Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,398)

Search Parameters:
Keywords = coils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3301 KB  
Article
Local Diagnostic Reference Levels for Intracranial Aneurysm Coil-Only Embolization Using a Low-Dose Technique
by Mariusz Sowa, Joanna Sowa, Kamil Węglarz and Maciej Budzanowski
Biomedicines 2026, 14(1), 233; https://doi.org/10.3390/biomedicines14010233 - 21 Jan 2026
Abstract
Background/Objectives: Optimizing routine neurointerventional workflow and minimizing exposure to ionizing radiation during coil-only endovascular treatment of intracranial aneurysms depend on operator experience, reduced frame rates during both fluoroscopy and digital subtraction angiography (DSA), and the use of advanced angiographic systems. The low-dose protocol [...] Read more.
Background/Objectives: Optimizing routine neurointerventional workflow and minimizing exposure to ionizing radiation during coil-only endovascular treatment of intracranial aneurysms depend on operator experience, reduced frame rates during both fluoroscopy and digital subtraction angiography (DSA), and the use of advanced angiographic systems. The low-dose protocol implemented in this study used the lowest available fluoroscopy frame rate (3.125 frames per second [fps]) and a nominal acquisition rate of 2 fps (actual = 2.45 fps) for DSA, three-dimensional (3D) rotational angiography, two-dimensional (2D)/3D mapping, and roadmapping. Methods: This retrospective analysis encompassed 245 coil-only procedures performed at a single tertiary center from 2018 to 2024. Data collected for each procedure included dose-area product (DAP), reference air kerma (Ka,r), fluoroscopy time (FT), and the total number of DSA frames. Local diagnostic reference levels (DRLs; 75th percentile [P75]) and typical values (50th percentile [P50]) were determined and descriptively compared with values reported in the literature. Results: The P75 values, representing DRLs, were 22.4 Gy·cm2 for DAP (literature range, 123–272.8 Gy·cm2), 268 mGy for Ka,r (1171–4240 mGy), 18 min 56 s for FT, and 285 DSA frames. The P50 values were 13.8 Gy·cm2 for DAP (78.7–179.0 Gy·cm2), 196 mGy for Ka,r (801–2804 mGy), 13 min 25 s for FT, and 208 DSA frames. Conclusions: In this single-center cohort, dose metrics for coil-only intracranial aneurysm treatment were within the lower range of published values. Cross-study comparisons are descriptive and require cautious interpretation. The proposed local DRLs may support quality assurance, dose optimization, and patient safety in comparable clinical settings. Further multi-center and multi-operator studies are warranted to evaluate transferability and applicability beyond coil-only procedures. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

18 pages, 4862 KB  
Article
Development of a Robot-Assisted TMS Localization System Using Dual Capacitive Sensors for Coil Tilt Detection
by Czaryn Diane Salazar Ompico, Julius Noel Banayo, Yamato Mashio, Masato Odagaki, Yutaka Kikuchi, Armyn Chang Sy and Hirofumi Kurosaki
Sensors 2026, 26(2), 693; https://doi.org/10.3390/s26020693 - 20 Jan 2026
Abstract
Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for neurological research and therapy, but its effectiveness depends on accurate and stable coil placement. Manual localization based on anatomical landmarks is time-consuming and operator-dependent, while state-of-the-art robotic and neuronavigation systems achieve high accuracy using [...] Read more.
Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for neurological research and therapy, but its effectiveness depends on accurate and stable coil placement. Manual localization based on anatomical landmarks is time-consuming and operator-dependent, while state-of-the-art robotic and neuronavigation systems achieve high accuracy using optical tracking with head-mounted markers and infrared cameras, at the cost of increased system complexity and setup burden. This study presents a cost-effective, markerless robotic-assisted TMS system that combines a 3D depth camera and textile capacitive sensors to assist coil localization and contact control. Facial landmarks detected by the depth camera are used to estimate the motor cortex (C3) location without external tracking markers, while a dual textile-sensor suspension provides compliant “soft-landing” behavior, contact confirmation, and coil-tilt estimation. Experimental evaluation with five participants showed reliable C3 targeting with valid motor evoked potentials (MEPs) obtained in most trials after initial calibration, and tilt-verification experiments revealed that peak MEP amplitudes occurred near balanced sensor readings in 12 of 15 trials (80%). The system employs a collaborative robot designed in accordance with international human–robot interaction safety standards, including force-limited actuation and monitored stopping. These results suggest that the proposed approach can improve the accessibility, safety, and consistency of TMS procedures while avoiding the complexity of conventional optical tracking systems. Full article
Show Figures

Figure 1

20 pages, 2081 KB  
Article
An Inducible BRCA1 Expression System with In Vivo Applicability Uncovers Activity of the Combination of ATR and PARP Inhibitors to Overcome Therapy Resistance
by Elsa Irving, Alaide Morcavallo, Jekaterina Vohhodina-Tretjakova, Paul W. G. Wijnhoven, Anna L. Beckett, Michael P. Jacques, Rachel S. Evans, Jennifer I. Moss, Anna D. Staniszewska and Josep V. Forment
Cancers 2026, 18(2), 309; https://doi.org/10.3390/cancers18020309 - 20 Jan 2026
Abstract
Background: Poly(ADP-ribose) polymerase inhibitors (PARPi) have transformed cancer therapy for patients harbouring homologous recombination repair (HRR) deficiencies, notably BRCA1/2 mutations. However, resistance to PARPi remains a clinical challenge, with restoration of BRCA1 function via hypomorphic variants representing an understudied scenario. Methods: Here, we [...] Read more.
Background: Poly(ADP-ribose) polymerase inhibitors (PARPi) have transformed cancer therapy for patients harbouring homologous recombination repair (HRR) deficiencies, notably BRCA1/2 mutations. However, resistance to PARPi remains a clinical challenge, with restoration of BRCA1 function via hypomorphic variants representing an understudied scenario. Methods: Here, we engineered a doxycycline-inducible BRCA1 expression system in the BRCA1-mutant, triple-negative breast cancer cell line MDAMB436, permitting controlled analysis of functionally distinct BRCA1 hypomorphs in vitro and in vivo. Results: Among multiple BRCA1 variants generated—including RING, coiled-coil, and BRCT domain mutants—only overexpression of the ∆exon11 hypomorph robustly conferred resistance to olaparib and carboplatin, with drug sensitivity correlating to ∆exon11 expression levels. While ∆exon11 BRCA1 mediated HRR restoration, its efficiency was consistently lower than full-length BRCA1, as measured by RAD51 foci formation and interaction with repair partners such as PALB2. In vivo, tumours expressing Δexon11 BRCA1 exhibited only partial resistance to olaparib compared to those expressing full-length BRCA1. Importantly, the combination of olaparib and the ATR inhibitor, ceralasertib, overcame ∆exon11-mediated resistance, impairing RAD51 foci formation in ∆exon11-expressing cells. Conclusions: Our findings identify a dose-dependent, hypomorphic HRR restoration by ∆exon11 BRCA1, help explain the variable resistance observed in BRCA1-mutant pre-clinical models expressing this hypomorph, and propose ATR inhibition in combination with PARPi as a clinical strategy to counteract therapeutic resistance mediated by ∆exon11 BRCA1 hypomorphs. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

33 pages, 3054 KB  
Article
Identification of Cholesterol in Plaques of Atherosclerotic Using Magnetic Resonance Spectroscopy and 1D U-Net Architecture
by Angelika Myśliwiec, Dawid Leksa, Avijit Paul, Marvin Xavierselvan, Adrian Truszkiewicz, Dorota Bartusik-Aebisher and David Aebisher
Molecules 2026, 31(2), 352; https://doi.org/10.3390/molecules31020352 - 19 Jan 2026
Viewed by 25
Abstract
Cholesterol plays a fundamental role in the human body—it stabilizes cell membranes, modulates gene expression, and is a precursor to steroid hormones, vitamin D, and bile salts. Its correct level is crucial for homeostasis, while both excess and deficiency are associated with serious [...] Read more.
Cholesterol plays a fundamental role in the human body—it stabilizes cell membranes, modulates gene expression, and is a precursor to steroid hormones, vitamin D, and bile salts. Its correct level is crucial for homeostasis, while both excess and deficiency are associated with serious metabolic and health consequences. Excessive accumulation of cholesterol leads to the development of atherosclerosis, while its deficiency disrupts the transport of fat-soluble vitamins. Magnetic resonance spectroscopy (MRS) enables the detection of cholesterol esters and the differentiation between their liquid and crystalline phases, but the technical limitations of clinical MRI systems require the use of dedicated coils and sequence modifications. This study demonstrates the feasibility of using MRS to identify cholesterol-specific spectral signatures in atherosclerotic plaque through ex vivo analysis. Using a custom-designed experimental coil adapted for small-volume samples, we successfully detected characteristic cholesterol peaks from plaque material dissolved in chloroform, with spectral signatures corresponding to established NMR databases. To further enhance spectral quality, a deep-learning denoising framework based on a 1D U-Net architecture was implemented, enabling the recovery of low-intensity cholesterol peaks that would otherwise be obscured by noise. The trained U-Net was applied to experimental MRS data from atherosclerotic plaques, where it significantly outperformed traditional denoising methods (Gaussian, Savitzky–Golay, wavelet, median) across six quantitative metrics (SNR, PSNR, SSIM, RMSE, MAE, correlation), enhancing low-amplitude cholesteryl ester detection. This approach substantially improved signal clarity and the interpretability of cholesterol-related resonances, supporting more accurate downstream spectral assessment. The integration of MRS with NMR-based lipidomic analysis, which allows the identification of lipid signatures associated with plaque progression and destabilization, is becoming increasingly important. At the same time, the development of high-resolution techniques such as μOCT provides evidence for the presence of cholesterol crystals and their potential involvement in the destabilization of atherosclerotic lesions. In summary, nanotechnology-assisted MRI has the potential to become an advanced tool in the proof-of-concept of atherosclerosis, enabling not only the identification of cholesterol and its derivatives, but also the monitoring of treatment efficacy. However, further clinical studies are necessary to confirm the practical usefulness of these solutions and their prognostic value in assessing cardiovascular risk. Full article
Show Figures

Figure 1

17 pages, 3124 KB  
Article
Force-Dependent Presence of Senescent Cells Expressing Vascular Endothelial Growth Factor During Orthodontic Tooth Movement
by Yohei Morihana, Masato Nakagawa, Yue Zhou, Hidetoshi Morikuni, Zi Deng, Yoshitomo Honda and Aki Nishiura
Biology 2026, 15(2), 187; https://doi.org/10.3390/biology15020187 - 19 Jan 2026
Viewed by 29
Abstract
Orthodontic force magnitude influences angiogenesis during orthodontic tooth movement (OTM); however, the role of senescent cells remains largely unclear. This study investigated the localization of senescent cells and their expression of vascular endothelial growth factor (VEGF) during angiogenesis using a rat horizontal OTM [...] Read more.
Orthodontic force magnitude influences angiogenesis during orthodontic tooth movement (OTM); however, the role of senescent cells remains largely unclear. This study investigated the localization of senescent cells and their expression of vascular endothelial growth factor (VEGF) during angiogenesis using a rat horizontal OTM model with different force magnitudes. Nickel–titanium coil springs exerting 60 g or 180 g of orthodontic force were applied to the maxillary first molar of 15-week-old male Sprague–Dawley rats; untreated rats served as controls. Tooth movement was evaluated by stereomicroscopy and micro-computed tomography. Senescent cells (p21, p16) and angiogenesis (CD31 and VEGF) were evaluated by multiplex immunofluorescence. Tooth movement was observed under both the 60 g and 180 g conditions. The 60 g group showed increased cellularity, vascular density, and VEGF expression, suggesting an optimal mechanical force. In contrast, the 180 g group reduced cellularity and angiogenesis, consistent with excessive force. Senescent cells were more abundant in the 60 g group, with over 40% expressing VEGF. These findings suggest that force magnitude influences the presence of VEGF+ senescent cells, which may be associated with the angiogenic process in OTM. This work provides insights into the mechanisms underlying optimal force in orthodontic treatment. Full article
(This article belongs to the Special Issue Cellular Senescence in Development, Regeneration, Aging, and Cancer)
Show Figures

Graphical abstract

13 pages, 1269 KB  
Article
A New, Quick Method for Testing Organic Soils Based on the Electrical Impedance Spectrum of the Measuring Coil
by Barbara Solecka, Andrzej Nowrot, Katarzyna Nowińska, Jarosław Sikorski and Adam Michczyński
Materials 2026, 19(2), 381; https://doi.org/10.3390/ma19020381 - 17 Jan 2026
Viewed by 110
Abstract
This paper presents a new, quick method for testing the content of magnetic forms of iron in organic soils. These forms are an important marker of changes occurring in the environment. This method is based on impedance spectroscopy of a measuring coil inside [...] Read more.
This paper presents a new, quick method for testing the content of magnetic forms of iron in organic soils. These forms are an important marker of changes occurring in the environment. This method is based on impedance spectroscopy of a measuring coil inside which the tested material is placed—the material serves as the core of the coil. Unlike EIS (electrochemical impedance spectroscopy), the new method does not use electrodes, is sensitive to magnetic forms of iron, and is non-contact (the measuring current does not flow through the tested material). The results of research on three materials, including brown peat and silt with plant detritus, are presented in this paper. The results showed that changes in the standardized components of the measuring coil impedance in the frequency range of 100–135 kHz enable the determination of the content of ferromagnetic iron oxide (Fe3O4). The proposed method is very sensitive to soil oxide content in the range of 0% to 8%. Additionally, elemental composition analysis was performed using ICP-AES (inductively coupled plasma–atomic emission spectroscopy), which allowed for comparison of iron and other metal content with impedance measurement results. The final results confirm the usefulness of impedance spectroscopy as a non-destructive method for studying sedimentary environments and assessing their mineral properties. Full article
Show Figures

Graphical abstract

14 pages, 2202 KB  
Article
Brushless Wound-Field Synchronous Machine Topology with Excellent Rotor Flux Regulation Freedom
by Muhammad Ayub, Arsalan Arif, Atiq Ur Rehman, Azka Nadeem, Ghulam Jawad Sirewal, Mohamed A. Abido and Mudassir Raza Siddiqi
Machines 2026, 14(1), 110; https://doi.org/10.3390/machines14010110 - 17 Jan 2026
Viewed by 189
Abstract
This paper presents a nine-switch inverter for brushless operation of wound-field synchronous machines with excellent rotor flux regulation freedom. The manufacturing cost of permanent magnet machines is high due to the instability of rare-earth magnet prices in the global market. Moreover, conventional wound-field [...] Read more.
This paper presents a nine-switch inverter for brushless operation of wound-field synchronous machines with excellent rotor flux regulation freedom. The manufacturing cost of permanent magnet machines is high due to the instability of rare-earth magnet prices in the global market. Moreover, conventional wound-field synchronous machines (WFSMs) have problems with their rotor brushes and slip-ring assembly, wherein the assembly starts to malfunction in the long run. Furthermore, recently, some brushless WFSM topologies have been investigated to eliminate the problems associated with rotor brushes and slip rings, but they have either a high cost due to a double-inverter, or low flux regulation freedom due to a single inverter (−id). The proposed nine-switch topology achieves a low cost by using a single inverter with nine switches and excellent flux control through three variables (−id, iq, and if), making it highly suitable for wide-speed applications. In the proposed topology, the machine’s armature winding is divided into two sets of coils: ABC and XYZ. A 12-slot and 8-pole machine stator is wound with armature winding coils ABC and XYZ, creating six terminals for injecting currents and two neutrals from each ABC and XYZ coil set. The current to the ABC and XYZ coils is supplied by a nine-switch inverter. The inverter is specially designed to supply rated currents to the ABC winding coils and half of the rated current to the XYZ winding coils. The number of turns of the ABC and XYZ winding coils are kept the same so they produce the same winding function. However, the current in the XYZ winding coils is half compared to that of the ABC winding coils, which creates an asymmetrical airgap magnetomotive force (MMF). The asymmetrical airgap MMF contains two working harmonics, i.e., fundamental MMF for torque production and an additional sub-harmonic MMF component for rotor field brushless excitation. The rotor field is controlled by the difference in current of the two armature winding coils: ABC and XYZ. The proposed topology is validated through theoretical analysis and finite element simulations of electromagnetic and flux regulation. A 2D finite-element analysis is performed to verify the idea. The proposed topology is capable of establishing a 9.15 A dc current in the rotor field winding coil, which consequently generates a torque of 7.8 N·m with a 20.30% torque ripple. Rotor field flux regulation was analyzed from the stator ABC and XYZ coils current ratio ζ. The ratio ζ is analyzed as 2 to 1.3; subsequently, the inducted field currents were 9.15 A dc to 4.8 A dc, respectively. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

24 pages, 5640 KB  
Article
Recombinant Expression and Antimicrobial Mechanism of Cysteine-Rich Antimicrobial Peptides from Tigriopus japonicus Genome
by Dan Pu, Hongwei Tao, Jingwei Pang, Huishao Shi, Junjian Wang and Wei Zhang
Mar. Drugs 2026, 24(1), 45; https://doi.org/10.3390/md24010045 - 16 Jan 2026
Viewed by 223
Abstract
The misuse of antibacterial agents has contributed to the growing prevalence of antibiotic resistance, highlighting an urgent need to explore alternative anti-infection therapeutic strategies. Antimicrobial peptides (AMPs) are naturally occurring molecules. They exhibit broad-spectrum antimicrobial activity and represent promising candidates for the development [...] Read more.
The misuse of antibacterial agents has contributed to the growing prevalence of antibiotic resistance, highlighting an urgent need to explore alternative anti-infection therapeutic strategies. Antimicrobial peptides (AMPs) are naturally occurring molecules. They exhibit broad-spectrum antimicrobial activity and represent promising candidates for the development of novel therapeutics. A cysteine-rich antimicrobial peptide was identified and characterized from the genome of Tigriopus japonicus and designated “TjRcys1”. The precursor form of TjRcys1 comprises 96 amino acids. Structural analyses of TjRcys1 revealed random coils, two α-helices, and two β-strands. Recombinant TjRcys1 had inhibitory effects upon Staphylococcus aureus and Bacillus sp. T2, with a minimum inhibitory concentration of 64 μM for both. TjRcys1 did not show complete inhibition against Vibrio alginolyticus, Klebsiella pneumoniae, or Aeromonas hydrophila at 64 μM, but it did slow their growth rate. TjRcys1 could disrupt the permeability of the cell membrane of S. aureus. Transcriptomic analyses indicated that TjRcys1 could interfere with the ribosome biosynthesis and nucleotide metabolism of K. pneumoniae. Our results provide a valuable reference for the development of new AMPs and optimization of their design. Full article
Show Figures

Figure 1

16 pages, 1877 KB  
Article
Effect of Prolonged Frozen Storage on the In Vitro Digestion of Minced Pork: Insights from Protein Structural Changes
by Yingying Zhu, Shijing Chen, Yafang Ma, Caili Fu and Dejian Huang
Foods 2026, 15(2), 329; https://doi.org/10.3390/foods15020329 - 16 Jan 2026
Viewed by 126
Abstract
Long-term frozen storage is widely used for pork preservation, yet its impact on protein digestibility remains inadequately explored. This study investigated the effect of frozen storage duration (0, 3, and 12 months) on the changes in digestive properties and protein structure of minced [...] Read more.
Long-term frozen storage is widely used for pork preservation, yet its impact on protein digestibility remains inadequately explored. This study investigated the effect of frozen storage duration (0, 3, and 12 months) on the changes in digestive properties and protein structure of minced pork during in vitro digestion. With extended freezing, the hardness, chewiness, and shear force of pork significantly increased, while protein digestibility decreased. A confocal laser scanning microscope showed an increase in the particle size of digesta. After 12 months of frozen storage, the digestibility of the pork samples decreased. The extent of reduction reached 11.31% under pepsin digestion and 11.33% under pepsin–trypsin digestion, compared to the fresh samples. Structural analysis indicated that prolonged freezing led to protein denaturation and aggregation, as confirmed by a decrease in α-helix contents, an increase in the β-sheet and random coil structures, and the formation of high-molecular-weight aggregates. These structural alterations hindered protease accessibility, resulting in reduced digestibility. The detrimental effects on protein structure and digestibility became more pronounced with longer frozen storage. Full article
Show Figures

Figure 1

21 pages, 8190 KB  
Article
Female Aging Affects Coilin Pattern in Mouse Cumulus Cells
by Alexey S. Anisimov, Dmitry S. Bogolyubov and Irina O. Bogolyubova
J. Dev. Biol. 2026, 14(1), 6; https://doi.org/10.3390/jdb14010006 - 15 Jan 2026
Viewed by 167
Abstract
Cumulus cells (CCs) are a distinct population of granulosa cells (GCs) that surround the developing and ovulated mammalian oocyte. The features of their structural organization and the expression pattern of key genes significantly affect oocyte viability. Changes in the functional activity of the [...] Read more.
Cumulus cells (CCs) are a distinct population of granulosa cells (GCs) that surround the developing and ovulated mammalian oocyte. The features of their structural organization and the expression pattern of key genes significantly affect oocyte viability. Changes in the functional activity of the nucleus are often expressed in changes in the structure of nuclear bodies (NBs), including Cajal bodies (CBs). The diagnostic protein of CBs is coilin, which maintains their structural integrity. Using fluorescent and electron microscopy, we examined maternal aging-associated changes in coilin pattern in mouse CCs. We found that older mice had a decrease in the number of coilin-positive bodies, while external transcriptome data analysis revealed no significant changes in Coil and Smn1 gene expression. We hypothesized that the age-related dynamics of coilin-containing bodies are determined not by changes in the expression level of key components of these bodies, but by age-related changes in CC metabolism. Considering that CCs are a by-product of IVF protocols, making them available for analysis in sufficient quantities, age-related changes in the number and size of coilin-positive NBs in CCs may serve as a promising biomarker for assessing ovarian functional aging. Full article
Show Figures

Graphical abstract

20 pages, 2984 KB  
Article
Demagnetization Fault Location of Direct-Drive Permanent Magnet Synchronous Motor Based on Search Coil Data-Driven
by Caixia Gao, Zhen Jiang, Xiaozhuo Xu and Jikai Si
Appl. Sci. 2026, 16(2), 870; https://doi.org/10.3390/app16020870 - 14 Jan 2026
Viewed by 139
Abstract
Demagnetization faults in direct-drive permanent magnet synchronous motors (DDPMSM) can cause significant performance degradation and unplanned downtime. Traditional fault location methods, which rely on manual feature extraction, exhibit limited accuracy and efficiency in complex and variable operating conditions. To address these limitations, this [...] Read more.
Demagnetization faults in direct-drive permanent magnet synchronous motors (DDPMSM) can cause significant performance degradation and unplanned downtime. Traditional fault location methods, which rely on manual feature extraction, exhibit limited accuracy and efficiency in complex and variable operating conditions. To address these limitations, this study presents a demagnetization fault location method based on a search coil employing a data-driven one-dimensional convolutional neural network (1D-CNN). Firstly, the arrangement of search coils was determined, and a partitioned mathematical model was established, using the residual back electromotive force (back-EMF) of the search coil over a single electrical cycle as the fundamental unit. Secondly, the residual back-EMF in the search coil is analyzed under various demagnetization parameters and operating conditions to assess the robustness of the proposed method. Furthermore, a 1D-CNN-based fault location model was developed using residual back-EMF signals as the input and targeting the identification of demagnetized permanent magnet types. Simulation and experimental results demonstrate that the proposed method can effectively detect and locate demagnetization faults across different operating conditions. When the demagnetization degree is not less than 10%, the fault location accuracy reaches 99.58%, and the minimum detectable demagnetization degree is 8%. The approach demonstrates excellent robustness and generalization, offering an intelligent solution for demagnetization fault location in PMSMs. Full article
Show Figures

Figure 1

16 pages, 7117 KB  
Article
Morphological Description and Physiological Changes in the Hindgut of Female Asiophrida xanthospilota (Chrysomelidae, Coleoptera) Across Reproductive Stages
by Jacob M. Muinde, Ze-Qun Dong, Caren A. Ochieng, Wei Wang, Esther N. Kioko, Le Zong, Wen-Jie Li, Cong-Qiao Li, Si-Pei Liu, Zheng-Zhong Huang and Si-Qin Ge
Insects 2026, 17(1), 97; https://doi.org/10.3390/insects17010097 - 14 Jan 2026
Viewed by 294
Abstract
Fecal retention is a distinctive reproductive strategy in certain leaf beetles, which enables females to use accumulated fecal material to protect their eggs and enhance offspring survival. The adult flea beetle Asiophrida xanthospilota (Baly, 1881) is a specialist herbivore that feeds on the [...] Read more.
Fecal retention is a distinctive reproductive strategy in certain leaf beetles, which enables females to use accumulated fecal material to protect their eggs and enhance offspring survival. The adult flea beetle Asiophrida xanthospilota (Baly, 1881) is a specialist herbivore that feeds on the leaves of Cotinus coggygria Scop. (Anacardiaceae). Using light microscopy, scanning electron microscopy, and micro-computed tomography, we described and illustrated the hindgut anatomy of adult female A. xanthospilota during the pre-mated and post-mated reproductive phases. We further examined the physiological changes in the hindgut associated with fecal retention, and assessed hindgut muscle activity across these two reproductive stages. The hindgut of adult A. xanthospilota consists of three regions: ileum, colon, and rectum. The ileum is a thin, straight or coiled, tube enclosed by malpighian tubules and supported by circular and longitudinal muscles. The colon lies between the ileum and rectum, possesses a chitinized cuticle, and is externally covered with tracheae and tracheoles. A rectal valve separates the colon from the rectum, which forms the posterior end of the alimentary canal and is characterized by intimal spines and robust circular muscles. During the post-mated phase, fecal retention causes pronounced dilation of the hindgut, substantially increasing the volume occupied by food remnants. Electromyographic recordings revealed high hindgut muscle activity in pre-mated females, characterized by short and variable bursts, whereas post-mated females exhibited reduced activity with longer and more sustained bursts. The functional implications of these specialized structural features are discussed. Overall, these morphological and physiological adaptations enhance the fecal retention strategy by increasing fecal capacity, regulating hindgut motility, and enabling the formation of a protective fecal case around the egg mass. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

14 pages, 2811 KB  
Article
Reduction of Liftoff Effect in Eddy Current Measurement of Electrical Conductivity Using Multi-Frequency Excitation
by Jiajie Wu, Yini Song, Shukai Chen, Yiru Xiao, Grzegorz Tytko, Yihua Kang and Bo Feng
Sensors 2026, 26(2), 555; https://doi.org/10.3390/s26020555 - 14 Jan 2026
Viewed by 144
Abstract
Eddy current testing is a widely used technique for electrical conductivity measurement due to its advantage of contactless measurement. However, the results are easily influenced by liftoff change. In this study, a new solution to compensate for the liftoff effect in eddy current [...] Read more.
Eddy current testing is a widely used technique for electrical conductivity measurement due to its advantage of contactless measurement. However, the results are easily influenced by liftoff change. In this study, a new solution to compensate for the liftoff effect in eddy current measurements of conductivity is proposed. By measuring the inductance of coils with different frequencies, the liftoff–conductivity solution sets at each frequency are obtained from an analytical model. By finding a common solution for all frequencies, we can obtain the liftoff of the probe and the conductivity of the specimen simultaneously, thus improving the accuracy and reliability of conductivity measurements. For a liftoff variation of 1.14 mm, the introduced measurement error is up to 70.46% for aluminum alloys without liftoff compensation. By finding the common solution for multiple frequencies, the error is reduced to less than 5.57%. The selection of the frequency and tolerance limit is also discussed for the proposed method. Full article
(This article belongs to the Special Issue Feature Papers in Fault Diagnosis & Sensors 2025)
Show Figures

Figure 1

24 pages, 3021 KB  
Article
Simulation-Based Fault Detection and Diagnosis for AHU Systems Using a Deep Belief Network
by Mooyoung Yoo
Buildings 2026, 16(2), 342; https://doi.org/10.3390/buildings16020342 - 14 Jan 2026
Viewed by 103
Abstract
Heating, ventilation, and air conditioning (HVAC) systems account for a significant portion of building energy consumption and play a crucial role in maintaining indoor comfort. However, hidden faults in air-handling units (AHUs) often lead to energy waste and degraded performance, highlighting the importance [...] Read more.
Heating, ventilation, and air conditioning (HVAC) systems account for a significant portion of building energy consumption and play a crucial role in maintaining indoor comfort. However, hidden faults in air-handling units (AHUs) often lead to energy waste and degraded performance, highlighting the importance of reliable fault detection and diagnosis (FDD). This study proposes a simulation-driven FDD framework that integrates a standardized prototype dataset and an independent evaluation dataset generated from a calibrated EnergyPlus model representing a target facility, enabling controlled experimentation and transfer evaluation within simulation environments. Training data were generated from the DOE EnergyPlus Medium Office prototype model, while evaluation data were obtained from a calibrated building-specific EnergyPlus model of a research facility operated by Company H in Korea. Three representative fault scenarios—outdoor air damper stuck closed, cooling coil fouling (65% capacity), and air filter fouling (30% pressure drop)—were systematically implemented. A Deep Belief Network (DBN) classifier was developed and optimized through a two-stage hyperparameter tuning strategy, resulting in a three-layer architecture (256–128–64 nodes) with dropout and regularization for robustness. The optimized DBN achieved diagnostic accuracies of 92.4% for the damper fault, 98.7% for coil fouling, and 95.9% for filter fouling. These results confirm the effectiveness of combining simulation-based dataset generation with advanced deep learning methods for HVAC fault diagnosis. The results indicate that a DBN trained on a standardized EnergyPlus prototype can transfer to a second, independently calibrated EnergyPlus building model when AHU topology, control logic, and monitored variables are aligned. This study should be interpreted as a simulation-based proof-of-concept, motivating future validation with field BMS data and more diverse fault scenarios. Full article
(This article belongs to the Special Issue Built Environment and Building Energy for Decarbonization)
Show Figures

Figure 1

16 pages, 4110 KB  
Article
Design of a Dual Path Mixed Coupling Wireless Power Transfer Coupler for Improving Transmit Arrays in UAV Charging
by GwanTae Kim and SangWook Park
Appl. Sci. 2026, 16(2), 827; https://doi.org/10.3390/app16020827 - 13 Jan 2026
Viewed by 137
Abstract
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at [...] Read more.
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at 6.78 MHz without additional lumped matching networks. A four-port equivalent model is developed by classifying the mutual networks into three coupling types and representing them with a transmission-matrix formulation fitted to three-dimensional full-wave simulations. The model is used to identify the main coupling paths and to evaluate the effect of rotation and lateral/diagonal misalignment on power-transfer characteristics. Simulation results at a transfer distance of 70 mm show a maximum transmission coefficient of about 0.82 at 6.78 MHz and high robustness against rotation. When switch-based port selection is applied on the transmit side, blind spots associated with pose variations that cause an abrupt drop in transmission characteristics are significantly reduced, demonstrating that the DPMPT coupler with switch control provides an effective structural basis for enhancing alignment tolerance in mixed coupling wireless power transfer systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop