (a) to statistically [...] Read more.
The tensile behavior of cold recycled cement-treated mixtures (CRCTMs), typically produced through full-depth reclamation (FDR), is critical for pavement design. Since no universal design method exists, different tests are applied, leading to varying results. In this context, this study aimed (a) to statistically analyze the flexural tensile strength (FTS) and indirect tensile strength (ITS) of CRCTMs incorporating reclaimed asphalt pavement (RAP) and lateritic soil (LS); (b) to evaluate how using FTS or ITS influences the design of CRCTM layers. FTS and ITS tests were conducted with different cement (1–7%) and RAP (7–93%) contents at multiple curing times (3–28 days), and results were used for statistical and mechanistic analyses. Results showed that cement and RAP contents significantly increased FTS and ITS. RAP exhibited the strongest influence on ITS. This indicates that CRCTMs with similar materials benefit from higher RAP contents. Mechanistic analysis revealed that lower RAP contents require thicker pavement structures, suggesting that increasing RAP can reduce costs and environmental impacts. FTS was about 65% higher than ITS, but using ITS in design led to structures 1.7–3.3 times thicker for the same service life. These findings highlight the need for proper CRCTM characterization, with flexural tests recommended for more reliable and cost-effective pavement design. Full article
Show Figures

Figure 1

19 pages, 2604 KB  
Article
Low-Temperature Performance Enhancement of Warm Mix Asphalt Binders Using SBS and Sasobit: Towards Durable and Green Pavements
by Xuemao Feng, Mingchen Li, Yifu Meng, Jianwei Sheng, Yining Zhang and Liping Liu
Materials 2025, 18(20), 4756; https://doi.org/10.3390/ma18204756 - 17 Oct 2025
Viewed by 619
Abstract
With growing emphasis on environmental protection and sustainability in highway construction, the high mixing and compaction temperatures of styrene-butadiene-styrene (SBS)-modified asphalt have raised concerns regarding energy consumption and pollutant emissions. Sasobit, a warm-mix additive with a melting point of 99 °C, effectively reduces [...] Read more.
With growing emphasis on environmental protection and sustainability in highway construction, the high mixing and compaction temperatures of styrene-butadiene-styrene (SBS)-modified asphalt have raised concerns regarding energy consumption and pollutant emissions. Sasobit, a warm-mix additive with a melting point of 99 °C, effectively reduces asphalt viscosity and construction temperatures while enhancing high-temperature performance; however, it may adversely affect low-temperature crack resistance. To address this challenge, this study developed low-dosage Sasobit–SBS composite asphalt incorporating aromatic oil and crumb rubber to reduce production temperatures while maintaining performance. Evaluations on binder properties and mixture performance showed that Sasobit effectively lowers mixing temperatures and preserves rutting resistance, while external modifiers, especially crumb rubber, significantly enhance low-temperature crack resistance (by 24%) and fatigue life (by 50%). Moreover, the crumb rubber formulation reduced production costs by 11% compared to conventional SBS asphalt, demonstrating a practical and cost-effective strategy for improving durability in cold regions. Full article
Show Figures

Figure 1

29 pages, 9861 KB  
Article
Multiscale Investigation of Interfacial Behaviors in Rubber Asphalt–Aggregate Systems Under Salt Erosion: Insights from Laboratory Tests and Molecular Dynamics Simulations
by Yun Li, Youxiang Si, Shuaiyu Wang, Peilong Li, Ke Zhang and Yuefeng Zhu
Materials 2025, 18(20), 4746; https://doi.org/10.3390/ma18204746 - 16 Oct 2025
Viewed by 550
Abstract
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber [...] Read more.
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber asphalt–aggregate systems, this study developed a multiscale characterization method integrating a macroscopic mechanical test, microscopic tests, and molecular dynamics (MD) simulations. Firstly, laboratory-controlled salt–freeze–thaw cycles were employed to simulate field conditions, followed by quantitative evaluation of interfacial bonding properties through pull-out tests. Subsequently, the atomic force microscopy (AFM) and Fourier transform infrared spectrometer (FTIR) tests were conducted to characterize the microscopic morphology evolution and chemical functional group transformations, respectively. Moreover, by combining the diffusion coefficients of water molecules, salt solution ions, and asphalt components, the mechanism of interfacial salt erosion was elucidated. The results demonstrate that increasing NaCl concentration and freeze–thaw cycles progressively reduces interfacial pull-out strength and fracture energy, with NaCl-induced damage becoming limited after twelve salt–freeze–thaw cycles. In detail, with exposure to 15 freeze–thaw cycles in 6% NaCl solution, the pull-out strength and fracture energy of the rubber asphalt–limestone aggregate decrease by 50.47% and 51.57%, respectively. At this stage, rubber asphalt exhibits 65.42% and 52.34% increases in carbonyl and sulfoxide indexes, respectively, contrasted by 49.24% and 42.5% decreases in aromatic and aliphatic indexes. Long-term exposure to salt–freeze–thaw conditions promotes phase homogenization, ultimately reducing surface roughness and causing rubber asphalt to resemble matrix asphalt morphologically. At the rubber asphalt–NaCl solution–aggregate interface, the diffusion of Na+ is faster than that of Cl. Meanwhile, compared with other asphalt components, saturates exhibit notably enhanced mobility under salt erosion conditions. The synergistic effects of accelerated aging, salt crystallization pressure, and enhanced ionic diffusion jointly induce the deterioration of interfacial bonding, which accounts for the decrease in macroscopic pull-out strength. This multiscale investigation advances understanding of salt-induced deterioration while providing practical insights for developing durable asphalt mixtures in cold regions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 2387 KB  
Article
A Rubberized-Aerogel Composite Binder Modifier for Durable and Sustainable Asphalt Pavements
by Carlos J. Obando, Jolina J. Karam, Jose R. Medina and Kamil E. Kaloush
Buildings 2025, 15(17), 2998; https://doi.org/10.3390/buildings15172998 - 23 Aug 2025
Viewed by 744
Abstract
The United States produces approximately 500 million tons of asphalt mixtures annually, while generating vast amounts of waste materials that could be repurposed for sustainable infrastructure. Each year, 1.4 billion gallons of lubricating oils are available for reuse and recycling. Additionally, 280 million [...] Read more.
The United States produces approximately 500 million tons of asphalt mixtures annually, while generating vast amounts of waste materials that could be repurposed for sustainable infrastructure. Each year, 1.4 billion gallons of lubricating oils are available for reuse and recycling. Additionally, 280 million tires are discarded, contributing to significant environmental challenges. Given the critical role of the roadway network in economic growth, mobility, and infrastructure sustainability, there is a pressing need for innovative material solutions that integrate recycled materials without compromising performance. This study introduces a Rubberized-Aerogel Composite (RaC), a novel asphalt binder modifier combining crumb rubber, recycled oil, and a silica-based aerogel to enhance the sustainability and durability of asphalt pavements. The research methodology involved blending the RaC with the PG70-10 asphalt binder at a 5:1 ratio and conducting comprehensive laboratory tests on binders and mixtures, including rheology, thermal conductivity (TC), specific heat capacity (Cp), the Hamburg Wheel-Tracking Test (HWTT), and indirect tensile strength (IDT). Pavement performance was simulated using AASHTOWare Pavement ME under hot and cold climates with thin and thick pavement structures. Results showed that RaC-modified binders reduced thermal conductivity by up to 30% and increased specific heat capacity by 15%, improving thermal stability. RaC mixtures exhibited a 50% reduction in rut depth in the HWTT and lower thermal expansion/contraction coefficients. Pavement ME simulations predicted up to 40% less permanent deformation and 60% reduced thermal cracking for RaC mixtures compared to the controls. RaC enhances pavement lifespan, reduces maintenance costs, and promotes environmental sustainability by repurposing waste materials, offering a scalable solution for resilient infrastructure. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 4447 KB  
Article
Study on the Filler Composition Optimization and Performance Evaluation of Cold-Patch Asphalt Mixture
by Congwei Bi, Xueqi Wang, Jikai Fu, Hongxu Zhao, Mulian Zheng and Jinghan Xu
Materials 2025, 18(16), 3894; https://doi.org/10.3390/ma18163894 - 20 Aug 2025
Viewed by 839
Abstract
Filler dramatically affects the rheology of cold-patched asphalt (CPA) slurry, as well as the related mechanical properties; its physical and chemical properties will also affect the road performance of cold-patch asphalt mixture (CPAM). In order to optimize the filler composition ratio for CPAM, [...] Read more.
Filler dramatically affects the rheology of cold-patched asphalt (CPA) slurry, as well as the related mechanical properties; its physical and chemical properties will also affect the road performance of cold-patch asphalt mixture (CPAM). In order to optimize the filler composition ratio for CPAM, this study uses an orthogonal test to determine the optimal ratio of bentonite to cement, partially substituting mineral powder. Additionally, a performance verification test suitable for CPAM is designed and performed. The results indicate that the total filler dosage is 4.3%, the proportion of mineral powder replacement is 50%, and the ratio of bentonite to cement is 0.2:1; the forming strength, residual stability, and freeze–thaw splitting strength of CPAM are improved by 7.37%, 20.95%, and 17.13%, respectively, and the water stability is significantly enhanced. Scanning electron microscope images show that the cement and bentonite are dispersed as fillers in CPA, and a hydration reaction occurs, which reveals the mechanism of the optimized cold-patched filler ratio related to performance enhancement. Full article
Show Figures

Figure 1

18 pages, 273 KB  
Review
Incorporation of E-Waste Plastics into Asphalt: A Review of the Materials, Methods, and Impacts
by Sepehr Mohammadi, Dongzhao Jin, Zhongda Liu and Zhanping You
Encyclopedia 2025, 5(3), 112; https://doi.org/10.3390/encyclopedia5030112 - 1 Aug 2025
Cited by 2 | Viewed by 1155
Abstract
This paper presents a comprehensive review of the environmentally friendly management and reutilization of electronic waste (e-waste) plastics in flexible pavement construction. The discussion begins with an overview of e-waste management challenges and outlines key recycling approaches for converting plastic waste into asphalt-compatible [...] Read more.
This paper presents a comprehensive review of the environmentally friendly management and reutilization of electronic waste (e-waste) plastics in flexible pavement construction. The discussion begins with an overview of e-waste management challenges and outlines key recycling approaches for converting plastic waste into asphalt-compatible materials. This review then discusses the types of e-waste plastics used for asphalt modification, their incorporation methods, and compatibility challenges. Physical and chemical treatment techniques, including the use of free radical initiators, are then explored for improving dispersion and performance. Additionally, in situations where advanced pretreatment methods are not applicable due to cost, safety, or technical constraints, the application of alternative approaches, such as the use of low-cost complementary additives, is discussed as a practical solution to enhance compatibility and performance. Finally, the influence of e-waste plastics on the conventional and rheological properties of asphalt binders, as well as the performance of asphalt mixtures, is also evaluated. Findings indicate that e-waste plastics, when combined with appropriate pretreatment methods and complementary additives, can enhance workability, cold-weather cracking resistance, high-temperature anti-rutting performance, and resistance against moisture-induced damage while also offering environmental and economic benefits. This review highlights the potential of e-waste plastics as sustainable asphalt modifiers and provides insights across the full utilization pathway, from recovery to in-field performance. Full article
(This article belongs to the Collection Sustainable Ground and Air Transportation)
16 pages, 2050 KB  
Article
Effects of Activated Cold Regenerant on Pavement Properties of Emulsified Asphalt Cold Recycled Mixture
by Fuda Chen, Jiangmiao Yu, Yuan Zhang, Zengyao Lin and Anxiong Liu
Materials 2025, 18(15), 3529; https://doi.org/10.3390/ma18153529 - 28 Jul 2025
Viewed by 728
Abstract
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, [...] Read more.
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, a cold regenerant was independently prepared to rapidly penetrate, soften, and activate aged asphalt at ambient temperature in this paper, and its effects on the volumetric composition, mechanical strength, and pavement performance of EACRM were systematically investigated. The results showed that as the cold regenerant content increased, the air voids, indirect tensile strength (ITS), and high-temperature deformation resistance of EACRM decreased, while the dry–wet ITS ratio, cracking resistance, and fatigue resistance increased. Considering the comprehensive pavement performance requirements of cold recycled pavements, the optimal content of the activated cold regenerant for EACRM was determined to be approximately 0.6%. Full article
Show Figures

Figure 1

21 pages, 5433 KB  
Review
Research Progress on Adhesion Mechanism and Testing Methods of Emulsified Asphalt–Aggregate Interface
by Hao-Yue Huang, Xiao Han, Sen Han, Xiao Ma, Jia Guo and Yao Huang
Buildings 2025, 15(15), 2611; https://doi.org/10.3390/buildings15152611 - 23 Jul 2025
Viewed by 1381
Abstract
With the deepening of the green and low-carbon concept in the field of road engineering, the cold construction asphalt pavement technology has developed rapidly due to its advantages such as low energy consumption, low pollution, and convenient construction. The adhesion between emulsified asphalt [...] Read more.
With the deepening of the green and low-carbon concept in the field of road engineering, the cold construction asphalt pavement technology has developed rapidly due to its advantages such as low energy consumption, low pollution, and convenient construction. The adhesion between emulsified asphalt and aggregates, as a core factor affecting the performance of cold-mixed mixtures and the lifespan of the pavement, has attracted much attention in terms of its mechanism of action and evaluation methods. However, at present, there are still many issues that need to be addressed in terms of the stability control of adhesion between emulsified asphalt and aggregates, the explanation of the microscopic mechanism, and the standardization of testing methods in complex environments. These problems restrict the further promotion and application of the cold construction technology. Based on this, this paper systematically analyzes the current development status, application scenarios, and future trends of the theory and testing methods of the adhesion between emulsified asphalt and aggregates by reviewing a large number of relevant studies. The research aims to provide theoretical support and practical references for the improvement of adhesion in the cold construction asphalt pavement technology. Research shows that in terms of the adhesion mechanism, the existing results have deeply analyzed the infiltration and demulsification adhesion process of emulsified asphalt on the surface of aggregates and clarified the key links of physical and chemical interactions, but the understanding of the microscopic interface behavior and molecular-scale mechanism is still insufficient. In terms of testing methods, although objective and subjective evaluation methods such as mechanical tensile tests, surface energy evaluation, and adhesion fatigue tests have been developed, the standardization of testing, data comparability, and practical engineering applicability still need to be optimized. Comprehensive analysis shows that the research on the adhesion between emulsified asphalt and aggregates is showing a trend from macroscopic to microscopic, from static to dynamic. There are challenges in predicting and controlling the adhesion performance under complex environments, as well as important opportunities for developing advanced characterization techniques and multiscale simulation methods. Full article
(This article belongs to the Special Issue Advances in Performance-Based Asphalt and Asphalt Mixtures)
Show Figures

Figure 1

18 pages, 2365 KB  
Article
The Improvement of Road Performance of Foam Asphalt Cold Recycled Mixture Based on Interface Modification
by Han Zhao, Yuheng Chen, Wenyi Zhou, Yichao Ma, Zhuo Chen and Junyan Yi
Polymers 2025, 17(14), 1927; https://doi.org/10.3390/polym17141927 - 13 Jul 2025
Viewed by 1126
Abstract
With the increasing demand for highway maintenance, enhancing the resource utilization of reclaimed asphalt pavement (RAP) has become an urgent and widely studied issue. Although foam asphalt cold recycling technology offers significant benefits in terms of resource utilization and energy saving, it still [...] Read more.
With the increasing demand for highway maintenance, enhancing the resource utilization of reclaimed asphalt pavement (RAP) has become an urgent and widely studied issue. Although foam asphalt cold recycling technology offers significant benefits in terms of resource utilization and energy saving, it still faces challenges, particularly the poor stability of foam asphalt mixtures. This study focuses on optimizing the performance of foam asphalt recycled mixtures through interface modification, aiming to promote the widespread application of foam asphalt cold recycling technology. Specifically, the research follows these steps: First, the optimal mix ratio of the recycled mixtures was determined based on the fundamental properties of foam asphalt and RAP. Then, zinc oxide, silane coupling agents, and amine anti-stripping agents were introduced to modify the recycled mixtures. At last, a series of tests were conducted to comprehensively evaluate improvements in road performance. The results indicate that the silane coupling agent enhances the low-temperature performance and fatigue. The fracture energy reached 526.71 J/m2. Zinc oxide improves the low-temperature cracking resistance and dry shrinkage performance. Amine anti-stripping agents have minimal impact on the low-temperature performance. The linear shrinkage was reduced by 2.6%. The results of TOPSIS indicated that silane coupling agent modification exhibits superior fatigue resistance and low-temperature performance, achieving the highest comprehensive score of 0.666. Although amine-based anti-stripping agents improve fatigue life, they are not suitable for modifying foamed asphalt mixtures due to their detrimental effects on low-temperature performance and moisture resistance. Full article
(This article belongs to the Special Issue Polymer Materials for Pavement Applications)
Show Figures

Figure 1

Back to TopTop