Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = code multipath bias

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14133 KB  
Article
An Improved Carrier-Smoothing Code Algorithm for BDS Satellites with SICB
by Qichao Zhang, Xiaping Ma, Yuting Gao, Gongwen Huang and Qingzhi Zhao
Remote Sens. 2023, 15(21), 5253; https://doi.org/10.3390/rs15215253 - 6 Nov 2023
Cited by 5 | Viewed by 2528
Abstract
Carrier Smoothing Code (CSC), as a low-pass filter, has been widely used in GNSS positioning processing to reduce pseudorange noise via carrier phases. However, current CSC methods do not consider the systematic bias between the code and carrier phase observation, also known as [...] Read more.
Carrier Smoothing Code (CSC), as a low-pass filter, has been widely used in GNSS positioning processing to reduce pseudorange noise via carrier phases. However, current CSC methods do not consider the systematic bias between the code and carrier phase observation, also known as Satellite-induced Code Bias (SICB). SICB has been identified in the BDS-2 and the bias will reduce the accuracy or reliability of the CSC. To confront bias, an improved CSC algorithm is proposed by considering SICB for GEO, IGSO, and MEO satellites in BDS constellations. The correction model of SICB for IGSO/MEO satellites is established by using a 0.1-degree interval piecewise weighted least squares Third-order Curve Fitting Method (TOCFM). The Variational Mode Decomposition combined with Wavelet Transform (VMD-WT) is proposed to establish the correction model of SICB for the GEO satellite. To verify the proposed method, the SICB model was established by collecting 30 Multi-GNSS Experiment (MGEX) BDS stations in different seasons of a year, in which the BDS data of ALIC, KRGG, KOUR, GCGO, GAMG, and SGOC stations were selected for 11 consecutive days to verify the effectiveness of the algorithm. The results show that there is obvious SICB in the BDS-2 Multipath (MP) combination, but the SICB in the BDS-3 MP is smaller and can be ignored. Compared with the modeling in the references, TOCFM is more suitable for IGSO/MEO SICB modeling, especially for the SICB correction at low elevation angles. After the VMD-WT correction, the Root Mean Square Error (RMSE) of SICB of B1I, B2I, and B3I in GEO satellites is reduced by 53.35%, 63.50%, and 64.71% respectively. Moreover, we carried out ionosphere-free Single Point Positioning (IF SPP), Ionosphere-free CSC SPP (IF CSC SPP), CSC single point positioning with the IGSO/MEO SICB Correction based on the TOCFA Method (IGSO/MEO SICB CSC), and CSC single point positioning with the IGSO/MEO/GEO SICB correction based on VMD-WT and TOCFA (IGSO/MEO/GEO SICB CSC), respectively. Compared to IF SPP, the average improvement of the IGSO/MEO/GEO SICB CSC algorithm in the north, east, and up directions was 24.42%, 27.94%, and 24.98%, respectively, and the average reduction in 3D RMSE is 24.54%. Compared with IF CSC SPP, the average improvement of IGSO/MEO/GEO SICB CSC is 7.03%, 6.50%, and 10.48% in the north, east, and up directions, respectively, while the average reduction in 3D RMSE was 9.86%. IGSO/MEO SICB mainly improves the U direction positioning accuracy, and GEO SICB mainly improves the E and U direction positioning accuracy. After the IGSO/MEO/GEO SICB correction, the overall improvement was about 10% and positioning improved to a certain extent. Full article
Show Figures

Figure 1

22 pages, 4350 KB  
Article
An Improved Doppler-Aided Smoothing Code Algorithm for BeiDou-2/BeiDou-3 un-Geostationary Earth Orbit Satellites in Consideration of Satellite Code Bias
by Xiao Gao, Zongfang Ma, Luxiao Jia and Lin Pan
Remote Sens. 2023, 15(14), 3549; https://doi.org/10.3390/rs15143549 - 14 Jul 2023
Cited by 3 | Viewed by 1754
Abstract
The extensive use of carrier-aided smoothing code (CSC) filters has led to a reduction in the noise level of raw code measurements in GNSS positioning and navigation applications. However, the existing CSC technique is sensitive to the changes in the integer ambiguity, and [...] Read more.
The extensive use of carrier-aided smoothing code (CSC) filters has led to a reduction in the noise level of raw code measurements in GNSS positioning and navigation applications. However, the existing CSC technique is sensitive to the changes in the integer ambiguity, and then the smoothing procedure needs to be restarted in the presence of cycle slips. As the Doppler shift is instantaneously observed and immune to cycle slips, the Doppler-aided smoothing code (DSC) algorithm would be more promising in a challenged environment. Based on the Hatch filter, an optimal DSC approach is proposed with the principle of minimum variance. Meanwhile, to inhibit the effect of the integral cumulative error of the Doppler, a balance factor is adopted to adjust the contributions of raw code and DSC. The noise level of code observable is not only affected by thermal noise, but also limited by systematic bias. Satellite code bias (SCB) was identified in the raw code observable on each frequency for each BDS-2 satellite. By minimizing the sum of the absolute value of residuals, the polynomial segment fitting algorithm as a function of elevation angles is applied to establish the SCB correction model based on epoch-differenced multipath (MP) deviations. Finally, different types of experiments demonstrate the validity and efficiency of the refined DSC filter with SCB corrections on each available frequency for BDS un-GEO satellites. Full article
Show Figures

Graphical abstract

15 pages, 15286 KB  
Article
Analysis and Mitigation of Crosstalk Effect on Coastal GNSS-R Code-Level Altimetry Using L5 Signals from QZSS GEO
by Yunqiao He, Tianhe Xu, Fan Gao, Nazi Wang, Xinyue Meng and Baojiao Ning
Remote Sens. 2021, 13(22), 4553; https://doi.org/10.3390/rs13224553 - 12 Nov 2021
Cited by 6 | Viewed by 2756
Abstract
Coastal Global Navigation Satellite System Reflectometry (GNSS-R) can be used as a valuable supplement for conventional tide gauges, which can be applied for marine environment monitoring and disaster warning. Incidentally, an important problem in dual-antenna GNSS-R altimetry is the crosstalk effect, which means [...] Read more.
Coastal Global Navigation Satellite System Reflectometry (GNSS-R) can be used as a valuable supplement for conventional tide gauges, which can be applied for marine environment monitoring and disaster warning. Incidentally, an important problem in dual-antenna GNSS-R altimetry is the crosstalk effect, which means that the direct signal leaks into the down-looking antenna dedicated to the reflected signals. When the path delay between the direct and reflected signals is less than one chip length, the delay waveform of the reflected signal is distorted, and the code-level altimetry precision decreases consequently. To solve this problem, the author deduced the influence of signal crosstalk on the reflected signal structure as the same as the multipath effect. Then, a simulation and a coastal experiment are performed to analyze the crosstalk effect on code delay measurements. The L5 signal transmitted by the Quasi-Zenith Satellite System (QZSS) from a geosynchronous equatorial orbit (GEO) satellite is used to avoid the signal power variations with the elevation, so that high-precision GNSS-R code altimetry measurements are achieved in the experiment. Theoretically and experimentally, we found there exists a bias in proportion to the power of the crosstalk signals and a high-frequency term related to the phase delay between the direct and reflected signals. After weakening the crosstalk by correcting the delay waveform, the results show that the RMSE between 23-h sea level height (SSH) measurements and the in-situ observations is about 9.5 cm. Full article
(This article belongs to the Special Issue Recent Advances in GNSS Reflectometry)
Show Figures

Graphical abstract

17 pages, 7066 KB  
Article
Centimeter-Level Precise Orbit Determination for the Luojia-1A Satellite Using BeiDou Observations
by Lei Wang, Beizhen Xu, Wenju Fu, Ruizhi Chen, Tao Li, Yi Han and Haitao Zhou
Remote Sens. 2020, 12(12), 2063; https://doi.org/10.3390/rs12122063 - 26 Jun 2020
Cited by 29 | Viewed by 4818
Abstract
Luojia-1A is a scientific experimental satellite operated by Wuhan University, which is the first low earth orbiter (LEO) navigation signal augmentation experimental satellite. The precise orbit is the prerequisite of augmenting existing Global Navigation Satellite System (GNSS) performance and improves users’ positioning accuracy. [...] Read more.
Luojia-1A is a scientific experimental satellite operated by Wuhan University, which is the first low earth orbiter (LEO) navigation signal augmentation experimental satellite. The precise orbit is the prerequisite of augmenting existing Global Navigation Satellite System (GNSS) performance and improves users’ positioning accuracy. Meanwhile, LEO precise orbit determination (POD) with BeiDou-2 observations is particularly challenging since it only provides regional service. In this study, we investigated the method of precise orbit determination (POD) for Luojia-1A satellite with the onboard BeiDou observation to establish the high-precision spatial datum for the LEO navigation augmentation (LEO-NA) system. The multipath characteristic of the BeiDou System (BDS) observations from Luojia-1A satellite is analyzed, and the elevation-dependent BeiDou code bias is estimated with the LEO onboard observations. A weight reduction strategy is adopted to mitigate the negative effect of poor BeiDou-2 geostationary earth orbit (GEO) satellites orbit quality, and the Luojia-1A orbit precision can be improved from 6.3 cm to 2.3 cm with the GEO weighting strategy. The precision improvement of the radial direction, along-track, and out-of-plane directions are 53.47%, 47.29%, and 76.2%, respectively. Besides, tuning the pseudo-stochastic parameters is also beneficial for improving orbit precision. The experiment results indicate that about 2 cm overlapping orbit accuracy are achievable with BeiDou observations from Luojia-1A satellite if proper data processing strategies are applied. Full article
Show Figures

Figure 1

23 pages, 13973 KB  
Article
Integrity Monitoring for Horizontal RTK Positioning: New Weighting Model and Overbounding CDF in Open-Sky and Suburban Scenarios
by Kan Wang, Ahmed El-Mowafy, Chris Rizos and Jinling Wang
Remote Sens. 2020, 12(7), 1173; https://doi.org/10.3390/rs12071173 - 6 Apr 2020
Cited by 17 | Viewed by 4282
Abstract
Integrity monitoring is an essential task for ensuring the safety of positioning services. Under a selected probability of hazardous misleading information, the protection levels (PLs) are computed according to a considered threat model to bound the positioning errors. A warning message is sent [...] Read more.
Integrity monitoring is an essential task for ensuring the safety of positioning services. Under a selected probability of hazardous misleading information, the protection levels (PLs) are computed according to a considered threat model to bound the positioning errors. A warning message is sent to users when the PL exceeds a pre-set alert limit (AL). In the short-baseline real-time relative kinematic positioning, the spatially correlated errors, such as the the orbital errors and the atmospheric delays are significantly reduced. However, the remaining atmospheric residuals and the multipath that are not considered in the observation model could directly bias the positioning results. In this contribution, these biases are analysed with the focus put on the multipath effects in different measurement environments. A new observation weighting model considering both the elevation angle and the signal-to-noise ratios is developed and their impacts on the positional results are investigated. The coefficients of the proposed weighting model are determined for the open-sky and the suburban scenarios with the positional benefits maximised. Next, the overbounding excess-mass cumulative distribution functions (EMCs) are searched on the between-receiver level for the weighted phase and code observations in these two scenarios. Based on the mean and standard deviations of these EMCs, horizontal protection levels (HPLs) are computed for the ambiguity-fixed solutions of real experiments. The HPLs are compared with the horizontal positioning errors (HPEs) and the horizontal ALs (HALs). Using the sequential exclusion algorithm developed for the ambiguity resolution in this contribution, the full ambiguity resolution can be achieved in around 100% and 95% of the time for the open-sky and the suburban scenarios, respectively. The corresponding HPLs of the ambiguity-fixed solutions are at the sub-dm to dm-level for both scenarios, and all the valid ambiguity-fixed HPLs are below a HAL of 0.5 m. For the suburban scenario with more complicated multipath environments, the HPLs increase by considering extra biases to account for multipath under a certain elevation threshold. In complicated multipath environments, when this elevation threshold is set to 30 degrees, the availability of the ambiguity-fixed solutions could decrease to below 50% for applications requiring HAL as low as 0.1 m. Full article
Show Figures

Figure 1

25 pages, 13542 KB  
Article
Mitigation of Short-Term Temporal Variations of Receiver Code Bias to Achieve Increased Success Rate of Ambiguity Resolution in PPP
by Jin Wang, Guanwen Huang, Yuanxi Yang, Qin Zhang, Yang Gao and Peiyuan Zhou
Remote Sens. 2020, 12(5), 796; https://doi.org/10.3390/rs12050796 - 2 Mar 2020
Cited by 10 | Viewed by 3444
Abstract
Ambiguity resolution (AR) is critical for achieving a fast, high-precision solution in precise point positioning (PPP). In the standard uncombined PPP (S-UPPP) method, ionosphere-free code biases are superimposed by ambiguity and receiver clock offsets to be estimated. However, besides the time-constant part of [...] Read more.
Ambiguity resolution (AR) is critical for achieving a fast, high-precision solution in precise point positioning (PPP). In the standard uncombined PPP (S-UPPP) method, ionosphere-free code biases are superimposed by ambiguity and receiver clock offsets to be estimated. However, besides the time-constant part of the receiver code bias, the complex and time-varying term in receivers destroy the stability of ambiguities and degrade the performance of the UPPP AR. The variation of receiver code bias can be confirmed by the analysis in terms of ionospheric observables, code multipath (MP) of the Melbourne–Wübbena (MW) combination and the ionosphere-free combination. Therefore, the effect of receiver code biases should be rigorously mitigated. We introduce a modified UPPP (M-UPPP) method to reduce the effects of receiver code biases in ambiguities and to decouple the correlation between receiver clock parameters, code biases, and ambiguities parameters. An extra receiver code bias is set to isolate the code biases from ambiguities. The more stable ambiguities without code biases are expected to achieve a higher success rate of ambiguity resolution and a shortened convergence time. The variations of the receiver code biases, which are the unmodeled errors in measurement residuals of the S-UPPP method, can be estimated in the M-UPPP method. The maximum variation of the code biases is up to 16 ns within two-hour data. In the M-UPPP method, the averaged epoch residuals for code and phase measurements recover their zero-mean features. For the ambiguity-fixed solutions in the M-UPPP method, the convergence times are 14 and 43 min with 17.7% and 69.2% improvements compared to that in the S-UPPP method which are 17 and 90 min under the 68% and 95% confidence levels. Full article
Show Figures

Figure 1

14 pages, 2322 KB  
Article
Analyzing the Satellite-Induced Code Bias Variation Characteristics for the BDS-3 Via a 40 m Dish Antenna
by Ju Hong, Rui Tu, Rui Zhang, Lihong Fan, Pengfei Zhang, Junqiang Han and Xiaochun Lu
Sensors 2020, 20(5), 1339; https://doi.org/10.3390/s20051339 - 29 Feb 2020
Cited by 7 | Viewed by 3544
Abstract
The satellite-induced code bias variation of geostationary satellite orbit satellites and medium earth orbit satellites of the second-generation BeiDou Navigation Satellite System (BDS-2) exceeds 1 m, which severely affects the accuracy and stability of the ambiguity resolution and high-precision positioning. With the development [...] Read more.
The satellite-induced code bias variation of geostationary satellite orbit satellites and medium earth orbit satellites of the second-generation BeiDou Navigation Satellite System (BDS-2) exceeds 1 m, which severely affects the accuracy and stability of the ambiguity resolution and high-precision positioning. With the development of the third-generation BDS (BDS-3) with a new system design and new technology, analysis of the satellite-induced code variation characteristics of BDS-3 has become increasingly important. At present, many scholars have explored the satellite-induced code bias of BDS-3, but most of them focus on BDS-3 experimental satellites via normal geodetic antenna. Compared to normal geodetic antenna, the 40-m dish antenna from the National Time Service Center can accurately detect satellite-induced code variations with low noise and high gain. Thus, observational data from fifteen BDS-3 medium earth orbit satellites are collected with the B1I/B2b/B3I/B1C/B2a frequency bands on the day of year (DOY) 199–206 in 2019, the PRN numbers of which are C19/C20/C21/C22/C23/C24/C25/C26/C27/C28/C30/C32/C33 /C35/C37, via the 40 m dish antenna to analyze the code bias variation characteristics. The results show that the obvious satellite-induced elevation‑dependent code bias variations exist in the B1I/B2b/B3I/B1C/B2a frequency bands of C28, compared with other satellites. Similarly, the multipath (MP) combination of B3I has an obvious elevation‑dependent variation within a range of 0.1 m for C21/C24/C27/C28/C37 and elevation‑dependent variation of the B2a and B2b frequency bands also exists in most satellites with a range of 0.1 m. However, the MP combination values of some satellites are asymmetric with respect to elevation, which is different from BDS-2 satellites and especially obvious for BDS-3 satellites B1I and BIC frequency bands with elevation‑dependent variations of 0.2 m, indicating that the code bias variation is not uniquely related to elevation, especially for the B1I/BIC frequency bands. What’s more, the satellite-induced code bias variation of the BDS-3 satellites is greatly reduced compared with that of the BDS-2 satellites. In addition, the similar code bias variation appears at the Xia1 station with a normal geodetic antenna of B1I/B1C/B3I/B2a/B2b of C21, B3I/B2a/B2b of C24 and B2b of C28 among B1I/B1C/B3I/B2a/B2b of C21/C24/C27/C28/C37. The influence of the BDS-3 satellite-induced elevation‑dependent code bias on precision positioning and ambiguity fixing is worth further study using different antennas or receivers. Full article
(This article belongs to the Special Issue GNSS Data Processing and Navigation)
Show Figures

Figure 1

17 pages, 7844 KB  
Article
Characteristics of BD3 Global Service Satellites: POD, Open Service Signal and Atomic Clock Performance
by Xiaolong Xu, Xilong Wang, Jingnan Liu and Qile Zhao
Remote Sens. 2019, 11(13), 1559; https://doi.org/10.3390/rs11131559 - 1 Jul 2019
Cited by 36 | Viewed by 5433
Abstract
The Chinese BeiDou Navigation Satellite System has provided a global-coverage service since 27 December 2018. Eighteen BD3 MEO satellites have been launched into space during 2017 and 2018. The signal constitution has been redesigned and four open service signals are used for transmission, [...] Read more.
The Chinese BeiDou Navigation Satellite System has provided a global-coverage service since 27 December 2018. Eighteen BD3 MEO satellites have been launched into space during 2017 and 2018. The signal constitution has been redesigned and four open service signals are used for transmission, including B1I, B1C, B2a and B3I. This paper focuses on the signal performance, Precise Orbit Determination (POD) and the atomic clock’s frequency stability issues of the BD3 satellites. The satellite-induced code bias issue found in BD2 satellites multipath combination has been proven to be eliminated in BD3 satellites. However, the pseudorange code of B1C is much noisier than that of other three frequencies, which may be related to the signal constitution and power distribution, as the minimum received power levels on the ground of B1C is 3 dB lower than that of the B2a signal. Similar results were achieved by the Ionosphere-Free combination residuals in POD using four signals, B1I-B3I, B1I-B2a, B1C-B3I and B1C-B2a, and the phase residual of B1C-B2a combination performed best. Considering the noise amplitude and compatibility with other GNSS (Global Navigation Satellite System), the B1C-B2a combination is recommended in priority for precise GNSS data processing. GFIFP combinations were also implemented to evaluate the inter-frequency phase bias of the four signals. The experimental results showed that the systematic signal with an amplitude of about 2 cm could be found in the GFIFP series. In addition, multi-GNSS POD was performed and analyzed as well, using about a hundred global-distributed IGS and iGMAS stations. Furthermore, the atomic clock’s frequency stability was estimated using the parameters of clock bias calculated in POD and the Overlap Allan Deviations showed that the frequency stability of BD3 reached approximately 2.43 × 10−14 at intervals of 10,000 s and 2.51 × 10−15 at intervals of 86,400 s, which was better than that of the GPS BLOCK IIF satellites but worse than that of Galileo satellites. Full article
Show Figures

Graphical abstract

19 pages, 7416 KB  
Article
Differential Inter-System Biases Estimation and Initial Assessment of Instantaneous Tightly Combined RTK with BDS-3, GPS, and Galileo
by Mingkui Wu, Wanke Liu, Wang Wang and Xiaohong Zhang
Remote Sens. 2019, 11(12), 1430; https://doi.org/10.3390/rs11121430 - 16 Jun 2019
Cited by 28 | Viewed by 4363
Abstract
In this contribution, we assess, for the first time, the tightly combined real-time kinematic (RTK) with GPS, Galileo, and BDS-3 operational satellites using observations from their overlapping L1-E1-B1C/L5-E5a-B2a frequencies. First, the characteristics of B1C/B2a signals from BDS-3 operational satellites is evaluated compared to [...] Read more.
In this contribution, we assess, for the first time, the tightly combined real-time kinematic (RTK) with GPS, Galileo, and BDS-3 operational satellites using observations from their overlapping L1-E1-B1C/L5-E5a-B2a frequencies. First, the characteristics of B1C/B2a signals from BDS-3 operational satellites is evaluated compared to GPS/Galileo L1-E1/L5-E5a signals in terms of observed carrier-to-noise density ratio, pseudorange multipath and noise, as well as double-differenced carrier phase and code residuals using data collected with scientific geodetic iGMAS and commercial M300Pro receivers. It’s demonstrated that the observational quality of B1C/B2a signals from BDS-3 operational satellites is comparable to that of GPS/Galileo L1-E1/L5-E5a signals. Then, we investigate the size and stability of phase and code differential inter-system bias (ISB) between BDS-3/GPS/Galileo B1C-L1-E1/B2a-L5-E5a signals using short baseline data collected with both identical and different receiver types. It is verified that the BDS-3/GPS/Galileo ISBs are indeed close to zero when identical type of receivers are used at both ends of a baseline. Moreover, they are generally present and stable in the time domain for baselines with different receiver types, which can be easily calibrated and corrected in advance. Finally, we present initial assessment of single-epoch tightly combined BDS-3/GPS/Galileo RTK with single-frequency and dual-frequency observations using a formal and empirical analysis, consisting of ambiguity dilution of precision (ADOP), ratio values, the empirical ambiguity resolution success rate, and the positioning accuracy. Experimental results demonstrate that the tightly combined model can deliver much lower ADOP and higher ratio values with respect to the classical loosely combined model whether for GPS/BDS-3 or GPS/Galileo/BDS-3 solutions. The positioning accuracy and the empirical ambiguity resolution success rate are remarkably improved as well, which could reach up to approximately 10%∼60% under poor observational conditions. Full article
Show Figures

Figure 1

22 pages, 13765 KB  
Article
Evaluation of a Low Cost Hand Held Unit with GNSS Raw Data Capability and Comparison with an Android Smartphone
by Gérard Lachapelle, Paul Gratton, Jamie Horrelt, Erica Lemieux and Ali Broumandan
Sensors 2018, 18(12), 4185; https://doi.org/10.3390/s18124185 - 29 Nov 2018
Cited by 40 | Viewed by 6716
Abstract
A newly available portable unit with GNSS raw data recording capability is assessed to determine static and kinematic position accuracy in various environments. This unit is the GPSMap 66, introduced by Garmin in early September. It is all-weather and robust for field use, [...] Read more.
A newly available portable unit with GNSS raw data recording capability is assessed to determine static and kinematic position accuracy in various environments. This unit is the GPSMap 66, introduced by Garmin in early September. It is all-weather and robust for field use, and comes with a helix antenna. The high sensitivity chipset is capable of acquiring and tracking signals in highly attenuated environments. It can track single frequency GPS, GPS + GLONASS or GPS + Galileo and record code, Doppler and carrier phase data every second in the RINEX format. The evaluation presented herein focusses on GPS and Galileo. Static and kinematic test results obtained under a wide range of realistic field conditions are reported. Differential GNSS methods and Precise Point Positioning (PPP) are used to assess absolute position accuracy in ITRF coordinates, which is sufficiently close to the GPS and Galileo reference frame for the current purpose. Under low multipath conditions, measurements are found to be sufficiently accurate to provide single epoch, bias free position accuracy of a few metres. Accuracy is a function of signal attenuation and multipath conditions. The use of an external geodetic antenna significantly reduces measurement noise and multipath in high multipath environments. Carrier phase measurements, available more or less continuously under open sky conditions, significantly improve performance in differential mode. Accuracy in vehicular mode using code and carrier phase differential RTK solution is at the level of a few to several dm. Tests were conducted in parallel with a Huawei P10 Android 8.0 smartphone. The code measurement noise of this unit was found to be significantly higher than that of the GPSMap 66, a major reason being its lower performance PIFA antenna; carrier phase was only available for short time intervals, significantly degrading differential position accuracy performance. Full article
(This article belongs to the Section State-of-the-Art Sensors Technologies)
Show Figures

Figure 1

14 pages, 5623 KB  
Article
Characterization of GNSS Signals Tracked by the iGMAS Network Considering Recent BDS-3 Satellites
by Xin Xie, Rongxin Fang, Tao Geng, Guangxing Wang, Qile Zhao and Jingnan Liu
Remote Sens. 2018, 10(11), 1736; https://doi.org/10.3390/rs10111736 - 3 Nov 2018
Cited by 28 | Viewed by 4667
Abstract
The international GNSS monitoring and assessment system (iGMAS) tracking network has been established by China to track multi-GNSS satellites. A key feature of iGMAS stations is the capability to fully track new navigation signals from the recently deployed BDS-3 satellites. In addition to [...] Read more.
The international GNSS monitoring and assessment system (iGMAS) tracking network has been established by China to track multi-GNSS satellites. A key feature of iGMAS stations is the capability to fully track new navigation signals from the recently deployed BDS-3 satellites. In addition to the B1I and B3I signals inherited from BDS-2 satellites, the BDS-3 satellites are capable of transmitting new open service signals, including B1C at 1575.42 MHz, B2a at 1176.45 MHz, and B2b at 1207.14 MHz. In this contribution, we present a comprehensive analysis and characterization of GNSS signals tracked by different receivers and antennas equipped in the iGMAS network, especially as they relate to BDS-3 signals. Signal characteristics are analyzed in terms of the carrier-to-noise density ratio for the different signals as measured by the receiver, as well as pseudo-range noise and multipath. Special attention is given to discussion of the satellite-induced code bias, which has been identified to exist in the code observations of BDS-2, and the inter-frequency clock bias (IFCB), which has been observed in the triple-frequency carrier phase combinations of GPS Block IIF and BDS-2 satellites. The results indicate that the satellite-induced code bias is negligible for all signals of BDS-3 satellites, while small IFCB variations with peak amplitudes of about 1 cm can be recognized in BDS-3 triple-carrier combinations. Full article
(This article belongs to the Special Issue Environmental Research with Global Navigation Satellite System (GNSS))
Show Figures

Figure 1

23 pages, 3837 KB  
Article
Characteristics of BeiDou Navigation Satellite System (BDS) Code Observations for Different Receiver Types and Their Influence on Wide-Lane Ambiguity Resolution
by Yangwei Lu, Zhenjie Wang, Shengyue Ji, Wu Chen and Duojie Weng
Sensors 2018, 18(10), 3546; https://doi.org/10.3390/s18103546 - 19 Oct 2018
Cited by 3 | Viewed by 3494
Abstract
The Chinese BeiDou Navigation Satellite System (BDS) has been an important constitute of the Global Navigation Satellite System (GNSS), and the combination of GPS and BDS shows significant improvements when compared with single GPS system for real-time kinematic (RTK) positioning, and improves on [...] Read more.
The Chinese BeiDou Navigation Satellite System (BDS) has been an important constitute of the Global Navigation Satellite System (GNSS), and the combination of GPS and BDS shows significant improvements when compared with single GPS system for real-time kinematic (RTK) positioning, and improves on availability and fixing rates, especially in the East Asian area. While network RTK might have different types of receivers, both for global and regional networks, different types of receiver may adopt different internal multipath mitigation methods and other techniques that result in different pseudorange characteristics, especially for a multipath. Then, the performance of wide-lane ambiguity resolution (WL AR) is affected. In this study, we first analyze and compare the characteristics of BDS dual-frequency observations for different types of receivers, including Trimble, Leica, Javad, and Septentrio, based on multipath (MP) observables, and then we assess their influence on double-differenced (DD) WL AR. The numerical results show that an obvious low-frequency component exists in MP observables of BDS geostationary earth-orbit satellites (GEOs) for Leica receivers, while its high-frequency measurement noise is very small. For geosynchronous orbit satellites (IGSOs) and medium earth-orbit satellites (MEOs), a slight fluctuation can also be observed that is similar to that of GPS satellites, except for the satellite-included code bias. In Trimble, Javad, and Septentrio receivers, the MP series are dominated by high-frequency measurement noise, both for GEOs and non-GEOs, except for satellite-included code bias. Furthermore, the characteristic of Leica receivers for BDS GEOs seriously affects WL AR and, even for a short baseline, it takes a long time for WL ambiguities to converge, or not converge for many GEO-related DD WL ambiguities, while Trimble, Javad, and Septentrio receivers perform well for short and medium baselines. Then, a time-difference method is proposed to mitigate the multipath of BDS GEOs for a Leica receiver. After applying the proposed method, WL ambiguity fixing rates of GEO-related satellite pairs are improved significantly and the convergence time is shortened from several hours to ten minutes. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

22 pages, 6229 KB  
Article
An Improved BDS Satellite-Induced Code Bias Correction Model Considering the Consistency of Multipath Combinations
by Lin Pan, Fei Guo and Fujian Ma
Remote Sens. 2018, 10(8), 1189; https://doi.org/10.3390/rs10081189 - 28 Jul 2018
Cited by 12 | Viewed by 4188
Abstract
The satellite-induced systematic biases were identified to exist in the code observations from BeiDou navigation satellite system (BDS) satellites using multipath (MP) combinations. The current correction model for satellite-induced code bias (SICB) does not take into account the consistency of MP combinations, which [...] Read more.
The satellite-induced systematic biases were identified to exist in the code observations from BeiDou navigation satellite system (BDS) satellites using multipath (MP) combinations. The current correction model for satellite-induced code bias (SICB) does not take into account the consistency of MP combinations, which limits the accuracy of the developed model. Both the cycle slips and different tracking of a satellite at different stations can affect the absolute values of MP combinations, although the variations remain unchanged. An improved SICB piecewise linear correction model as a function of elevations is proposed. We estimate the model parameters for each frequency and for each satellite. The single-difference of MP combinations in the domain of elevation angles is carried out to remove the unknown ambiguities and stable hardware delays so that the SICB modeling is free of the effects of MP combination inconsistency. In addition, a denser elevation node separation of 1°, rather than the 10° usually employed by the traditional model, is used to describe the more precise SICB variations. The SICB corrections show significant differences among orbit types and frequency bands. The SICB variations have much less effect on Inclined Geosynchronous Orbit (IGSO) satellites than on Medium Earth Orbit (MEO) satellites for the regional BDS (BDS-2). The B1 signal has the largest SICB corrections, which can be up to 0.9 m close to zenith for BDS-2 MEO satellites, and the B2 signal follows. After adding the SICB corrections to the code observations, the elevation-dependent code biases vanish, and we can obtain improved code observations. After applying the improved SICB correction model, the root mean square (RMS) values of MP combination time series are reduced by 7%, 6% and 2%, and 18%, 14% and 5% on the B1, B2 and B3 frequencies for the BDS-2 IGSO and MEO satellites, respectively. For comparison, we also establish the traditional SICB correction model. With the traditional SICB correction model, the corresponding RMS MP combinations are smaller than those of uncorrected MP series, but slightly larger than those of corrected MP series using the improved SICB correction model. To validate the effectiveness and correctness of our proposed model, single-frequency precise point positioning (PPP) processing with BDS-2 MEO and IGSO satellites is conducted. An accuracy improvement of 24%, 19% and 89%, and 7%, 7% and 6% for the single-frequency PPP applying the improved SICB corrections over the case without SICB corrections and the case using the traditional SICB corrections in east, north and vertical directions is achieved, respectively. Although only centimeter-level SICB variations could be observed for the two legacy signals B1 and B3 and the three new navigation signals B1C, B2a and B2b transmitted by the satellites of global BDS demonstration system (BDS-3S), we still establish an effective SICB correction model on the B1 and B3 frequencies for BDS-3S IGSO satellites, and the RMS MP combinations are reduced by 1–4% after applying the improved SICB corrections. Full article
(This article belongs to the Special Issue Environmental Research with Global Navigation Satellite System (GNSS))
Show Figures

Graphical abstract

13 pages, 8057 KB  
Article
An Improved BeiDou-2 Satellite-Induced Code Bias Estimation Method
by Jingyang Fu, Guangyun Li and Li Wang
Sensors 2018, 18(5), 1354; https://doi.org/10.3390/s18051354 - 27 Apr 2018
Cited by 2 | Viewed by 4652
Abstract
Different from GPS, GLONASS, GALILEO and BeiDou-3, it is confirmed that the code multipath bias (CMB), which originate from the satellite end and can be over 1 m, are commonly found in the code observations of BeiDou-2 (BDS) IGSO and MEO satellites. In [...] Read more.
Different from GPS, GLONASS, GALILEO and BeiDou-3, it is confirmed that the code multipath bias (CMB), which originate from the satellite end and can be over 1 m, are commonly found in the code observations of BeiDou-2 (BDS) IGSO and MEO satellites. In order to mitigate their adverse effects on absolute precise applications which use the code measurements, we propose in this paper an improved correction model to estimate the CMB. Different from the traditional model which considering the correction values are orbit-type dependent (estimating two sets of values for IGSO and MEO, respectively) and modeling the CMB as a piecewise linear function with a elevation node separation of 10°, we estimate the corrections for each BDS IGSO + MEO satellite on one hand, and a denser elevation node separation of 5° is used to model the CMB variations on the other hand. Currently, the institutions such as IGS-MGEX operate over 120 stations which providing the daily BDS observations. These large amounts of data provide adequate support to refine the CMB estimation satellite by satellite in our improved model. One month BDS observations from MGEX are used for assessing the performance of the improved CMB model by means of precise point positioning (PPP). Experimental results show that for the satellites on the same orbit type, obvious differences can be found in the CMB at the same node and frequency. Results show that the new correction model can improve the wide-lane (WL) ambiguity usage rate for WL fractional cycle bias estimation, shorten the WL and narrow-lane (NL) time to first fix (TTFF) in PPP ambiguity resolution (AR) as well as improve the PPP positioning accuracy. With our improved correction model, the usage of WL ambiguity is increased from 94.1% to 96.0%, the WL and NL TTFF of PPP AR is shorten from 10.6 to 9.3 min, 67.9 to 63.3 min, respectively, compared with the traditional correction model. In addition, both the traditional and improved CMB model have a better performance in these aspects compared with the model which does not account for the CMB correction. Full article
(This article belongs to the Collection Positioning and Navigation)
Show Figures

Figure 1

18 pages, 4797 KB  
Article
GPS and BeiDou Differential Code Bias Estimation Using Fengyun-3C Satellite Onboard GNSS Observations
by Wenwen Li, Min Li, Chuang Shi, Rongxin Fang, Qile Zhao, Xiangguang Meng, Guanglin Yang and Weihua Bai
Remote Sens. 2017, 9(12), 1239; https://doi.org/10.3390/rs9121239 - 1 Dec 2017
Cited by 23 | Viewed by 6428
Abstract
Differential code biases (DCBs) are important parameters in GNSS (Global Navigation Satellite System) applications such as positioning as well as ionosphere remote sensing. In comparison to the conventional approach, which utilizes ground-based observations and parameterizes global ionosphere maps together with DCBs, a method [...] Read more.
Differential code biases (DCBs) are important parameters in GNSS (Global Navigation Satellite System) applications such as positioning as well as ionosphere remote sensing. In comparison to the conventional approach, which utilizes ground-based observations and parameterizes global ionosphere maps together with DCBs, a method is presented for GPS and BeiDou system (BDS) satellite DCB estimation using onboard observations from the Chinese Fengyun-3C (FY3C) satellite. One month worth of GPS and BDS data during March 2015 was exploited and the GPS C1C-C2W and BDS C2I-C7I DCBs were explored. To improve DCB estimation precision, the dual frequency carrier phase measurements leveled by code measurements were used to form basic observation equation. Code multipath errors of the FY3C onboard GPS/BDS observations were assessed and modeled as grid maps, and their impact on DCB estimation was analyzed. By correcting code multipath errors, the stability of DCB estimates was improved by 5.0%, 3.1%, 16.2% and 13.6% for GPS, and BDS geosynchronous orbit satellites (GEOs), inclined geosynchronous satellite orbit satellites (IGSOs) and medium Earth orbit satellites (MEOs), respectively. The monthly stability of FY3C-based DCBs was at the order of 0.1 ns for GPS satellites, 0.2 ns for BDS GEOs and 0.1 ns for BDS IGSOs and MEOs. By comparison to the ground-based DCB products issued by other institutions, FY3C-based DCBs showed stability degradation for BDS C02 and C05 satellites, while, for other satellites, the stability reached a similar or even superior level. The estimated FY3C receiver DCB stability was at the order of 0.2 ns for both GPS and BDS. In addition to the DCB estimates, the obtained vertical total electron content above the FY3C satellite orbit was also investigated and its realism was examined in physical and numerical aspects. Full article
Show Figures

Figure 1

Back to TopTop