Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (637)

Search Parameters:
Keywords = cogenerator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10456 KiB  
Article
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
by Gustavo Teodoro Bustamante, Jamil Haddad, Bruno Pinto Braga Guimaraes, Ronny Francis Ribeiro Junior, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva, Fabio Monteiro Steiner, Jaime Jose de Oliveira Junior and Claudio Inacio de Almeida Costa
Energies 2025, 18(15), 3910; https://doi.org/10.3390/en18153910 - 22 Jul 2025
Abstract
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered [...] Read more.
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered on a six-compartment skid, it integrates photovoltaic generation, battery storage, and a liquefied petroleum gas generator to emulate typical cogeneration conditions, together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management, following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen, enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility, demonstrating stable hydrogen production, efficient energy management, and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization, including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts. Full article
Show Figures

Figure 1

44 pages, 5275 KiB  
Review
The Power Regulation Characteristics, Key Challenges, and Solution Pathways of Typical Flexible Resources in Regional Energy Systems
by Houze Jiang, Shilei Lu, Boyang Li and Ran Wang
Energies 2025, 18(14), 3830; https://doi.org/10.3390/en18143830 - 18 Jul 2025
Viewed by 331
Abstract
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the [...] Read more.
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the flexible resources of building energy systems and vehicle-to-grid (V2G) interaction technologies, and mainly focuses on the regulation characteristics and coordination mechanisms of distributed energy supply (renewable energy and multi-energy cogeneration), energy storage (electric/thermal/cooling), and flexible loads (air conditioning and electric vehicles) within regional energy systems. The study reveals that distributed renewable energy and multi-energy cogeneration technologies form an integrated architecture through a complementary “output fluctuation mitigation–cascade energy supply” mechanism, enabling the coordinated optimization of building energy efficiency and grid regulation. Electricity and thermal energy storage serve as dual pillars of flexibility along the “fast response–economic storage” dimension. Air conditioning loads and electric vehicles (EVs) complement each other via thermodynamic regulation and Vehicle-to-Everything (V2X) technologies, constructing a dual-dimensional regulation mode in terms of both power and time. Ultimately, a dynamic balance system integrating sources, loads, and storage is established, driven by the spatiotemporal complementarity of multi-energy flows. This paper proposes an innovative framework that optimizes energy consumption and enhances grid stability by coordinating distributed renewable energy, energy storage, and flexible loads across multiple time scales. This approach offers a new perspective for achieving sustainable and flexible building energy systems. In addition, this paper explores the application of demand response policies in building energy systems, analyzing the role of policy incentives and market mechanisms in promoting building energy flexibility. Full article
Show Figures

Figure 1

21 pages, 1468 KiB  
Article
Multi-Objective Energy-Saving Optimization and Analysis of a Combined Cooling, Heating, and Power (CCHP) System Driven by Geothermal Energy and LNG Cold Energy
by Xianfeng Gong and Jie Liu
Processes 2025, 13(7), 2135; https://doi.org/10.3390/pr13072135 - 4 Jul 2025
Viewed by 301
Abstract
In this paper, a new type of cogeneration system using LNG cold energy as a cooling source and geothermal energy as a heat source is designed and studied from the perspective of LNG cold energy gradient utilization. The system integrates power generation, cold [...] Read more.
In this paper, a new type of cogeneration system using LNG cold energy as a cooling source and geothermal energy as a heat source is designed and studied from the perspective of LNG cold energy gradient utilization. The system integrates power generation, cold storage, and district cooling. In order to provide more detailed information, the proposed system was analyzed in terms of energy, exergy, and economy. The effects of separator pressure, LNG pump outlet pressure, the mass flow rate of n-Pentane in ORC-I, liquefaction temperature of R23 in the cold storage module, and pump 5 outlet pressure in the refrigeration module on the performance of the system were also investigated. Additionally, the particle swarm algorithm (PSO) was used to optimize the CCHP system with multiple objectives to determine the system’s optimal operation. The optimization results show that the system’s thermal efficiency, exergy efficiency, and depreciation payback period are 66.06%, 42.52%, and 4.509 years, respectively. Full article
Show Figures

Figure 1

18 pages, 1480 KiB  
Article
Energy-Environmental Analysis of Retrofitting of a Chilled Water Production System in an Industrial Facility—A Case Study
by Tomasz Mróz and Kacper Fórmaniak
Appl. Sci. 2025, 15(13), 7465; https://doi.org/10.3390/app15137465 - 3 Jul 2025
Viewed by 271
Abstract
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants [...] Read more.
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants based on dual-stage absorption chillers supplied from an existing gas-fueled co-generation plant were identified. The proposed variants, i.e., tri-generation systems, were compared with the basic variant, which relied on electric compression water chillers. An evaluation of the variants was performed on the basis of two criteria: annual primary energy consumption and annual carbon dioxide emission. Variant 2, i.e., with a 1650 kW dual-stage absorption water chiller supplied from an existing gas fueled co-generation plant, was chosen as the optimal variant. It achieved a 370 MWh annual primary energy consumption reduction and a 1140 Mg annual carbon dioxide emission reduction. It was found that increasing the co-generation ratio for the CHP plant powering the pharmaceutical factory resulted in lower consumption of primary energy in variants in which the cooling energy supply system was retrofitted based on absorption water chillers. The threshold values of the co-generation ratio were e = 0.37 for Variant 1 and e = 0.34 for Variant 2. A literature survey revealed that there is limited interest in the application of such a solution in industrial plants. The performed analysis showed that the evaluated systems may nonetheless be an attractive option for pharmaceutics factories, leading to the reduction of primary energy consumption and carbon dioxide emissions, thereby making more electrical power available for core production. The lessons learned during our analysis could be easily transferred to other industrial facilities requiring chilled water production systems. Full article
Show Figures

Figure 1

28 pages, 1679 KiB  
Review
Building an Agricultural Biogas Supply Chain in Europe: Organizational Models and Social Challenges
by Philippe Hamman and Aude Dziebowski
Sustainability 2025, 17(13), 5806; https://doi.org/10.3390/su17135806 - 24 Jun 2025
Viewed by 971
Abstract
As Europe is the world’s leading producer of biogas, this article examines how agricultural anaerobic digestion (AD) is organized and governed, and explores the social challenges involved in structuring the sector around a possible “European model”. Following a social science perspective, it presents [...] Read more.
As Europe is the world’s leading producer of biogas, this article examines how agricultural anaerobic digestion (AD) is organized and governed, and explores the social challenges involved in structuring the sector around a possible “European model”. Following a social science perspective, it presents a systematic review of 64 French- and English-language articles drawn from 16 academic databases. The findings highlight five key dynamics. First, there is a shift from farmer-led to increasingly industrial models of AD. Second, diverse and hybrid business models are emerging, involving new forms of multi-scale coordination. Third, the sector remains structurally dependent on public subsidies and on regulatory frameworks. Fourth, the economic viability of AD for farmers remains uncertain, driving a transition from cogeneration to biomethane injection. Fifth, tensions develop between rural place-based imaginaries and the realities of globalized energy networks. These patterns underscore the complexity of biogas sector-building in Europe and the competing narratives shaping its evolution. We argue that agricultural AD cannot be reduced to a unified trajectory, but reflects ongoing negotiations over energy models, territorial development and socio-technical legitimacy. This paper concludes by discussing the implications of these dynamics for the sustainability and fairness of future biogas trajectories across Europe. Full article
Show Figures

Figure 1

24 pages, 4465 KiB  
Article
Case Study of a Greenfield Blue Hydrogen Plant: A Comparative Analysis of Production Methods
by Mohammad Sajjadi and Hussameldin Ibrahim
Energies 2025, 18(13), 3272; https://doi.org/10.3390/en18133272 - 23 Jun 2025
Viewed by 441
Abstract
Blue hydrogen is a key pathway for reducing greenhouse gas emissions while utilizing natural gas with carbon capture and storage (CCS). This study conducts a techno-economic and environmental analysis of a greenfield blue hydrogen plant in Saskatchewan, Canada, integrating both SMR and ATR [...] Read more.
Blue hydrogen is a key pathway for reducing greenhouse gas emissions while utilizing natural gas with carbon capture and storage (CCS). This study conducts a techno-economic and environmental analysis of a greenfield blue hydrogen plant in Saskatchewan, Canada, integrating both SMR and ATR technologies. Unlike previous studies that focus mainly on production units, this research includes all process and utility systems such as H2 and CO2 compression, air separation, refrigeration, co-generation, and gas dehydration. Aspen HYSYS simulations revealed ATR’s energy demand is 10% lower than that of SMR. The hydrogen production cost was USD 3.28/kg for ATR and USD 3.33/kg for SMR, while a separate study estimated a USD 2.2/kg cost for design without utilities, highlighting the impact of indirect costs. Environmental analysis showed ATR’s lower Global Warming Potential (GWP) compared to SMR, reducing its carbon footprint. The results signified the role of utility integration, site conditions, and process selection in optimizing energy efficiency, costs, and sustainability. Full article
Show Figures

Figure 1

35 pages, 9419 KiB  
Article
Multi-Objective Scheduling Method for Integrated Energy System Containing CCS+P2G System Using Q-Learning Adaptive Mutation Black-Winged Kite Algorithm
by Ruijuan Shi, Xin Yan, Zuhao Fan and Naiwei Tu
Sustainability 2025, 17(13), 5709; https://doi.org/10.3390/su17135709 - 20 Jun 2025
Viewed by 408
Abstract
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal [...] Read more.
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal scheduling model is established, incorporating a carbon capture system (CCS), power-to-gas (P2G), solar thermal, wind power, and energy storage to minimize economic costs and carbon emissions while maximizing energy efficiency. Second, the heat-to-power ratio of the cogeneration system is dynamically adjusted according to load demand, enabling flexible control of combined heat and power (CHP) output. The integration of CCS+P2G further reduces carbon emissions and wind curtailment, with the produced methane utilized in boilers and cogeneration systems. Hydrogen fuel cells (HFCs) are employed to mitigate cascading energy losses. Using forecasted load and renewable energy data from a specific region, dispatch experiments demonstrate that the proposed system reduces economic costs and CO2 emissions by 14.63% and 13.9%, respectively, while improving energy efficiency by 28.84%. Additionally, the adjustable heat-to-power ratio of CHP yields synergistic economic, energy, and environmental benefits. Full article
Show Figures

Figure 1

21 pages, 1205 KiB  
Article
Development of an Innovative Landfill Gas Purification System in Latvia
by Laila Zemite, Davids Kronkalns, Andris Backurs, Leo Jansons, Nauris Eglitis, Patrick Cnubben and Sanda Lapuke
Sustainability 2025, 17(13), 5691; https://doi.org/10.3390/su17135691 - 20 Jun 2025
Viewed by 350
Abstract
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national [...] Read more.
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national strategies to enhance circularity, untreated LFG is underutilized due to inadequate purification infrastructure, particularly in meeting biomethane standards. This study addressed this gap by proposing and evaluating an innovative, multistep LFG purification system tailored to Latvian conditions, with the aim of enabling the broader use of LFG for energy cogeneration and potentially biomethane injection. The research objective was to design, describe, and preliminarily assess a pilot-scale LFG purification prototype suitable for deployment at Latvia’s largest landfill facility—Landfill A. The methodological approach combined chemical composition analysis of LFG, technical site assessments, and engineering modelling of a five-step purification system, including desulfurization, cooling and moisture removal, siloxane filtration, pumping stabilization, and activated carbon treatment. The system was designed for a nominal gas flow rate of 1500 m3/h and developed with modular scalability in mind. The results showed that raw LFG from Landfill A contains high concentrations of hydrogen sulfide, siloxanes, and volatile organic compounds (VOCs), far exceeding permissible thresholds for biomethane applications. The designed prototype demonstrated the technical feasibility of reducing hydrogen sulfide (H2S) concentrations to <7 mg/m3 and siloxanes to ≤0.3 mg/m3, thus aligning the purified gas with EU biomethane quality requirements. Infrastructure assessments confirmed that existing electricity, water, and sewage capacities at Landfill A are sufficient to support the system’s operation. The implications of this research suggest that properly engineered LFG purification systems can transform landfills from passive waste sinks into active energy resources, aligning with the EU Green Deal goals and enhancing local energy resilience. It is recommended that further validation be carried out through long-term pilot operation, economic analysis of gas recovery profitability, and adaptation of the system for integration with national gas grids. The prototype provides a transferable model for other Baltic and Eastern European contexts, where LFG remains an underexploited asset for sustainable energy transitions. Full article
Show Figures

Figure 1

14 pages, 1381 KiB  
Article
Simulation and Evaluation of Processing Technologies for the Valorization of Sargassum
by Omar Flores-Mendoza and Teresa Lopez-Arenas
Processes 2025, 13(6), 1916; https://doi.org/10.3390/pr13061916 - 17 Jun 2025
Viewed by 326
Abstract
While the arrival of sargassum on the coasts of the Mexican Caribbean represents a threat to the population and the environment, its valorization into high-value-added products represents an opportunity from a circular economy perspective. This paper proposes four technological processing routes to produce [...] Read more.
While the arrival of sargassum on the coasts of the Mexican Caribbean represents a threat to the population and the environment, its valorization into high-value-added products represents an opportunity from a circular economy perspective. This paper proposes four technological processing routes to produce sodium alginate, polyhydroxybutyrate, lactic acid, and bioenergy. The study includes synthesis, industrial scale design, simulation, and techno-economic-environmental assessment, which allows the determination of the feasibility and profitability for informed decision-making based on the conceptual design of a biorefinery. The results of the comprehensive evaluation of the case studies indicate that the best alternative is sodium alginate production, with a return on investment of over 80%, a payback period of less than three years, and low environmental impact in terms of CO2 emissions, water consumption, heat transfer agents, and electricity. The cases of co-production of sodium alginate, lactic acid, and biofertilizer and co-production of sodium alginate, PHB, and biofertilizer also demonstrate profitability, with returns on investment of up to 73% and 51%, respectively. However, bioenergy production by cogeneration is unprofitable due to the current costs of sargassum collection and management. Full article
Show Figures

Figure 1

27 pages, 2641 KiB  
Article
Comprehensive Evaluation of Cogeneration Biogas Multiple Supply System for Rural Communities in Northwest China
by Jinping Li and Xiaotong Han
Energies 2025, 18(12), 3124; https://doi.org/10.3390/en18123124 - 13 Jun 2025
Viewed by 275
Abstract
In the context of rapid urbanization in China, many farmers still live in areas far away from urban energy supply networks. To meet the multi-level energy demands of rural communities, this study proposes a combined heat, power, and electricity (CCHP) supply system that [...] Read more.
In the context of rapid urbanization in China, many farmers still live in areas far away from urban energy supply networks. To meet the multi-level energy demands of rural communities, this study proposes a combined heat, power, and electricity (CCHP) supply system that uses solar and biomass energy as inputs, tailored to the natural resources and climatic conditions of the northwestern region. A theoretical model of this system was established in Nanan Community, Wuwei City, and its dynamic performance throughout the year was simulated and analyzed using TRNSYS software. The system was also evaluated for its economic viability, energy efficiency, and environmental impact. The results show that compared with the original and traditional energy supply systems, the CCHP system achieves average primary energy saving rates of −9.87% and 41.52% during the heating season, annual cost savings of 50.35% and 64.19%, carbon dioxide emission reduction rates of 32.89% and 66.86%, and a dynamic investment payback period of 3.14 years. This study provides development ideas for constructing modern integrated energy systems in rural areas that are remote from urban energy supply networks and offers references for investors. Full article
Show Figures

Figure 1

22 pages, 8277 KiB  
Article
Two-Stage Robust Optimization Model for Flexible Response of Micro-Energy Grid Clusters to Host Utility Grid
by Hongkai Zhang, Outing Zhang, Peng Li, Xianyu Yue and Zhongfu Tan
Energies 2025, 18(12), 3030; https://doi.org/10.3390/en18123030 - 7 Jun 2025
Cited by 1 | Viewed by 380
Abstract
As a decentralized energy management paradigm, micro-energy grid (MEG) clusters enable synergistic operation of heterogeneous distributed energy assets, particularly through multi-energy vector coupling mechanisms that enhance distributed energy resource (DER) utilization efficiency in next-generation power networks. While individual MEGs demonstrate limited capability in [...] Read more.
As a decentralized energy management paradigm, micro-energy grid (MEG) clusters enable synergistic operation of heterogeneous distributed energy assets, particularly through multi-energy vector coupling mechanisms that enhance distributed energy resource (DER) utilization efficiency in next-generation power networks. While individual MEGs demonstrate limited capability in responding to upper-grid demands using surplus energy after fulfilling local supply/demand balance, coordinated cluster operation significantly enhances system-wide flexibility. This paper proposes a two-stage robust optimization model that systematically addresses both the synergistic complementarity of multi-MEG systems and renewable energy uncertainty. First, the basic operation structure of MEG, including distributed generation, cogeneration units, and other devices, is established, and the operation mode of the MEG cluster responding to host utility grid flexibly is proposed. Then, aiming to reduce operation expenses, an optimal self-scheduling plan is generated by establishing a MEG scheduling optimization model; on this basis, the flexibility response capability of the MEG is measured. Finally, to tackle the uncertainty issue of wind and photovoltaic power generation, the two-stage robust theory is employed, and the scheduling optimization model of MEG cluster flexibility response to the host utility grid is constructed. A southern MEG cluster is chosen for simulation to test the model and method’s effectiveness. Results indicate that the MEG cluster’s flexible response mechanism can utilize individual MEGs’ excess power generation to meet the host utility grid’s dispatching needs, thereby significantly lowering the host utility grid’s dispatching costs. Full article
Show Figures

Figure 1

22 pages, 780 KiB  
Article
Radiological Assessment of Coal Fly Ash from Polish Power and Cogeneration Plants: Implications for Energy Waste Management
by Krzysztof Isajenko, Barbara Piotrowska, Mirosław Szyłak-Szydłowski, Magdalena Reizer, Katarzyna Maciejewska and Małgorzata Kwestarz
Energies 2025, 18(12), 3010; https://doi.org/10.3390/en18123010 - 6 Jun 2025
Viewed by 539
Abstract
The combustion of hard coal and lignite in power and combined heat and power plants generates significant amounts of coal fly ash (CFA), a waste material with variable properties. CFA naturally contains radionuclides, specifically naturally occurring radioactive materials (NORMs), which pose potential radiological [...] Read more.
The combustion of hard coal and lignite in power and combined heat and power plants generates significant amounts of coal fly ash (CFA), a waste material with variable properties. CFA naturally contains radionuclides, specifically naturally occurring radioactive materials (NORMs), which pose potential radiological risks to the environment and human health during their storage and utilization, including their incorporation into building materials. Although global research on the radionuclide content in CFA is available, there is a clear gap in detailed and current data specific to Central and Eastern Europe and notably, a lack of a systematic analysis investigating the influence of installed power plant capacity on the concentration profile of these radionuclides in the generated ash. This study aimed to fill this gap and provide crucial data for the Polish energy and environmental context. The objective was to evaluate the concentrations of selected radionuclides (232Th, 226Ra, and 40K) in coal fly ash samples collected between 2020 and 2023 from 19 Polish power and combined heat and power plants with varying capacities (categorized into four groups: S1–S4) and to assess the associated radiological risk. Radionuclide concentrations were determined using gamma spectrometry, and differences between groups were analyzed using non-parametric statistical methods, including PERMANOVA. The results demonstrated that plant capacity has a statistically significant influence on the concentration profiles of thorium and potassium but not radium. Calculated radiological hazard assessment factors (Raeq, Hex, Hin, IAED) revealed that although most samples fall near regulatory limits (e.g., 370 Bq kg−1 for Raeq), some exceed these limits, particularly in groups S1 (plants with a capacity less than 300 MW) and S4 (plants with a capacity higher than 300 MW). It was also found that the frequency of exceeding the annual effective dose limits (IAEDs) showed an increasing trend with the increasing installed capacity of the facility. These findings underscore the importance of plant capacity as a key factor to consider in the radiological risk assessment associated with coal fly ash. This study’s outcomes are crucial for informing environmental risk management strategies, guiding safe waste processing practices, and shaping environmental policies within the energy sector in Central and Eastern European countries, including Poland. Full article
Show Figures

Figure 1

26 pages, 1615 KiB  
Review
Economic Analysis of Nuclear Energy Cogeneration: A Comprehensive Review on Integrated Utilization
by Guobin Jia, Guifeng Zhu, Yang Zou, Yuwen Ma, Ye Dai, Jianhui Wu and Jian Tian
Energies 2025, 18(11), 2929; https://doi.org/10.3390/en18112929 - 3 Jun 2025
Viewed by 774
Abstract
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of [...] Read more.
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of nuclear cogeneration as a cornerstone of low-carbon energy transitions. By categorizing applications based on temperature requirements (low: <250 °C, medium: 250–550 °C, high: >550 °C), the study highlights the adaptability of reactor technologies, including light water reactors (LWRs), high-temperature gas-cooled reactors (HTGRs), and molten salt reactors (MSRs), to sector-specific demands. Key findings reveal that nuclear cogeneration systems achieve thermal efficiencies exceeding 80% in low-temperature applications and reduce CO2 emissions by 1.5–2.5 million tons annually per reactor by displacing fossil fuel-based heat sources. Economic analyses emphasize the critical role of cost allocation methodologies, with exergy-based approaches reducing levelized costs by 18% in high-temperature applications. Policy instruments, such as carbon pricing, value-added tax (VAT) exemptions, and subsidized loans, enhance project viability, elevating net present values by 25–40% for district heating systems. Case studies from Finland, China, and Canada demonstrate operational successes, including 30% emission reductions in oil sands processing and hydrogen production costs as low as USD 3–5/kg via thermochemical cycles. Hybrid nuclear–renewable systems further stabilize energy supply, reducing the levelized cost of heat by 18%. The review underscores the necessity of integrating Generation IV reactors, thermal storage, and policy alignment to unlock nuclear cogeneration’s full potential in achieving global decarbonization and energy security goals. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

22 pages, 5472 KiB  
Article
Optimization of Offshore Wind and Wave Energy Co-Generation System Based on Improved Seagull Optimization Algorithm
by Xiaoshi Zhuang, Honglue Wan, Dongran Song, Xinyu Fan, Yuchen Wang, Qian Huang and Jian Yang
Energies 2025, 18(11), 2846; https://doi.org/10.3390/en18112846 - 29 May 2025
Viewed by 381
Abstract
To address the high complexity layout optimization problem of an offshore wind and wave energy co-generation system, an improved seagull optimization algorithm-based method is proposed. Firstly, the levelized cost of electricity (LCOE) model, based on the whole-life-cycle cost, serves as the optimization objective. [...] Read more.
To address the high complexity layout optimization problem of an offshore wind and wave energy co-generation system, an improved seagull optimization algorithm-based method is proposed. Firstly, the levelized cost of electricity (LCOE) model, based on the whole-life-cycle cost, serves as the optimization objective. Therein, the synergistic effect between wind turbines and wave energy generators is taken into consideration to decouple the problem and establish a two-layer optimization framework. Secondly, the seagull optimization algorithm is enhanced by integrating three strategies: the nonlinear adjustment strategy for control factors, the Gaussian–Cauchy hybrid variational strategy, and the multiple swarm strategy, thereby improving the global search capability. Finally, a case study in the South China Sea validates the effectiveness of the model and algorithm. Using the improved algorithm, the optimal layout of the co-generation system and the optimal wind turbine parameters are obtained. The results indicate that the optimized system achieves a LCOE of 0.6561 CNY/kWh, which is 0.29% lower than that achieved by traditional algorithms. The proposed method provides a reliable technical solution for the economic optimization of the co-generation system. Full article
Show Figures

Figure 1

14 pages, 698 KiB  
Article
Exergy Analysis of a Biogas Plant for Municipal Solid Waste Treatment and Energy Cogeneration
by Joana Prisco Pinheiro, Priscila Rosseto Camiloti, Ildo Luis Sauer and Carlos Eduardo Keutenedjian Mady
Energies 2025, 18(11), 2804; https://doi.org/10.3390/en18112804 - 28 May 2025
Viewed by 409
Abstract
The amount of municipal solid waste (MSW) produced has increased with population growth and consumption patterns. Currently, most waste goes to dumps, although the Brazilian law requires the final destination to be landfills. The latter does not consider the energy lost by these [...] Read more.
The amount of municipal solid waste (MSW) produced has increased with population growth and consumption patterns. Currently, most waste goes to dumps, although the Brazilian law requires the final destination to be landfills. The latter does not consider the energy lost by these solutions and the carbon footprint that better destinations could avoid. However, not treating the waste correctly aggravates land availability problems, especially in large cities such as São Paulo. Anaerobic digestion is an alternative to traditional waste management, and in addition to treating residues, it generates energy and recovers the nutrients present in MSW. Thermodynamic analyses are still scarce in the literature despite being a known process. This study performed an exergy analysis of an existing biogas plant at the Institute of Energy and Environment of the University of São Paulo with a processing capacity of 20 tons of MSW per day composed of three reactors (430 m3 each) and one internal combustion engine (ICE) of 75 kW. The plant uses MSW as the substrate for anaerobic digestion and generates electrical energy, biogas, and fertilizer for agriculture (digestate). Additionally, the plant operates in cogeneration, as the anaerobic digestion reactor uses the heat produced to generate electrical energy. The results showed that the exergy present in the substrate is 67,320 MJ/day. The products’ exergy flows and the processes’ efficiencies show that the exergy flow of the biogas (44,488 MJ/day) is significantly higher than the exergy flow of the digestate (1455 MJ/day). When considering the cogeneration process, the exergy flow was similar for heat and electric energy as the final products, with 10,987 MJ/day for electric energy and 5215 MJ/day for electric energy. The exergy efficiency of the digestion process was 68.25%, while that of cogeneration (digestate, heat and electric energy) was 26.23%. These results can help identify inefficiencies and optimize processes in an anaerobic digestion plant. Furthermore, thermodynamic analyses of anaerobic digestion found in the literature are mostly based on theoretical models. Thus, this study fills a gap regarding exergy analysis of actual biogas plants. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop