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Abstract: Integrity monitoring is an essential task for ensuring the safety of positioning services.
Under a selected probability of hazardous misleading information, the protection levels (PLs) are
computed according to a considered threat model to bound the positioning errors. A warning
message is sent to users when the PL exceeds a pre-set alert limit (AL). In the short-baseline real-time
relative kinematic positioning, the spatially correlated errors, such as the the orbital errors and the
atmospheric delays are significantly reduced. However, the remaining atmospheric residuals and the
multipath that are not considered in the observation model could directly bias the positioning results.
In this contribution, these biases are analysed with the focus put on the multipath effects in different
measurement environments. A new observation weighting model considering both the elevation
angle and the signal-to-noise ratios is developed and their impacts on the positional results are
investigated. The coefficients of the proposed weighting model are determined for the open-sky and
the suburban scenarios with the positional benefits maximised. Next, the overbounding excess-mass
cumulative distribution functions (EMCs) are searched on the between-receiver level for the weighted
phase and code observations in these two scenarios. Based on the mean and standard deviations
of these EMCs, horizontal protection levels (HPLs) are computed for the ambiguity-fixed solutions
of real experiments. The HPLs are compared with the horizontal positioning errors (HPEs) and
the horizontal ALs (HALs). Using the sequential exclusion algorithm developed for the ambiguity
resolution in this contribution, the full ambiguity resolution can be achieved in around 100% and
95% of the time for the open-sky and the suburban scenarios, respectively. The corresponding HPLs
of the ambiguity-fixed solutions are at the sub-dm to dm-level for both scenarios, and all the valid
ambiguity-fixed HPLs are below a HAL of 0.5 m. For the suburban scenario with more complicated
multipath environments, the HPLs increase by considering extra biases to account for multipath
under a certain elevation threshold. In complicated multipath environments, when this elevation
threshold is set to 30 degrees, the availability of the ambiguity-fixed solutions could decrease to below
50% for applications requiring HAL as low as 0.1 m.

Keywords: RTK; GPS; integrity monitoring; overbounding CDF; weighting model

1. Introduction

The real-time kinematic (RTK) positioning technique is a popular Global Navigation Satellite
System (GNSS) based positioning technique. It is substantially different from the precise point
positioning (PPP) technique that typically requires a long convergence time of tens of minutes [1–3],
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because the RTK positioning technique removes or mitigates observation errors such as clocks,
hardware biases, and a large part of the spatially correlated errors such as the atmospheric delays. This
enables ambiguity resolution within a short time. For the RTK of short baselines, e.g., less than 10 km,
the atmospheric delays can be considered significantly reduced under quiet atmosphere conditions.
The remaining biases mainly consist of the multipath effects. They could vary strongly with the
measurement environments, for instance in urban areas, and thus may hamper successful ambiguity
resolution and bias the positioning results.

To de-weight the observations with large noise, multipath and atmospheric residuals,
elevation-dependent weighting functions are typically used in the RTK positioning [4]. The elevation
angle, however, is not the only factor that could be used to build a weighting model. As shown in [5,6],
the weighting model exploiting the carrier-to-noise density ratio (C/N0) can also effectively de-weight
low-quality observations and improve the positioning results. Kuusniemi et al. [7] also utilised
C/N0 to weight the code measurements in signal-degraded environments. In environments with
complicated multipath effects and non-line-of-sight (NLOS) errors, e.g., in urban canyons, considering
both the elevation angles and the C/N0 in the weighting model was found to be useful for code-based
positioning [8]. Medina et al. [9] also used mixed elevation-based and C/N0-based model to weight
the code noise and multipath in signal-degraded scenarios. Further studies were also performed with
respect to the stochastic modelling of baseline data [10–12].

In RTK positioning, the multipath effects remaining in the double-differenced (DD) observations
strongly vary with the measurement environments. This variation also differs for different observation
types. For a weighting model considering both the elevation angles and the C/N0, it is thus important
to adjust the impacts of these two factors under different measurement scenarios and for different
observation types. In this contribution, the first issue to be addressed is to develop a weighting
model allowing different and adjustable impacts of the elevation angles and the C/N0. The weighting
coefficients of these two factors are searched for the open-sky and the suburban scenarios, under the
ambiguity-float and -fixed modes. For the ambiguity-fixed case, a sequential exclusion algorithm is
developed for ambiguity resolution, so that possibly many ambiguities at different elevation angles and
C/N0 can be resolved at each epoch, and the remaining residuals can be used for the determination of
the weighting coefficients. The weighting models achieving the largest positional benefits are then used
for further analysis.

In road transport applications, integrity monitoring (IM) is an essential task to ensure that the
positioning errors are less than the alert limit (AL) with a pre-defined probability of hazardous
misleading information (PHMI). With the varying satellite geometry over time, the protection levels
(PLs) are computed to bound possible positioning errors under the PHMI, and are compared with the
AL. In case that the AL is exceeded, a warning message is sent to users within the time-to-alert. The IM
was investigated for aviation over several decades [13–17]. In one IM approach, the solution separation
test (SST) for the fault detection and exclusion (FDE) procedure is first applied. The protection levels
are produced next within the advanced receiver autonomous integrity monitoring (ARAIM) algorithm
for both the horizontal and vertical guidance [13,14,18]. The ARAIM algorithm in aviation has been
adapted in recent years for ground-based applications such as road transport. The IM was performed,
e.g., for PPP [19] and RTK [16,20,21].

The ARAIM algorithm used in aviation, however, is applied for single-receiver positioning. For the
ground-based RTK positioning, more complicated multipath environments may need to be considered
in the threat model, while the accuracy of the satellite clocks and orbits, which are important for
the aviation ARAIM, do not play an important role for short-baseline RTK processing. In addition,
the atmospheric residuals need to be considered at the between-receiver level. In this contribution,
the analysis is performed for short baselines in atmosphere quiet days, so that the focus is on the
multipath effects under different measurement scenarios. This leads to the second issue to be addressed
in this contribution, i.e., determination of the overbounding mean and standard deviations for the
between-receiver phase and code noise/biases under different measurement scenarios, which will be
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used for computation of the representative PLs during the IM.It is noted that during geophysical events
like solar flare [22] and magnetic storms [23,24], abnormal ionosphere behaviours may lead to enlarged
differential ionospheric errors in the RTK processing. Note that this study is focused on short-baseline
RTK positioning in quiet atmosphere conditions, and does not attempt to account for the RTK integrity
monitoring under extreme atmospheric conditions.

To solve this problem, the excess-mass cumulative distribution functions (EMCs) are searched
for different observation types and measurement scenarios. In this contribution, the authors do not
address the very challenging urban areas, which will be considered in future research, but put the
focus on open-sky and suburban scenarios. In the presented IM approach, after applying the FDE
procedure with the SST, utilising these overbounding mean and standard deviations, the horizontal
protection levels (HPLs) are computed for the ambiguity-fixed solutions. Using the sequential exclusion
method for ambiguity resolution as mentioned before, the proportion of the time epochs achieving
full ambiguity resolution (FAR) is discussed for the open-sky and the suburban scenarios. The valid
ambiguity-fixed HPLs are checked to bound the horizontal positioning errors (HPEs) and to be less than
the horizontal AL (HAL). In addition, for the suburban scenario having more complicated multipath
environments, investigations are also performed considering extra multipath biases for low-elevation
rover phase observations. The resultant HPLs are compared with a set of different HALs that might be
needed for different road transport applications.

The paper starts with the signal analysis of different observation types under open-sky and
suburban scenarios. The weighting model considering both the elevation angles and the C/N0 is
developed, and the coefficients leading to the largest positional benefits are given and used in the
positioning and IM. The overbounding EMCs are then searched for the between-receiver mode for
different observation types and various scenarios. Subsequently, the threat model, the FDE method,
and the procedure to compute the HPLs are explained in detail. Test results based on real data are then
analysed, where the positioning solutions, the HPLs and the HALs are discussed. The conclusions are
then drawn.

2. Signal Analysis

For the GPS dual-frequency scenario, the expected observed-minus-computed (O-C) vectors of
the DD short-baseline phase (∆ΦDD) and code (∆PDD) observations can be formulated as [25]:

E(y) = E

[
∆ΦDD

∆PDD

]
=

[
e2 ⊗ (DT

mG) diag(λ1, λ2)⊗ Im−1

e2 ⊗ (DT
mG) 0

]
︸ ︷︷ ︸

A

·
[

∆r

a

]
(1)

where G = [u1, · · · , um]T contains the unit vector us from satellite s (s = 1, · · · , m) to the rover
receiver, and the differencing operator DT

m = [−em−1, Im−1] forms the between-satellite difference
with em−1 and Im−1 denoting the vector of ones with the length m− 1 and the identity matrix with
size (m− 1)× (m− 1), respectively. m denotes the number of satellites with 1 representing here the
reference satellite. λj stands for the wavelength on frequency j, and diag(·) denotes the diagonal matrix
with the diagonal elements contained in (·). E(·) is the expectation operator. The rover coordinate
increment vector starting from an approximate position and the DD ambiguity vector are represented
by ∆r and a, respectively. The operator ⊗ denotes the Kronecker product. Apart from the a priori DD
receiver-satellite geometric distance, the corrections of the antenna phase centre offset (PCO) and phase
centre variation (PCV), and the a priori DD tropospheric delays computed based on the Saastamoinen
model [26] and the Ifadis mapping function [27] are also corrected for the O-C terms.
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Assuming that the code and phase observations are uncorrelated, the variance-covariance matrix
of the O-C terms, Qy can be formulated as:

Qy =

[
QφDD 0

0 QpDD

]
=

[
(I2 ⊗ DT

m)Qφ(I2 ⊗ Dm) 0

0 (I2 ⊗ DT
m)Qp(I2 ⊗ Dm)

]
(2)

where the variance-covariance matrices of the between-receiver phase (Qφ) and code (Qp) observations
are diagonal matrices, given as:

Qφ = blkdiag

(
σ2

φ,1 ×W−1
φ,1 , σ2

φ,2 ×W−1
φ,2

)
(3)

Qp = blkdiag

(
σ2

p,1 ×W−1
p,1 , σ2

p,2 ×W−1
p,2

)
(4)

for which σφ,j and σp,j represent the between-receiver phase and code standard deviations on frequency
j in the zenith direction (and for a between-receiver C/N0 of ∞), respectively. blkdiag(·) forms the block
diagonal matrix. The phase and code weighting matrices Wφ,j and Wp,j are constructed as follows:

Wφ,j = diag(w1
φ,j, · · · , wm

φ,j) (5)

Wp,j = diag(w1
p,j, · · · , wm

p,j) (6)

for which the phase and code weighting functions ws
φ,j and ws

p,j for satellite s on frequency j will be
discussed later.

For the purpose of signal analysis, and with the ground truth of the baseline coordinates known,
the DD phase (δφ1s

DDj) and code (δp1s
DDj) residuals can then be expressed as:

δφ1s
DDj = ∆φ1s

DDj − ∆ρ1s
DD − λj × N1s

j (7)

δp1s
DDj = ∆p1s

DDj − ∆ρ1s
DD (8)

where ∆φ1s
DDj and ∆p1s

DDj represent the DD O-C terms of the phase and code observations on frequency

j, respectively, and ∆ρ1s
DD denotes the DD geometry increment based on the ground truth and a priori

coordinates of the rover. Using the strong baseline-known model [28], the DD ambiguities N1s
j are

resolved with the search-and-shrink least-squares ambiguity decorrelation adjustment (LAMBDA)
method using the integer least-squares (ILS) estimator [29–31]. The ambiguities are only considered as
successfully resolved when the ratio µ = R2/R1 is higher than 3 [32,33]. The R1 and R2 represent here the
squared norm of the ambiguity residuals measured in the metric of the variance-covariance matrix of the
float ambiguities for the best and the second best integer ambiguity candidates, respectively. The resolved
ambiguities are assumed fixed until cycle slips or large data gaps are detected, and the unresolved
ambiguities are treated as pseudo-observations and constrained as constant in time. To resolve possible
large ambiguity sets under different elevation angles and C/N0, so that possibly many phase residuals
(Equation (7)) can be utilised in the data analysis, a sequential exclusion algorithm is developed and
applied to exclude suspected observations that may hamper the ambiguity resolution. The detailed
procedure is described in Appendix A. With the baseline coordinates and the ambiguities corrected
in Equations (7) and (8), the DD residuals should contain the noise, the multipath, and the DD
atmospheric residuals.

The data analysis is performed using GPS dual-frequency data with 1 Hz sampling rate collected
on L1C and L2W channels. To simulate different measurement scenarios, the continuously operating
reference station (CORS) UWA0 located at the University of Western Australia is used as the reference
station, and the station CUT0 located on the roof of a building in the Curtin University (left panel of
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Figure 1), which is about 8 km away from UWA0, is used as the rover station to simulate the open-sky
scenario. With similar baseline length, another rover receiver mounted on the roof of a lower building,
which is surrounded by trees and metal structures (middle and right panels of Figure 1), is used to
simulate the suburban scenario. The station is denoted as SUB0. The receiver and antenna types of
both baselines are given in Table 1. The data collected from 6:34:45 to 23:59:59 in GPS time (GPST) on
15 October 2019 were analysed for both baselines. The data were collected under quiet ionosphere
conditions. Based on the Australian total electron content (TEC) maps provided by the Australian
Bureau of Meteorology/Space Weather Branch (IPS) [34], during the test time periods, the test region
had TEC values lower than 20 TEC unit (TECU). For the troposphere, the daily rainfall amount is
0 mm [35]. In this study, the lower bound of the C/N0 in the contribution is set to 12 dBHz, which
is recognised as the minimal possible signal strength [36]. The satellite having the maximum mean
elevation angles for the baseline is used as the reference satellite. It remains the reference satellite until
its mean elevation angle is reduced to below 30 degrees. The elevation mask is set to 10 degrees in this
study. It is noted that the reference station of RTK processing is assumed to be located under good
measurement environment and broadcasts its data in a continuous manner.

Figure 1. Rover receivers in: (left) the open-sky scenario and (middle and right) the suburban scenario.

Table 1. Receiver and antenna types of the two baselines used in data analysis.

Receiver Function Receiver Type Antenna Type

UWA0 Reference receiver SEPT POLARX5 JAVRINGANT_DM SCIS

CUT0 Rover (Open-sky scenario) TRIMBLE NetR9 TRM59800.00 SCIS

SUB0 Rover (Suburban scenario) TRIMBLE R10 TRMR10 NONE

2.1. Elevation, C/N0 and Biases

To show the changes of the DD residuals with elevation angles, the elevation angle θ1s is computed
based on the elevation-dependent weighting function w(θs) = 1/

(
1 + 10× exp(−θs/10◦)

)2 (see also
Appendix A), so that:

(σ1s
j )2 = 2σ2

j,0 ×
(

1 + 10× exp
(
− θ1s

10◦

))2

= σ2
j,0 ×

((
1 + 10× exp

(
− θ1

10◦
))2

+

(
1 + 10× exp

(
− θs

10◦
))2

)
(9)
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where σj,0 represents the between-receiver zenith-referenced standard deviation for code or phase
observations on frequency j, and σ1s

j represents that on the DD level, mapped to the slant direction.
Based on Equation (9):

(
1 + 10× exp

(
− θ1s

10◦

))2

=

(
1 + 10× exp

(
− θ1

10◦

))2

+

(
1 + 10× exp

(
− θs

10◦

))2

2
(10)

so that θ1s can be obtained with:

θ1s = −10◦ × log

(
0.1×

√√√√√(
1 + 10× exp

(
− θ1

10◦

))2

+

(
1 + 10× exp

(
− θs

10◦

))2

2
− 0.1

)
(11)

where log(·) is the natural logarithm of the element in (·).
The DD phase (δφ1s

DDj) and code (δp1s
DDj) residuals are grouped for the elevation intervals of θ1s

for every one degree, and the root mean square (RMS) of the residuals are plotted in the top panels of
Figure 2 for the open-sky and suburban scenarios. The code RMS is divided by a factor of 100 for the
purpose of illustration. Together with the RMS, the total number of observations used for computing
the RMS in each elevation interval is also shown in the bottom panels of Figure 2. In general, the RMS
of all observation types decrease with increasing elevation angles. Compared to the open-sky scenario,
larger increase in the phase RMS can be observed for the suburban scenario when decreasing the
low elevation angles (the red and blue lines in the top panel of Figure 2b). This should be related to
the larger phase multipath effects in the suburban scenario. For the code RMS, compared with their
smooth behaviours in the open-sky scenario, greater randomness in RMS is visible under the suburban
scenario due to the fact that the residuals become less sensitive to the elevation angles in the more
complicated environment (the green and magenta lines in the top panel of Figure 2b).
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(a) Open-sky scenario
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(b) Suburban scenario

Figure 2. Root Mean Squares (RMS) of the double-difference (DD) residuals with respect to the
elevation angles (θ1s) in: (a) the open-sky scenario and (b) the suburban scenario. Note that the RMS of
the code residuals is divided by a factor of 100. In the bottom panels, the blue, the red and the green
lines are almost overwritten by the magenta lines.

In addition to the relationship between the DD residuals and the elevation angles, the changes of
the residuals with the C/N0 were also analysed. Similar to Equation (9), the C/N0 S1s

j are computed
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based on the C/N0-dependent weighting function w(Ss
j ) = 1/(1 + bj × 10−0.1×Ss

j ) (see also [6]),
such that:

(σ1s
j )2 = 2σ2

j,0 ×
(
1 + bj × 10−0.1×S1s

j
)

= σ2
j,0 ×

(
2 + bj × 10−0.1×S1

j + bj × 10−0.1×Ss
j
)

(12)

where the coefficient bj varies with the frequency, and Ss
j denotes the between-receiver C/N0 for

satellite s on frequency j. Based on Equation (12):

10−0.1×S1s
j =

10−0.1×S1
j + 10−0.1×Ss

j

2
(13)

so that S1s
j can be obtained with:

S1s
j = −10× log10

(
10−0.1×S1

j + 10−0.1×Ss
j

2

)
(14)

where the between-receiver C/N0 Ss
j can be obtained, similar to Equation (14), with:

Ss
j = −10× log10

(
10−0.1×Ss

j,r + 10−0.1×Ss
j,v

2

)
(15)

where Ss
j,r and Ss

j,v represent the C/N0 of the reference and the rover receivers for satellite s on
frequency j, respectively.

The RMS of the DD residuals is computed within small C/N0 intervals (S1s
j ) of 0.3 dBHz starting

from the minimum S1s
j above the lower bound of 12 dBHz, and is shown in the top panels of Figure 3.

In general, a higher correlation between the RMS and the C/N0 can be observed in the suburban
scenario. It can also be observed that the signals on L2W (the red and magenta lines in the top panels)
generally experience lower C/N0 than those on L1C (the blue and green lines in the top panels). This
agrees with the results shown, e.g., in [37] that the C/N0 for the L2 P(Y) signals are lower than those
for the L1 C/A and L5 signals, which is related to the lower minimum received power of L2.

Based on the analysis above, the weighting functions ws
φ,j and ws

p,j are in this study considered as
a function of both the elevation angles θs and the C/N0 for phase Ss

j in the form:

ws
φ,j =

1(
1 + aφ × exp(− θs

10◦ )
)2 ×

1

1 + bφ,j × 10−0.1×Ss
j

(16)

ws
p,j =

1(
1 + ap × exp(− θs

10◦ )
)2 ×

1

1 + bp,j × 10−0.1×Ss
j

(17)

where the parameters aφ and ap are used to adjust the elevation impact on the weights, and bφ,j and bp,j
are used to adjust the impact of the C/N0 on the weighting functions. In this contribution, to evaluate
the weighting model as will be discussed in Section 2.2, aφ and ap are empirically searched from 0 to
16 with a step of 2, and bφ,j and bp,j are searched for 0, 100, 500, 1000, 4000, 7000 and 104 Hz to find the
most appropriate coefficients. This study does not attempt to search for higher coefficients for bφ,j and

bp,j, as the weighting functions 1/(1 + bφ,j × 10−0.1×Ss
j ) and 1/(1 + bp,j × 10−0.1×Ss

j ) are expected to be
around one at a Ss

j of 54 dBHz, which is characterised as the maximum possible signal power strength
according to [36].
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(a) Open-sky scenario
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Figure 3. RMS of the DD residuals with respect to the C/N0 (S1s
j ) in: (a) the open-sky scenario and

(b) the suburban scenario. Note that the RMS of the code residuals is divided by a factor of 100. In the
bottom panels, the blue and the red lines are almost overwritten by the green and the magenta lines.

2.2. The Weighting Function

This section searches for the appropriate coefficients aφ, ap, bφ,j and bp,j in the proposed phase
and code weighting functions ws

φ,j (Equation (16)) and ws
p,j (Equation (17)). As shown in Figures 2

and 3, the DD residuals are correlated with both the elevation angles and the C/N0. In actual GNSS
positioning, however, too much de-weighting of the observations at low elevation angles or with low
C/N0 is nearly equivalent to excluding these observations. In such cases, although their large biases
will less influence the positional results, the observation model also becomes weaker, especially in the
measurement environment with limited satellite visibility. In this section, the authors directly evaluate
the influences of the DD residuals on the positioning results. The first case utilizes the dual-frequency
phase residuals δφ1s

DDj and approximates the situation in the ambiguity-fixed case, where the code
observations are strongly de-weighted and their weighting coefficients thus do not play much of a
role in both the open and suburban scenarios with non-extreme code multipath. The second case
utilises the dual-frequency code residuals δp1s

DDj and approximates the situation in the ambiguity-float
case (at the first epoch of initialisation), where the phase observations are totally reserved for the
ambiguities [28] and their weighting coefficients thus do not influence the positioning results. Their
influences on the positional results ∆rφ in the first case, and ∆rp in the second case, are calculated from
the least-squares adjustment as follows:

∆rφ = (ATQ−1
φDD A)−1 ATQ−1

φDDδφDD (18)

∆rp = (ATQ−1
pDD A)−1 ATQ−1

pDDδpDD (19)

where the matrix A = e2 ⊗ (DT
mG) (Equation (1)), and note that G contains the satellite-to-receiver

unit vectors in the north, east and vertical directions. The phase and code residual vectors δφDD and
δpDD consist of the phase and code residuals δφ1s

DDj (Equation (7)) and δp1s
DDj (Equation (8)) for j = 1, 2.

The zenith-referenced undifferenced signal standard deviations are first assumed as 0.003 m and 0.3 m
for the phase and code observations, and the between-receiver phase and code standard deviations
σφ,j (Equation (3)) and σp,j (Equation (4)) are obtained by multiplying them by a factor of

√
2 due to the

between-receiver differencing. An outlier detection procedure is performed using the χ2-test. The test
statistics Tφ and Tp for the phase and code processing are expressed as [13]:

Tφ = δφT
DD(Q

−1
φDD −Q−1

φDD A(ATQ−1
φDD A)−1 ATQ−1

φDD)δφDD (20)

Tp = δpT
DD(Q

−1
pDD −Q−1

pDD A(ATQ−1
pDD A)−1 ATQ−1

pDD)δpDD (21)
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The Tφ and Tp are compared with the inverse cumulative distribution function (CDF) of the central χ2

distribution Q−1
χ2

f
(1− PFA,χ2), where f denotes the degrees of freedom, and PFA,χ2 is the probability

of false alert allocated to the χ2-test, which is set to 10−6 in this study. Data with the PDOP higher
than 10 is not considered. The PDOP for RTK is generated using the design matrix and the weighting
matrix for observations on L1 [28]. We note that the χ2-test is performed separately for the code- and
phase-processing. As the residuals are already corrected by the ambiguities and the ground truth of
the rover (Equations (7) and (8)), they are assumed to contain only the noise and miss-modelled effects
like the multipath and the remaining atmospheric residuals.

To evaluate the impacts of the weighting coefficients on the positional results, the weighting
coefficients are searched as mentioned at the end of Section 2. The mean of the 3D positioning errors,
i.e., the mean of |∆rφ| for phase and |∆rp| for code, is used for the purpose of evaluation. | · | denotes
the norm of the vector. The weighting coefficients leading to the smallest mean are given for the phase
and code solutions, and for different measurement scenarios in Table 2. The improvement ratio P is
computed as:

P =


Meanφ(0, 0, 0)−Meanφ(âφ, b̂φ,1, b̂φ,2)

Meanφ(0, 0, 0)
, Phase processing

Meanp(0, 0, 0)−Meanp(âp, b̂p,1, b̂p,2)

Meanp(0, 0, 0)
, Code processing

(22)

where Meanφ(u1,u2,u3) and Meanp(u1,u2,u3) refer to the mean of the phase- and code-based 3D
positional errors applying the three weighting coefficients u1, u2 and u3, respectively, and âφ, âp, b̂φ,j
and b̂p,j denote the weighting coefficients leading to the smallest mean value for the corresponding
observation types. The case when setting all coefficients to zeros represents the case without using
any weighting function. Note that aφ and ap, used as weighting coefficients for the elevation angles,
are not frequency-dependent, whereas bφ,j and bp,j, used as weighting coefficients for the C/N0, are
frequency-dependent. The coefficient combinations delivering invalid solutions, i.e., with PDOP>10
or with too many observations screened in the χ2-test, in more than 1% of the tested time epochs are
not considered for further evaluations. To make a fair comparison, only the time epochs that produce
valid positional results using all valid coefficient combinations are used for computing the statistics in
Table 2. For comparison purposes, the statistics are also given for the following cases:

• When b̂φ,j and b̂p,j (j=1, 2) are set to zero, i.e., using only the elevation-dependent weighting
function in the model.

• When âφ and âp are set to zero, i.e., using only the C/N0-dependent weighting function in
the model.

Together with the improvement ratio P, the actual improvement in range, denoted as Pm, is also
given in Table 2 with Pm = P×Meanφ(0, 0, 0) for phase processing, and Pm = P×Meanp(0, 0, 0) for
code processing.

As shown in Table 2, using the proposed weighting model related to both the elevation angle
and the C/N0, larger positional improvements can be achieved in the suburban scenario than in the
open-sky scenario. Higher elevation-related weighting coefficients, i.e., about 10 to 16, are needed for
the phase processing than those for the code processing, i.e., about 0 to 6 for the latter. Compared with
the elevation-dependent weighting function with bφ,j and bp,j set to zero, the C/N0-related weighting
functions can generate larger improvements in some cases. For the code processing in the suburban
scenario as an example, using solely the C/N0-related weighting function has led to an improvement
of about 19%, which is much higher than using solely the elevation-dependent weighting function
with an improvement of about 8%.
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Table 2. The weighting coefficients (Equations (16) and (17)) leading to the smallest mean value in the
positional results and the improvement ratios P of the mean of 3D positioning errors compared to the
case that all the weighting coefficients are set to zero (i.e., no weighting model used). Pm refers to the
actual improvement in the mean of the 3D positional errors.

Scenario Phase Code

âφ b̂φ,1 [Hz] b̂φ,2 [Hz] P Pm [m] âp b̂p,1 [Hz] b̂p,2 [Hz] P Pm [m]

Open-sky scenario 10 0 104 16.40% 0.003 2 104 0 12.67% 0.096

Suburban scenario 16 104 4000 34.11% 0.018 0 104 7000 18.81% 0.255

bφ,j = 0 bp,j = 0

Open-sky scenario 16 – – 8.44% 0.001 6 – – 7.55% 0.057

Suburban scenario 16 – – 24.60% 0.013 4 – – 8.41% 0.114

aφ = 0 ap = 0

Open-sky scenario – 104 104 13.50% 0.002 – 104 0 9.96% 0.076

Suburban scenario – 104 4000 7.30% 0.004 – 104 7000 18.81% 0.255

Figure 4 shows the variation in the improvement Pm in range with the coefficients aφ for the
phase processing and ap for the code processing. The dashed lines represent the case using only
the elevation-dependent weighting functions, i.e., setting bφ,j and bp,j to zero, and the solid lines
represent the case when setting bφ,j and bp,j to the C/N0 coefficients leading to the largest Pm for
the corresponding aφ and ap, respectively. The differences between the solid and the dashed lines
for the same scenario, i.e., the same colour, denote thus the further contribution of the C/N0 to
the elevation-dependent weighting models. It can be observed that for both the phase and the code
processing, incorporating the C/N0 in the weighting model could generally lead to larger contributions
in Pm in the suburban scenario (see the red lines) than in the open-sky scenario. From Figure 4,
the highest value of the elevation-related weighting coefficient is observed for the phase processing in
the suburban scenario. This is consistent with the information shown in Figure 2 (the blue and red
lines in the top panel of Figure 2b).

0 5 10 15
a

0

0.005

0.01

0.015

0.02

(a) P & aφ

0 5 10 15
a

p

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(b) P & ap

Figure 4. Improvement Pm in (a) phase-based and (b) code-based positional results with respect to the
coefficients aφ and ap.

Using the weighting coefficients giving the largest positional improvements (Table 2),
the between-receiver phase (σφ,j) and code (σp,j) standard deviations in the zenith direction and at the
Ss

j of ∞ can be obtained with the least-squares variance component estimation (LS-VCE) procedure [38],
and are given in Table 3 for both frequencies and both measurement environments.
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Table 3. Between-receiver phase (σφ,j) and code (σp,j) standard deviations at the zenith direction and
with the C/N0 of ∞.

Scenario σφ,1 [m] σφ,2 [m] σp,1 [m] σp,2 [m]

Open-sky scenario 0.004 0.003 0.462 0.399

Suburban scenario 0.007 0.005 0.555 0.490

3. Positioning Method

Before resolving the ambiguities, ambiguity-float RTK positioning is performed using the
recursive least-squares algorithm constraining the ambiguities in time [39]. Based on the observation
model given in Equation (1), the time-updated ambiguity vector from the time point ti−1, denoted as
â(ti|i−1), and its variance-covariance matrix Qâ(ti|i−1) can be expressed as:

â(ti|i−1) = F∆x̂(ti−1) (23)

Qâ(ti|i−1) = FQ∆x̂(ti−1)FT (24)

where the matrix F identifies the time-updated ambiguities from the estimated unknown vector ∆x̂ at
ti−1. Q∆x̂ denotes the variance-covariance matrix of ∆x̂. No system noise is added in Equation (24),
as the ambiguities are constrained as constants in time.

The estimates of the unknown vector ∆x̂(ti) can be obtained by adding the estimated ambiguities
â(ti|i−1) as pseudo-observations in the observation equations at ti and solving using the least-squares
adjustment. The updated observation equations and the corresponding variance-covariance matrix are
then written as:

E

[
y(ti)

F∆x̂(ti−1)

]
︸ ︷︷ ︸

y f (ti)

=

[
A(ti)

F

]
︸ ︷︷ ︸

A f (ti)

∆x(ti) (25)

Qy f (ti) =

[
Qy(ti) 0

0 FQ∆x̂(ti−1)FT

]
(26)

The ambiguity-float solutions ∆x̂ at ti can be obtained with the least-squares adjustment as:

∆x̂(ti) = Q∆x̂(ti)AT
f (ti)Q−1

y f
(ti)y f (ti) (27)

As mentioned earlier, using the search-and-shrink LAMBDA method with the ILS
estimator [29–31], the float ambiguities are considered as successfully fixed when the ratio test
µ = R2/R1 > 3 (Section 2) passes. The resolved ambiguities are fixed to the obtained integer
values ǎ until cycle slips or large data gaps are detected. In cases when the ratio test does not pass,
the sequential exclusion algorithm is performed, which is described in Appendix B.

When all ambiguities of the current epoch are fixed, the ambiguity-fixed positional increment ∆ř
can be determined as:

∆ř =
(

AT
x Q−1

y Ax
)−1 AT

x Q−1
y︸ ︷︷ ︸

S0

yx (28)

with (Equation (1))

Ax = e4 ⊗ (DT
mG) (29)

yx = y−
[(

diag(λ1, λ2)⊗ Im−1
)
ǎ

0

]
(30)
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To demonstrate the effectiveness of the proposed ambiguity resolution method, Figure 5 shows
the L1 and L2 residuals for all observed satellites above the elevation mask introducing the resolved
ambiguities based on the model presented in this section and the ground truth of the baselines
computed from the known positions of the points under both the open-sky and the suburban scenarios.
The time period 0:00:00–6:56:01 (GPST) on 17 October 2019 was used for the computations. As shown
in Figure 5a, the residuals in the open-sky scenario are generally within ±0.2 cycles, while those in the
suburban scenario are larger due to the increased impact of multipath. Benefiting from the sequential
exclusion algorithm and the fix-and-hold strategy applied for ambiguity resolution, the time epochs
achieving successful FAR has increased from about 80% to 95% in the suburban scenario compared to
the case without using the sequential exclusion algorithm. For the time epochs with partial ambiguity
resolution (PAR), the average fix-rate, i.e., the averaged number of the fixed ambiguities among all
the possible ambiguities, has also increased from about 55% to 91% upon applying the sequential
exclusion algorithm. In the open-sky scenario, the FAR was achieved in almost all epochs, i.e., above
99.8%, whether or not the sequential exclusion algorithm is used. Note that the PAR aims to resolve a
part of the ambiguities in case that the FAR cannot be achieved. Different from the PAR based on a
pre-defined formal ambiguity success rate (ASR) [40,41], the PAR in this study refers to the resolution
of a subset of the remaining float ambiguities, which allows the ratio test to be passed. The selection of
the subset was determined based on the sequential exclusion algorithm discussed before and given
in Appendices A and B for the baseline-known and -unknown cases, respectively. The algorithm is
developed to deal with the miss-modelled effects that are difficult to be covered by the model and the
formal ASR.

(a) Open-sky scenario (b) Suburban scenario

Figure 5. L1 and L2 residuals introducing the ground truth of the baselines and the resolved ambiguities
for (a) the open-sky scenario and (b) the suburban scenario.

4. Integrity Monitoring

This section presents the approach for the IM for the ambiguity-fixed RTK positioning under
quiet atmosphere conditions. The mean values and standard deviations of the overbounding EMCs are
first searched for phase and code residuals on the between-receiver level for both frequencies. Using
the determined overbounding EMCs, the threat model protects against the onset of satellite faults,
which is assumed to have the probability 10−5 per satellite per approach [42,43]. Assuming that both
receivers are tracking dual-frequency phase and code signals from the same m satellites, in addition
to the all-in-view solutions, in the DD mode, m− 1 subset solutions can be computed excluding all
observations from one satellite in each subset solution.
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4.1. Overbounding CDF

Due to the existence of multipath and the atmospheric residuals, the empirical distributions of
the between-receiver phase and code residuals are neither symmetric nor have a zero-mean. In the
IM, as it is difficult to model the exact empirical distribution, an overbounding normal distribution
is thus needed, so that the CDF overbounds that of the empirical distribution. In this contribution,
the overbounding CDF is searched for the weighted between-receiver phase (δφv,j) and code (δpv,j)
residuals, which are formulated as:

δφv,j = δφ1s
DDj ×

√
w1s

φ,j (31)

δpv,j = δp1s
DDj ×

√
w1s

p,j (32)

where the DD weighting functions w1s
φ,j and w1s

p,j are computed applying the variance rule:

1
w1s

φ,j
=

1
w1

φ,j
+

1
ws

φ,j
(33)

1
w1s

p,j
=

1
w1

p,j
+

1
ws

p,j
(34)

In such a case, the mean (m̄φ,j, m̄p,j) and standard deviations (σ̄φ,j, σ̄p,j) of the searched overbounding
CDF refer to the between-receiver level at the zenith direction and with a C/N0 of ∞. Note that the
residuals screened out during the χ2-test (Equations (20) and (21)) and the time epochs with PDOP
higher than 10 are not used for computing the overbounding CDF, as these observations are excluded
in the FDE procedure of the RTK processing.

According to [44], the EMC overbounding strategy does not only have no shape restriction on
the empirical distribution, but is also evidenced for the conservatism during the transformation from
the observation-domain to the position-domain. Compared with the general paired overbounding
strategy [45], the EMC allows an excess mass ε, i.e., a total mass 1 + ε over 1. This relieves the strict
search process at the tails. The empirical distribution, denoted by Ga, is then bounded between the left
overbounding CDF GL and the right overbounding CDF GR, such that it is always below the GL and
above the GR, which are given as:

GL(x) =
∫ x

−∞
(1 + ε)N (−m̄, σ̄)dx ≥ Ga(x) (35)

GR(x) =
∫ x

−∞
(1 + ε)N (m̄, σ̄)dx− ε ≤ Ga(x) (36)

for which the normal distribution with mean m̄ and standard deviation σ̄ is denoted by N (m̄, σ̄).
As examples, Figure 6 shows the empirical CDF Ga and its overbounding CDFs GL and GR for

the weighted code residuals on L1 δpv,1 in the open-sky (a) and the suburban (b) scenarios. To satisfy
Equations (35) and (36), for code residuals, the overbounding mean and standard deviations are
searched from 0.05 m to 1 m with a step of 0.01 m, and for phase residuals from 0.001 m to 0.03 m
with a step of 0.001 m. The excess mass ε is set to 0.01 in this contribution and will be considered by
computing the protection levels in Section 4.3. The search begins from the smallest overbounding
mean value, and for each mean value, the algorithm searches again from the smallest overbounding
standard deviation. The search stops when Equations (35) and (36) are fulfilled.
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Figure 6. Empirical and overbounding cumulative distribution functions (CDFs) for the weighted
between-receiver code residuals on L1 δpv,1 in: (a) the open-sky scenario and (b) the suburban scenario.

The overbounding mean and standard deviations for the weighted between-receiver phase and
code residuals are given in Table 4 for all observation types, for the open and suburban scenarios.
The overbounding mean and standard deviations are in general higher in the suburban scenario than
in the open-sky scenario.

Table 4. Overbounding mean values (m̄φ,j, m̄p,j) and standard deviations (σ̄φ,j, σ̄p,j) for the weighted
between-receiver phase (δφv,j) and code (δpv,j) residuals.

Scenario L1 Phase [m] L2 Phase [m] C1 Code [m] C2 Code [m]

m̄φ,1 σ̄φ,1 m̄φ,2 σ̄φ,2 m̄p,1 σ̄p,1 m̄p,2 σ̄p,2

Open-sky scenario 0.003 0.004 0.003 0.003 0.08 0.51 0.11 0.49

Suburban scenario 0.002 0.006 0.003 0.006 0.21 0.71 0.23 0.59

The multipath under the open-sky and the suburban scenarios, as well as the atmospheric
residuals under quiet conditions are included in the weighted between-receiver residuals (δφv,j and
δpv,j) and are covered by the overbounding standard deviations and mean values. They will be
considered by computation of the protection levels.

4.2. FDE Procedure

The FDE procedure used for the RTK is borrowed from the ARAIM algorithm and consists
of the SST that is applied in the position domain and a confirmation check (sanity check) with the
χ2-test applied in the observation domain [13,14,42,46]. In this contribution, the positioning integrity
monitoring is performed for the ambiguity-fixed solutions having the SST and the χ2-test performed
before computing the protection levels. The χ2-test is also performed for the ambiguity-float solutions
to exclude large outliers.

The SST is applied to exclude outliers by comparing the differences between the all-in-view
solution and the subset solution excluding suspected satellites with a test threshold. The threshold is
calculated based on the formal standard deviation of the corresponding solution difference and the
probability of false alert. The ambiguity-fixed all-in-view solution is calculated with ∆ř0 = S0yx as
shown in Equation (28), and the corresponding subset solution ∆řk is computed excluding certain
observations (k) using the least-squares adjustment:

∆řk = Sk yxk (37)
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with
Sk =

(
AT

xk
Q−1

yk
Axk

)−1 AT
xk

Q−1
yk

(38)

where the rows in Axk and the columns and rows in Qyk related to the observations k are excluded
during the calculation, and the corresponding column of zeros are then removed in Axk . Note that
these columns of zeros for the observations k are added in Sk to match its size with that of S0. Assuming
that the observation errors are normally distributed, and accordingly the positioning errors, the test
thresholds of SST in the north (q = 1), east (q = 2) and up (q = 3) directions are expressed as:

Tk,q = KFA,q × σss,k,q (39)

with

KFA,1 = KFA,2 = Q−1( PFA,H

2× 2× N
)

(40)

KFA,3 = Q−1( PFA,V

2× N
)

(41)

σss,k,q =
√

oT
q (S0 − Sk)Qy(S0 − Sk)Toq (42)

where vector oq contains one for the q-th positioning element, and its other elements are set to zero.
N is the number of fault modes, and Q−1(·) is the inverse right-folded CDF of a standard normal
distribution. In contrast to aviation, the focus in ground-based applications is on the horizontal
positioning. As a result, in this study, the probability of false alert allocated in the horizontal (PFA,H)
and the vertical (PFA,V) domains are set to 3× 10−6 and 10−6, respectively. Note that these values are
not yet clearly defined for diverse road transport applications.

The SST passes, when
|oT

q (∆ř0 − ∆řk)| ≤ Tk,q (43)

for q = 1, 2 and 3. For all the subset solutions that cannot pass the SST, the subset delivering the largest
value of |oT

q (∆ř0 − ∆řk)|/Tk,q (for q = 1, 2 or 3) is determined, and the corresponding observations k
are excluded. The SST is re-computed until all subsets passing the test is identified.

After the SST, a confirmation test in the observation domain is performed using the χ2-test.
The test passes, when

yx
(
Q−1

y −Q−1
y Ax(AT

x Q−1
y Ax)

−1 AT
x Q−1

y
)
yT

x ≤ Q−1
χ2

f
(1− PFA,χ2) (44)

Recall that the probability of false alert allocated to the χ2-test is set to 10−6 in this study. In case that
the χ2-test does not pass but the SST passes, the protection levels computed in the next subsection are
not considered valid.

4.3. Protection Level

Protecting against the onset of satellite faults, the probability of two or more faults is calculated
as [14]:

Pn = 1−
N

∏
j=1

(1− pj)−
N

∏
j=1

(1− pj)×
N

∑
i=1

pj

1− pj
(45)

where pj represents the probability of the onset of satellite fault for satellite j. N is the number of the
fault modes, here the number of the satellites minus 1. Note that as only the GPS observations are
used, the constellation fault and fault of the reference satellite are not feasible for a consistency check,
and are thus not protected in this study. The Pn amounts to, e.g., about 10−9 to 4.5× 10−9 in the case
that N equals 5 to 10. Assuming a horizontal probability of hazards misleading information (PHMIH)
of 10−5 per approach, the Pn, which is considered as the probability of non-monitored faults, is at
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an insignificant level. The probabilities of the monitored faults in the north (q = 1) and east (q = 2)
directions, could then be computed as:

PHMI1 = PHMI2 ≈
PHMIH

2
(46)

As in the ARAIM algorithm [13,14,42], the north (q = 1) and east (q = 2) protection levels can be
computed (as given in these references):

2× (1 + ε)n0 ×Q

(
HPLq − b̄0,q

σ̄0,q

)
+

N

∑
k=1

pk × (1 + ε)nk ×Q

(
HPLq − Tk,q − b̄k,q

σ̄k,q

)
= PHMIq (47)

where n0 and nk are the numbers of the between-receiver observations in the all-in-view and subset
cases (k), respectively. b̄k,q and σ̄k,q, including the all-in-view case, i.e., k = 0, are calculated based on
the overbounding standard deviations and mean values as follows (Section 4.1):

σ̄k,q = oT
q

√
diag

(
(AT

xk
Q̄−1

yk Axk )
−1
)

(48)

b̄k,q = oT
q
∣∣(AT

xk
Q̄−1

yk
Axk )

−1 AT
xk

Q̄−1
yk

∣∣︸ ︷︷ ︸
S̄k

m̄DD,k (49)

where diag(·) retrieves the diagonal elements of the matrix contained in (·) as a vector. Recall that the ε

is the excess mass of the EMC (Equations (35) and (36)), and a total mass 1 + ε needs to be considered
for all the between-receiver observations [44]. Q̄yk is calculated with Equations (2)–(4) excluding the
rows and columns for observations k and using σ̄φ,j and σ̄p,j instead of σφ,j and σp,j. The vector m̄DD,k
contains the maximum nominal biases for the DD observations, and can be expressed as:

m̄DD,k =

(
m̄φ,1√

w12
φ,1

, · · · ,
m̄φ,1√

w1m
φ,1

,
m̄φ,2√

w12
φ,2

, · · · ,
m̄φ,2√

w1m
φ,2

,
m̄p,1√

w12
p,1

, · · · ,
m̄p,1√

w1m
p,1

,
m̄p,2√

w12
p,2

, · · · ,
m̄p,2√

w1m
p,2

)T

(50)

where the items corresponding to observations k are excluded.
Assuming that the PHMIq is equally allocated in each fault mode (including the all-in-view

mode), an overbound of the PLq can be computed as the maximum of the PLs computed for each
mode [18,19,42,43]:

PLq = max(PL0,q, · · · , PLN,q) (51)

where PLk,q is calculated from

PL0,q = K0,q × σ̄0,q + b̄0,q (52)

PLk,q = Kk,q × σ̄k,q + b̄k,q + Tk,q, k 6= 0 (53)

for which

K0,q = Q−1
(

PHMIq

(N + 1)× 2× (1 + ε)n0

)
(54)

Kk,q = Q−1
(

PHMIq

pk × (N + 1)× (1 + ε)nk

)
(55)

Finally, the HPL, which bounds the overall horizontal positioning error, is computed as:

HPL =
√

PL2
1 + PL2

2 (56)

for which PL1 and PL2 are the PLs in the north and east directions, respectively.
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5. Test Results

The baselines UWA0-CUT0 and UWA0-SUB0 (Figure 1) were used for the tests in the open-sky
and the simulation of suburban scenarios, respectively, based on 1 Hz GPS data. To test the positioning
behaviours under different satellite geometry conditions, two time periods were used for the analysis,
i.e., 0:00:00–6:56:01 (GPST) on 17 October 2019, denoted as T1, and 11:00:00–18:02:39 (GPST) on 16
October 2019, denoted as T2. Applying the weighting model for the open-sky scenario, the average
PDOPs amount to about 3.5 for T1, and about 3.0 for T2. The elevation-dependent and C/N0-dependent
weighting functions, which show the best behaviours in Table 2, are used for the analysis for the
two measurement scenarios. The signal standard deviations obtained with the sequential LS-VCE
method (Section 2.2) and the overbounding mean and standard deviations (Section 4.1) were used
for computing the positions and the protection levels, respectively. Although the rover receiver in
the test of the suburban scenario is surrounded by metal infrastructure and trees as shown in the
middle and right panels of Figure 1, integrity monitoring of the RTK positioning in more challenging
environments, e.g., urban areas, and in kinematic mode are of interest for road transport users. These
scenarios may involve more complicated and fast changing multipath environments. They are not
attempted in this contribution, but are expected to be addressed in future studies.

Figure 7 shows the positioning errors in the horizontal plane and in the vertical direction
for both the open-sky and the suburban scenarios. A larger error scatter can be observed for the
suburban scenario. The ambiguity-fixed HPEs, computed as the square root of the squared sum
of the ambiguity-fixed north and east component positioning errors, and the corresponding HPLs
(Equation (56)) are shown in Figure 8 for T1 with higher PDOP as an example for the worse case among
the two tested time periods. The ambiguity-fixed HPEs, computed as the square root of the squared
sum of the north and east positioning errors, and the corresponding HPLs are shown as blue and green
dots, respectively. A HAL of 0.5 m (red dots) is assumed for both scenarios. The statistics of the HPEs
and the HPLs are given in Table 5 for both T1 and T2. As shown in the Table 5 and Figure 8, the FAR is
achieved in the open-sky scenario for almost all time epochs for both time periods. In the suburban
scenario, the FAR is achieved in about 95% of the time for T1 and almost 100% for T2. For time epochs
having PAR, the majority of the ambiguities are also resolved with an average proportion of above
90% among all the ambiguities. The RMS of the HPEs are at the cm-level in both scenarios with the
ambiguities fixed. Although the HPLs in the suburban scenario are higher than those in the open-sky
scenario, they are generally at the sub-dm to dm-level. The ambiguity-fixed HPLs always bound the
corresponding HPEs, and are always bounded by the HAL of 0.5 m. This leads to an availability of
100% for both measurement scenarios for T1 and T2.
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Figure 7. Ambiguity-fixed positioning errors in (a) the horizontal plane and (b) the vertical direction
during T1 for the open-sky and the suburban scenarios.
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Figure 8. Ambiguity-fixed horizontal positioning errors (HPEs) and horizontal protection levels (HPLs)
during T1 for: (a) the open-sky scenario and (b) the suburban scenario.

Table 5. Statistics of the ambiguity-fixed HPEs and the HPLs for the time periods T1 and T2. The values
for T1 and T2 are separated by ‘/’.

Scenario RMS of Fixed HPEs Mean HPLs Epochs with FAR Mean Fix-Rate for PAR Availability

Open-sky scenario 0.014/0.009 0.062/0.060 99.98%/100% 92.8%/– 100%/100%

Suburban scenario 0.022/0.017 0.093/0.088 94.50%/99.96% 90.6%/91.0% 100%/100%

In more complicated suburban environments, larger multipath could exist in the measurements
and hence bias the positioning results. For ambiguity-fixed solutions, the focus of the investigation
is on the phase multipath, as the code observations are largely down-weighted, and very large code
multipath is assumed to be detected by the FDE procedure. As the phase multipath should not exceed
a quarter cycle [47], an extra bias of 0.25 cycle is assumed for the rover phase observations ∆φs

j (s 6= 1)
under an elevation threshold, denoted as θ̄s. This bias is considered in the HPLs by replacing the
m̄DD,k in Equation (49) with m̄DD,k + mc,k, where mc,k is a vector containing 0.25× λj in range for the
DD phase observations, when the rover elevation angle to satellite s (s 6= 1) is lower than the elevation
angle threshold θ̄s. For other observations, the entry in mc,k amounts to zero. The number of the phase
observations suffering from the bias mc,k increases with the increase in θ̄s.

Taking the time period T1 as an example, Figure 9a shows the change of the mean and maximum
HPLs when changing the elevation angle threshold θ̄s. Note that the ambiguity-fixed solutions based
on the dataset used in the suburban scenario are still considered fixed. Starting from an elevation
mask of 10 degrees, the mean HPL (the blue line) has increased by about 41% when increasing θ̄s to 30
degrees. It can also be observed that the maximal HPL is still below the HAL of 0.5 m when θ̄s is set to
30 degrees, which means that the availability is so far not influenced by the bias. Note that the change
of the availability is only considered to be influenced by the change of the HPLs here, and the possible
reduction of the epochs achieving FAR is not further investigated in this section.

Since the HALs for different road transport applications are not clearly set yet, in particular the
very challenging autonomous driving, for applications with lower HALs, the bias mc,k could play a
larger role in the achievable availabilities. In Figure 9b, the change of the availabilities is illustrated
for different values of HALs selected from 0.2 m down to 0.1 m. In Figure 9b it can be observed
that the availabilities with HAL of 0.2 m are similar to those with a HAL of 0.5 m, i.e., above 95%.
Dramatic decrease of the availabilities occurs for applications with a higher accuracy requirement in
the horizontal direction, i.e., with a HAL of 0.1 m (the blue line). In such a case, the availability is
below 50% with θ̄s higher than 21 degrees. This suggests that even for ambiguity-fixed solutions for
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short-baseline RTK under quiet atmosphere conditions, a clear environment with limited multipath
effects might be required for applications with HAL as low as 0.1 m.
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Figure 9. Change of (a) the mean and maximal HPLs and (b) the availabilities with the elevation
threshold θ̄s for adding the phase bias term mc,k. The dataset in the suburban scenario during T1 is
used for the computation.

6. Conclusions

This contribution presents the IM for ambiguity-fixed RTK solutions under different measurement
scenarios. A weighting model allowing different impacts of the elevation angles and the C/N0 is
first developed. The weighting coefficients were searched for different measurement scenarios and
observation types to minimise the influences of the biases on the positional results. Next, applying
these weighting models, the overbounding mean and standard deviations are determined for the
weighted between-receiver observations under the open-sky and suburban scenarios based on the
overbounding CDFs.

The IM is performed for RTK positioning using the ARAIM algorithm for real experiments
resembling the open-sky and the suburban scenarios. After the FDE procedure, HPLs are computed
for the ambiguity-fixed solutions and are compared with the HPEs and the HAL. Based on the
sequential exclusion algorithm for ambiguity resolution, using GPS dual-frequency observations,
FAR can be achieved in about 100% and 95% of the time for the open-sky and the suburban
scenarios, respectively. Using the proposed weighting model and the mean and standard deviations
derived from the overbounding EMCs, the ambiguity-fixed HPLs are at the sub-dm to dm-level.
All valid HPLs are below the HAL of 0.5 m, and bound the ambiguity-fixed HPEs for both scenarios.
The availabilities of the ambiguity-fixed horizontal positions reached 100% in both the open-sky and
the suburban scenarios.

Investigations were also performed for the suburban scenario with larger multipath. An extra bias
of a quarter cycle was added for rover phase observations below an elevation threshold. It is shown
that the mean HPL could be increased by above 40% when increasing this elevation threshold from
10 to 30 degrees. For applications with high accuracy requirements, i.e., with a HAL as low as 0.1 m,
a dramatic decrease of the availabilities can be observed when increasing the elevation threshold.

In more complicated measurement environments such as urban canyons, a weighting model
related to both the elevation angles and the C/N0 is also expected to behave better than that dependent
solely on the elevation angles, as large multipath may appear also for signals of medium or high
elevations. The bias behaviours of the DD phase and code measurements for RTK positioning in such
environments, possibly not only collected from the geodetic receivers but also from low-cost receivers,
will be investigated in future research.
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Appendix A. Baseline-Known Ambiguity Resolution and the Sequential Exclusion Algorithm

With the baseline coordinates fixed to the ground truth, making use of the phase observations only,
the float ambiguities are estimated first using a least-squares adjustment assuming an undifferenced
zenith-referenced phase signal standard deviation of 3 mm and using the elevation-dependent
weighting function [48]:

w(θs) =
1(

1 + 10× exp(− θs

10◦ )
)2 (A1)

where θs denotes the mean elevation angle (in degrees) from the two receivers to satellite s.
The subscripts for the reference and the rover receivers are dropped for clarity.

The integer ambiguities are then resolved with the search-and-shrink LAMBDA method using
the ILS estimator [29–31], and validated with the ratio test [32,33]. In case that the ratio test does
not pass, an algorithm for sequential exclusion is used to enable the resolution of possibly many
ambiguities during the current epoch. Within the subset of the phase observations (βφ) having the
ambiguities delivering different values in their first and second candidates, exclusion is performed
with the following consequence:

• The number of the excluded phase observations increases from 1 to Nm, where Nm is set to 6 in
this contribution.

• For the same number of excluded observations, the observations with low elevation angles have
priority in exclusion.

• For the observations with the same elevation angle, the observation on L2 has the priority in
exclusion, as in this contribution the observations on L1 are considered as the basis observations to
compute, e.g., the position dilution of precision (PDOP). This can be changed to other frequencies
depending on the needs of the users.

• In case that exclusion of all the combinations in βφ mentioned above fail the ratio test, the phase
observation with the highest exclusion priority is excluded to re-compute the βφ. The exclusion
begins then from the beginning.

If the ratio test passes after excluding certain phase observations, the successfully resolved
ambiguities are held fixed until cycle slips or large data gaps are detected.

For ambiguities that are not successfully fixed, the float solutions are treated as
pseudo-observations in the next epoch as long as no cycle slip or large data gap is recognised.
The variance-covariance matrix of these float ambiguities is used without adding any system noise,
i.e., the ambiguities are constrained as constant in time. During the sequential exclusion of ambiguity
resolution, the option not considering the float ambiguities from the previous epoch is also tested with
the different exclusion possibilities.

The fixed ambiguities are validated again through backward processing.

http://saegnss2.curtin.edu/ldc/
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Appendix B. Sequential Exclusion Algorithm in Baseline-Unknown Case

In the baseline-unknown case, the rover coordinates are estimated and both the phase and code
observations contribute to ambiguity resolution. First determined are the ambiguities delivering
different values in the first and the second candidates. The subset of observations, which are from the
same satellites and on the same frequencies as these ambiguities, are denoted with β. The exclusion is
then performed within β in the following sequence:

• The number of the excluded observations increases from 1 to Nm.
• For the same number of excluded observations, code observations have the priority in exclusion.
• For the same observation type (code or phase), the observations with the lowest elevation angle

have priority in exclusion.
• For the observations with the same elevation angle, the observation on L2 has the priority

in exclusion.
• In case that exclusion of all the combinations in β mentioned above fail the ratio test,

the observation with the highest exclusion priority is excluded to re-compute the subset (β).
The exclusion restarts then from the beginning.

In the sequential exclusion of ambiguity resolution, together with the different exclusion
possibilities, the ratio test is also attempted without considering the float ambiguities from the previous
epoch. In actual RTK processing, a threshold of the tested exclusion cases can be set to limit the
computational time. In this contribution, it is set to 1000.

References

1. Leandro, R.; Landau, H.; Nitschke, M.; Glocker, M.; Seeger, S.; Chen, X.; Deking, A.; BenTahar, M.; Zhang, F.;
Ferguson, K.; et al. RTX Positioning: The next generation of cm-accurate real-time GNSS positioning.
In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 1460–1475.

2. Banville, S.; Collins, P.; Zhang, W.; Langley, R.B. Global and regional ionospheric corrections for faster PPP
convergence. Navig. J. Inst. Navig. 2014, 61, 115–124. [CrossRef]

3. Yu, X.; Gao, J. Kinematic precise point positioning using multi-constellation global navigation satellite
system (GNSS) observations. ISPRS Int. J. Geo-Inf. 2017, 6, 6. [CrossRef]

4. Euler, H.J.; Goad, C.C. On optimal filtering of GPS dual frequency observations without using orbit
information. Bull. Geod. 1991, 65, 130–143. [CrossRef]

5. Hartinger, H.; Brunner, F.K. Variances of GPS phase observations: The SIGMA-ε model. GPS Solut. 1999,
2, 35–43. [CrossRef]

6. Wieser, A.; Brunner, F.K. An extended weight model for GPS phase observations. Earth Planets Space 2000,
52, 777–782. [CrossRef]

7. Kuusniemi, H.; Wieser, A.; Lachapelle, G; Takala, J. User-level reliability monitoring in urban personal
satellite-navigation. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1305–1318. [CrossRef]

8. Tay, S.; Marais, J. Weighting models for GPS pseudorange observations for land transportation in urban
canyons. In Proceedings of the 6th European Workshop on GNSS Signals and Signal Processing, Munich,
Germany, 2–5 December 2013; HAL ID hal-00942180; 4p.

9. Medina, D.; Gibson, K.; Ziebold, R.; Closas, P. Determination of pseudorange error models and multipath
characterization under signal-degraded scenarios. In Proceedings of the ION GNSS+ 2018, Miami, FL, USA,
24–28 September 2018; pp. 3446–3456.

10. Wang, J.; Stewart, M.P.; Tsakiri, M. Stochastic modeling for static GPS baseline data processing. J. Surv. Eng.
1998, 124, 171–181. [CrossRef]

11. Wang, J. Stochastic modeling for real-time kinematic GPS/glonass positioning. Navig. J. Inst. Navig. 1999,
46, 297–305. [CrossRef]

12. Wang, J.; Satirapod, C.; Rizos, C. Stochastic assessment of GPS carrier phase measurements for precise static
relative positioning. J. Geod. 2002, 76, 95–104. [CrossRef]

http://dx.doi.org/10.1002/navi.57
http://dx.doi.org/10.3390/ijgi6010006
http://dx.doi.org/10.1007/BF00806368
http://dx.doi.org/10.1007/PL00012765
http://dx.doi.org/10.1186/BF03352281
http://dx.doi.org/10.1109/TAES.2007.4441741
http://dx.doi.org/10.1061/(ASCE)0733-9453(1998)124:4(171)
http://dx.doi.org/10.1002/j.2161-4296.1999.tb02416.x
http://dx.doi.org/10.1007/s00190-001-0225-6


Remote Sens. 2020, 12, 1173 22 of 23

13. Blanch, J.; Walter, T.; Enge, P.; Lee, Y.; Pervan, B.; Rippl, M.; Spletter, A. Advanced RAIM user algorithm
description: Integrity support message processing, fault detection, exclusion, and protection level calculation.
In Proceedings of the ION GNSS 2012, Nashville, TN, USA, 17–21 September 2012; pp. 2828–2849.

14. ARAIM Technical Subgroup. EU-U.S. Cooperation on Satellite Navigation, Working Group C—ARAIM Technical
Subgroup, Milestone 3 Report; Final Version; 25 February 2016. Available online: https://ec.europa.eu/growth/
content/release-eu-us-cooperation-satellite-navigation-working-group-c-araim-technical-subgroup-0_en
(accessed on 4 April 2020)

15. Jiang, Y.; Wang, J. A New Approach to Calculate the Horizontal Protection Level. J. Navig. 2016, 69, 57–74.
[CrossRef]

16. El-Mowafy, A.; Kubo, N. Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS,
IMU and speedometer. Meas. Sci. Technol. 2017, 28, 055102. [CrossRef]

17. El-Mowafy, A.; Imparato, D.; Rizos, C.; Wang, J.; Wang, K. On hypothesis testing in RAIM algorithms:
Generalized likelihood ratio test, solution separation test and a possible alternative. Meas. Sci. Technol. 2019
30, 075001. [CrossRef]

18. Blanch, J.; Walter, T.; Enge, P. Optimal positioning for advanced Raim. Navig. J. Inst. Navig. 2013, 60, 279–289.
[CrossRef]

19. Gunning, K.; Blanch, J.; Walter, T.; de Groot, L.; Norman, L. Design and evaluation of integrity algorithms for
PPP in kinematic applications. In Proceedings of the ION GNSS+ 2018, Miami, FL, USA, 24–28 September
2018; pp. 1910–1939.

20. El-Mowafy, A.; Kubo, N. Integrity monitoring for positioning of intelligent transport systems using integrated
RTK-GNSS, IMU and vehicle odometer. IET Intell. Transp. Syst. 2018, 12, 901–908. [CrossRef]

21. Imparato, D.; El-Mowafy, A.; Rizos, C.; Wang, J. Vulnerabilities in SBAS and RTK Positioning in Intelligent
Transport Systems: An Overview. In Proceedings of the IGNSS Symposium 2018, Colombo Theatres,
Kensington Campus, UNSW, Sydney, NSW, Australia, 7–9 February 2018.

22. Yasyukevich, Y.; Astafyeva, E.; Padokhin, A.; Ivanova, V.; Syrovatskii, S.; Podlesnyi, A. The 6 September
2017 X-class solar flares and their impacts on the ionosphere, GNSS, and HF radio wave propagation. Space
Weather 2018, 16, 1013–1027. [CrossRef] [PubMed]

23. Blagoveshchensky, D.V.; Sergeeva, M.A. Impact of geomagnetic storm of September 7–8, 2017 on ionosphere
and HF propagation: A multi-instrument study. Adv. Space Res. 2019, 63, 239–256. [CrossRef]

24. Demyanov, V.V.; Zhang, X.; Lu, X. Moderate geomagnetic storm condition, WAAS Alerts and real GPS
positioning quality. J. Atmos. Sci. Res. 2019, 2, 10–23. [CrossRef]

25. Teunissen, P.J.G.; Montenbruck, O. Springer Handbook of Global Navigation Satellite Systems; Springer
International Publishing: Cham, Switzerland, 2017.

26. Saastamoinen, J. Contribution to the theory of atmospheric refraction. Bull. Geod. 1972, 105, 279–298.
[CrossRef]

27. Ifadis, I.I. The Atmospheric Delay of Radio Waves: Modelling the Elevation Dependence on a Global Scale; Technical
Report No 38L; Chalmers University of Technology: Gothenburg, Sweden, 1986.

28. Zaminpardaz, S.; Wang, K.; Teunissen, P.J.G. Australia-first high-precision positioning results with new
Japanese QZSS regional satellite system. GPS Solut. 2018, 22, 101. [CrossRef]

29. Teunissen, P.J.G. Least-Squares Estimation of the Integer GPS Ambiguities; Technical report, LGR Series, No.6;
Delft Geodetic Computing Centre: Delft, The Netherlands, 1993; pp. 59–74.

30. Teunissen, P.J.G. The least-squares ambiguity decorrelation adjustment: A method for fast GPS ambiguity
estimation. J. Geod. 1995, 70, 65–82. [CrossRef]

31. Chang, X.W.; Yang, X.; Zhou, T. MLAMBDA: A modified LAMBDA method for integer least-squares
estimation. J. Geod. 2005, 79, 552–565. [CrossRef]

32. Teunissen, P.J.G.; Verhagen, S. On the foundation of the popular ratio test for GNSS ambiguity resolution.
In Proceedings of the ION GNSS 2004, Long Beach, CA, USA, 21–24 September 2004; pp. 2529–2540.

33. Leick, A. GPS Satellite Surveying, 3rd ed.; John Wiley and Sons: New York, NY, USA, 2004.
34. ABM and IPS. GPS Driven Total Electron Content (TEC) Map for the Australian Region. Australian Bureau

of Meteorology/Space Weather Branch (IPS). Available online: ftp://ftp-out.sws.bom.gov.au/wdc/gnss/
data/tecmaps/ (accessed on 18 October 2019).

35. ABM. Daily Rainfall Data. Australian Bureau of Meteorology. Available online: http://www.bom.gov.au/
climate/data/ (accessed on 18 October 2019).

https://ec.europa.eu/growth/content/release-eu-us-cooperation-satellite-navigation-working-group-c-araim-technical-subgroup-0_en
https://ec.europa.eu/growth/content/release-eu-us-cooperation-satellite-navigation-working-group-c-araim-technical-subgroup-0_en
http://dx.doi.org/10.1017/S0373463315000545
http://dx.doi.org/10.1088/1361-6501/aa5c66
http://dx.doi.org/10.1088/1361-6501/ab1836
http://dx.doi.org/10.1002/navi.49
http://dx.doi.org/10.1049/iet-its.2018.0106
http://dx.doi.org/10.1029/2018SW001932
http://www.ncbi.nlm.nih.gov/pubmed/31031571
http://dx.doi.org/10.1016/j.asr.2018.07.016
http://dx.doi.org/10.30564/jasr.v2i1.343
http://dx.doi.org/10.1007/BF02521844
http://dx.doi.org/10.1007/s10291-018-0763-5
http://dx.doi.org/10.1007/BF00863419
http://dx.doi.org/10.1007/s00190-005-0004-x
ftp://ftp-out.sws.bom.gov.au/wdc/gnss/data/tecmaps/
ftp://ftp-out.sws.bom.gov.au/wdc/gnss/data/tecmaps/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/


Remote Sens. 2020, 12, 1173 23 of 23

36. RINEX 3.03. RINEX, The Receiver Independent Exchange Format; Version 3.03; International GNSS Service
(IGS), RINEX Working Group and Radio Technical Commission for Maritime Services Special Committee
104 (RTCM-SC104); 14 July 2015. Available online: https://kb.igs.org/hc/en-us/articles/206482558-RINEX-
3-03-Release-Notes (accessed on 4 April 2020).

37. Zhou, W.; Liu, L.; Huang, L.; Yao, Y.; Chen, J.; Li, S. A new GPS SNR-Based Combination Approach for Land
Surface Snow Depth Monitoring. Sci. Rep. 2019, 9, 3814. [CrossRef] [PubMed]

38. Amiri-Simkooei, A.R.; Teunissen, P.J.G.; Tiberius, C.C.J.M. Application of least-squares variance component
estimation to GPS observables. J. Surv. Eng. 2009, 135, 149–160. [CrossRef]

39. Verhagen, S.; Teunissen, P.J.G. Least-Squares Estimation and Kalman Filtering. In Springer Handbook of Global
Navigation Satellite Systems; Teunissen, P.J.G., Montenbruck, O., Eds.; Springer International Publishing:
Cham, Switzerland, 2017; pp. 639–660.

40. Teunissen, P.J.G.; Joosten, P.; Tiberius, C.C.J.M. Geometry-free ambiguity success rates in case of partial
fixing. In Proceedings of the NTM ION 1999, San Diego, CA, USA, 25–27 January 1999; pp. 201–207.

41. Nardo, A.; Li, B.; Teunissen, P.J.G. Partial ambiguity resolution for ground and space-based applications in a
GPS + Galileo scenario: A simulation study. Adv. Space Res. 2016, 57, 30–45. [CrossRef]

42. GEAS. Phase II of the GNSS Evolutionary Architecture Study; February 2010. Available online:
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/
gnss/library/documents/media/geasphaseii_final.pdf (accessed on 4 April 2020)

43. El-Mowafy, A.; Yang, C. Limited sensitivity analysis of ARAIM availability for LPV-200 over Australia using
real data. Adv. Space Res. 2016, 57, 659–670. [CrossRef]

44. Rife, J.; Walter, T.; Blanch, J. Overbounding SBAS and GBAS error distributions with excess-mass functions.
In Proceedings of the 2004 International Symposium on GNSS/GPS, Sydney, Australia, 6–8 December 2004.

45. Rife, J.; Pullen, S.; Enge, P.; Pervan, B. Paired overbounding for nonideal LAAS and WAAS error distributions.
IEEE Trans. Aerop. Electron. Syst. 2006, 42, 1386–1395. [CrossRef]

46. El-Mowafy, A. On detection of observation faults in the observation and position domains for positioning of
intelligent transport systems. J. Geod. 2019, 93, 2109–2122. [CrossRef]

47. El-Rabbany, A. Introduction to GPS: The Global Positioning System; Artech House: Norwood, MA, USA, 2002.
48. Teunissen, P.J.G.; de Bakker, P.F. Next generation GNSS single receiver cycle slip reliability. In VII

Hotine-Marussi Symposium on Mathematical Geodesy; Sneeuw, N., Novák, P., Crespi, M., Sansò, F., Eds.;
International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2012; Volume 137,
pp. 159–164.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://kb.igs.org/hc/en-us/articles/206482558-RINEX-3-03-Release-Notes
https://kb.igs.org/hc/en-us/articles/206482558-RINEX-3-03-Release-Notes
http://dx.doi.org/10.1038/s41598-019-40456-2
http://www.ncbi.nlm.nih.gov/pubmed/30846763
http://dx.doi.org/10.1061/(ASCE)0733-9453(2009)135:4(149)
http://dx.doi.org/10.1016/j.asr.2015.09.002
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/library/documents/media/geasphaseii_final.pdf
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/library/documents/media/geasphaseii_final.pdf
http://dx.doi.org/10.1016/j.asr.2015.10.046
http://dx.doi.org/10.1109/TAES.2006.314579
http://dx.doi.org/10.1007/s00190-019-01306-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Signal Analysis
	Elevation, C/ N0 and Biases
	The Weighting Function

	Positioning Method
	Integrity Monitoring
	Overbounding CDF
	FDE Procedure
	Protection Level

	Test Results
	Conclusions
	Baseline-Known Ambiguity Resolution and the Sequential Exclusion Algorithm
	Sequential Exclusion Algorithm in Baseline-Unknown Case
	References

