Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = cobalt-rich crusts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4062 KB  
Review
Nanoscale Microstructure and Microbially Mediated Mineralization Mechanisms of Deep-Sea Cobalt-Rich Crusts
by Kehui Zhang, Xuelian You, Chao Li, Haojia Wang, Jingwei Wu, Yuan Dang, Qing Guan and Xiaowei Huang
Minerals 2026, 16(1), 91; https://doi.org/10.3390/min16010091 (registering DOI) - 17 Jan 2026
Abstract
As a potential strategic resource of critical metals, deep-sea cobalt-rich crusts represent one of the most promising metal reservoirs within oceanic seamount systems, and their metallogenic mechanism constitutes a frontier topic in deep-sea geoscience research. This review focuses on the cobalt-rich crusts from [...] Read more.
As a potential strategic resource of critical metals, deep-sea cobalt-rich crusts represent one of the most promising metal reservoirs within oceanic seamount systems, and their metallogenic mechanism constitutes a frontier topic in deep-sea geoscience research. This review focuses on the cobalt-rich crusts from the Magellan Seamount region in the northwestern Pacific and synthesizes existing geological, mineralogical, and geochemical studies to systematically elucidate their mineralization processes and metal enrichment mechanisms from a microstructural perspective, with particular emphasis on cobalt enrichment and its controlling factors. Based on published observations and experimental evidence, the formation of cobalt-rich crusts is divided into three stages: (1) Mn/Fe colloid formation—At the chemical interface between oxygen-rich bottom water and the oxygen minimum zone (OMZ), Mn2+ and Fe2+ are oxidized to form hydrated oxide colloids such as δ-MnO2 and Fe(OH)3. (2) Key metal adsorption—Colloidal particles adsorb metal ions such as Co2+, Ni2+, and Cu2+ through surface complexation and oxidation–substitution reactions, among which Co2+ is further oxidized to Co3+ and stably incorporated into MnO6 octahedral vacancies. (3) Colloid deposition and mineralization—Mn–Fe colloids aggregate, dehydrate, and cement on the exposed seamount bedrock surface to form layered cobalt-rich crusts. This process is dominated by the Fe/Mn redox cycle, representing a continuous evolution from colloidal reactions to solid-phase mineral formation. Biological processes play a crucial catalytic role in the microstructural evolution of the crusts. Mn-oxidizing bacteria and extracellular polymeric substances (EPS) accelerate Mn oxidation, regulate mineral-oriented growth, and enhance particle cementation, thereby significantly improving the oxidation and adsorption efficiency of metal ions. Tectonic and paleoceanographic evolution, seamount topography, and the circulation of Antarctic Bottom Water jointly control the metallogenic environment and metal sources, while crystal defects, redox gradients, and biological activity collectively drive metal enrichment. This review establishes a conceptual framework of a multi-level metallogenic model linking macroscopic oceanic circulation and geological evolution with microscopic chemical and biological processes, providing a theoretical basis for the exploration, prediction, and sustainable development of potential cobalt-rich crust deposits. Full article
(This article belongs to the Special Issue Geochemistry and Mineralogy of Polymetallic Deep-Sea Deposits)
Show Figures

Figure 1

38 pages, 36010 KB  
Review
Cobalt-Rich Fe-Mn Crusts in the Western Pacific Magellan Seamount Trail: Geochemistry and Chronostratigraphy
by Igor S. Peretyazhko, Elena A. Savina and Irina A. Pulyaeva
Geosciences 2025, 15(11), 411; https://doi.org/10.3390/geosciences15110411 - 27 Oct 2025
Cited by 1 | Viewed by 958
Abstract
Synthesis of published and new data from the Govorov and Kocebu guyots provide geochemical and chronostratigraphic constraints on hydrogenetic cobalt-rich Fe-Mn crusts from the Western Pacific Magellan Seamount Trail (MST). The history of the crusts began about 65–60 Ma, when the relict layer [...] Read more.
Synthesis of published and new data from the Govorov and Kocebu guyots provide geochemical and chronostratigraphic constraints on hydrogenetic cobalt-rich Fe-Mn crusts from the Western Pacific Magellan Seamount Trail (MST). The history of the crusts began about 65–60 Ma, when the relict layer R was deposited in the Campanian—Maastrichtian and Late Paleocene along the shores of guyots. The growth of the old-generation crusts continued in the Late Paleocene—Early Eocene (Layer I-1) and in the Middle—Late Eocene (Layer I-2) in a shallow-water shelf environment. The younger layers formed in the Late Oligocene—Early Miocene (Layer I-2b), Miocene (Layer II), and Pliocene—Pleistocene (Layer III) at depths about the present sea level. The precipitation of Fe and Mn oxyhydroxides from seawater was interrupted by several times, with the longest gap from 38 to 26.5 Ma between the old (R, I-1, and I-2) and young (I-2b, II, and III) layers. Fe and Mn oxyhydroxides in the crusts were affected by two global events of phosphogenesis in the Pacific: Late Eocene—Early Oligocene, from 43 to 39 Ma (Layers R, I-1, I-2) and Late Oligocene—Early Miocene, from 27 to 21 Ma (Layer I-2b). The trace element patterns in different layers of the Co-rich Fe-Mn crusts are grouped using factor analysis of principal components (varimax raw) into four factors: (1) +(all REEs except Ce and La); (2) +(Ce, La, Ba, Mo, Sr, Pb); (3) +(Zr, Hf, Nb, Rb, As)/-Pb; (4) +(U, Th, Co, As, Sb, W)/-Y. The factor score diagrams highlight fields which are especially contrasting for Layers I-1, I-2, and II + III according to factors 2 and 4. Consistent REE and Y variations in Layers I-2b → II → III of the crust from Pallada Guyot correlate with gradual ocean deepening between the Late Oligocene—Early Miocene and Present when the MST guyots were submerging. Large variations in the trace element contents across coeval layers may be due to the hydrodynamics of currents on the guyot surfaces. Furthermore, the geochemistry of the crusts bears effects from repeated episodes of Cenozoic volcanism in the MST region of the Pacific Plate. Higher contents of Nb, Zr, As, Sb, and W in the younger layers II and III may result from large-scale volcanism, including Miocene eruptions of petit-spot volcanoes. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

15 pages, 6244 KB  
Article
Detailed Investigation of Cobalt-Rich Crusts in Complex Seamount Terrains Using the Haima ROV: Integrating Optical Imaging, Sampling, and Acoustic Methods
by Yonghang Li, Huiqiang Yao, Zongheng Chen, Lixing Wang, Haoyi Zhou, Shi Zhang and Bin Zhao
J. Mar. Sci. Eng. 2025, 13(4), 702; https://doi.org/10.3390/jmse13040702 - 1 Apr 2025
Cited by 2 | Viewed by 1886
Abstract
The remotely operated vehicle (ROV), a vital deep-sea platform, offers key advantages, including operational duration via continuous umbilical power, high task adaptability, and zero human risk. It has become indispensable for deep-sea scientific research and marine engineering. To enhance surveys of cobalt-rich crusts [...] Read more.
The remotely operated vehicle (ROV), a vital deep-sea platform, offers key advantages, including operational duration via continuous umbilical power, high task adaptability, and zero human risk. It has become indispensable for deep-sea scientific research and marine engineering. To enhance surveys of cobalt-rich crusts (CRCs) on complex seamount terrains, the 4500-m-class Haima ROV integrates advanced payloads, such as underwater positioning systems, multi-angle cameras, multi-functional manipulators, subsea shallow drilling systems, sediment samplers, and acoustic crust thickness gauges. Coordinated control between deck monitoring and subsea units enables stable multi-task execution within single dives, significantly improving operational efficiency. Survey results from Caiwei Guyot reveal the following: (1) ROV-collected data were highly reliable, with high-definition video mapping CRCs distribution across varied terrains. Captured crust-bearing rocks weighed up to 78 kg, drilled cores reached 110 cm, and acoustic thickness measurements had a 1–2 cm margin of error compared to in situ cores; (2) Video and cores analysis showed summit platforms (3–5° slopes) dominated by tabular crusts with gravel-type counterparts, summit margins (5–10° slopes) hosting gravel crusts partially covered by sediment, and steep slopes (12–15° slopes) exhibiting mixed crust types under sediment coverage. Thicker crusts clustered at summit margins (14 and 15 cm, respectively) compared to thinner crusts on platforms and slopes (10 and 7 cm, respectively). The Haima ROV successfully investigated CRC resources in complex terrains, laying the groundwork for seamount crust resource evaluations. Future advancements will focus on high-precision navigation and control, high-resolution crust thickness measurement, optical imaging optimization, and AI-enhanced image recognition. Full article
Show Figures

Figure 1

16 pages, 6730 KB  
Article
Restoration of Turbid Underwater Images of Cobalt Crusts Using Combined Homomorphic Filtering and a Polarization Imaging System
by Enzu Peng, Chengyi Liu and Haiming Zhao
Sensors 2025, 25(4), 1088; https://doi.org/10.3390/s25041088 - 11 Feb 2025
Cited by 1 | Viewed by 1189
Abstract
Marine cobalt-rich crusts, extensively used in industries such as aerospace, automotive, and electronics, are crucial mineral resources located on the ocean floor. To effectively exploit these valuable resources, underwater imaging is essential for real-time detection and distribution mapping in mining areas. However, the [...] Read more.
Marine cobalt-rich crusts, extensively used in industries such as aerospace, automotive, and electronics, are crucial mineral resources located on the ocean floor. To effectively exploit these valuable resources, underwater imaging is essential for real-time detection and distribution mapping in mining areas. However, the presence of suspended particles in the seabed mining environment severely degrades image quality due to light scattering and absorption, hindering the effective identification of the target objects. Traditional image processing techniques—including spatial and frequency domain methods—are ineffective in addressing the interference caused by suspended particles and offer only limited enhancement effects. This paper proposes a novel underwater image restoration method that combines polarization imaging and homomorphic filtering. By exploiting the differences in polarization characteristics between suspended particles and target objects, polarization imaging is used to separate backscattered light from the target signal, enhancing the clarity of the cobalt crust images. Homomorphic filtering is then applied to improve the intensity distribution and contrast of the orthogonal polarization images. To optimize the parameters, a genetic algorithm is used with image quality evaluation indices as the fitness function. The proposed method was compared with traditional image processing techniques and classical polarization imaging methods. Experimental results demonstrate that the proposed approach more effectively suppresses backscattered light, enhancing the clarity of target object features. With significant improvements in image quality confirmed by several no-reference quality metrics, the method shows promise as a solution for high-quality underwater imaging in turbid environments, particularly for deep-sea mining of cobalt-rich crusts. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

30 pages, 6637 KB  
Review
Enrichment Characteristics and Mechanisms of Critical Metals in Marine Fe-Mn Crusts and Nodules: A Review
by Sucheng Huang and Yazhou Fu
Minerals 2023, 13(12), 1532; https://doi.org/10.3390/min13121532 - 9 Dec 2023
Cited by 16 | Viewed by 4819
Abstract
Marine Co-rich ferromanganese crusts and polymetallic nodules, which are widely distributed in oceanic environments, are salient potential mineral resources that are enriched with many critical metals. Many investigations have achieved essential progress and findings regarding critical metal enrichment in Fe-Mn crusts and nodules. [...] Read more.
Marine Co-rich ferromanganese crusts and polymetallic nodules, which are widely distributed in oceanic environments, are salient potential mineral resources that are enriched with many critical metals. Many investigations have achieved essential progress and findings regarding critical metal enrichment in Fe-Mn crusts and nodules. This study systematically reviews the research findings of previous investigations and elaborates in detail on the enrichment characteristics, enrichment processes and mechanisms and the influencing factors of the critical metals enriched in Fe-Mn crusts and nodules. The influencing factors of critical metal enrichments in Fe-Mn crusts and nodules mainly include the growth rate, water depth, post-depositional phosphatization and structural uptake of adsorbents. The major enrichment pathways of critical metals in marine Fe-Mn (oxy)hydroxides are primarily as follows: direct substitution on the surface of δ-MnO2 for Ni, Cu, Zn and Li; oxidative substitution on the δ-MnO2 surface for Co, Ce and Tl; partition between Mn and Fe phases through surface complexation according to electro-species attractiveness for REY (except for Ce), Cd, Mo, W and V; combined Mn-Fe phases enrichment for seawater anionic Te, Pt, As and Sb, whose low-valence species are mostly oxidatively enriched on δ-MnO2, in addition to electro-chemical adsorption onto FeOOH, while high-valence species are likely structurally incorporated by amorphous FeOOH; and dominant sorption and incorporation by amorphous FeOOH for Ti and Se. The coordination preferences of critical metals in the layered and tunneled Mn oxides are primarily as follows: metal incorporations in the layer/tunnel-wall for Co, Ni and Cu; triple-corner-sharing configurations above the structural vacancy for Co, Ni, Cu, Zn and Tl; double-corner-sharing configurations for As, Sb, Mo, W, V and Te; edge-sharing configurations at the layer rims for corner-sharing metals when they are less competitive in taking up the corner-sharing position or under less oxidizing conditions when the metals are less feasible for reactions with layer vacancy; and hydrated interlayer or tunnel-center sorption for Ni, Cu, Zn, Cd, Tl and Li. The major ore-forming elements (e.g., Co, Ni, Cu and Zn), rare earth elements and yttrium, platinum-group elements, dispersed elements (e.g., Te, Tl, Se and Cd) and other enriched critical metals (e.g., Li, Ti and Mo) in polymetallic nodules and Co-rich Fe-Mn crusts of different geneses have unique and varied enrichment characteristics, metal occurrence states, enrichment processes and enrichment mechanisms. This review helps to deepen the understanding of the geochemical behaviors of critical metals in oceanic environments, and it also bears significance for understanding the extreme enrichment and mineralization of deep-sea critical metals. Full article
Show Figures

Figure 1

13 pages, 3193 KB  
Article
One of the Deepest Genera of Antipatharia: Taxonomic Position Revealed and Revised
by Tina N. Molodtsova, Dennis M. Opresko, Michael O’Mahoney, Ulyana V. Simakova, Galina A. Kolyuchkina, Yessenia M. Bledsoe, Teresa W. Nasiadka, Rachael F. Ross and Mercer R. Brugler
Diversity 2023, 15(3), 436; https://doi.org/10.3390/d15030436 - 16 Mar 2023
Cited by 7 | Viewed by 3916
Abstract
The genus Abyssopathes Opresko, 2002, comprises deep-sea black corals known almost exclusively from lower bathyal and abyssal depths, mainly from seamounts covered by cobalt-rich crusts and areas of polymetallic nodules. The taxonomical position of the genus and its placement in the family Schizopathidae [...] Read more.
The genus Abyssopathes Opresko, 2002, comprises deep-sea black corals known almost exclusively from lower bathyal and abyssal depths, mainly from seamounts covered by cobalt-rich crusts and areas of polymetallic nodules. The taxonomical position of the genus and its placement in the family Schizopathidae has been repeatedly questioned, but fruitlessly. Known only in extremely deep habitats, these corals have rarely been collected in a state suitable for morphological or molecular studies that could help to clarify their status. Recently, increasing attention has been paid to the study of fauna associated with deep-sea minerals. Using material of Abyssopathes lyra (Brook, 1889) sampled during these studies, we transfer the genus Abyssopathes from the family Schizopathidae to the family Cladopathidae based on morphological and molecular data. Morphological data includes six mesenteries in the polyps, a unique pinnulation pattern found only in genera within the Cladopathidae, and relatively short polyp tentacles, a feature typical of some cladopathids. Sequencing data, consisting of 626 bp from the mitochondrial cox1 gene, showed that Abyssopathes is 99% identical to Chrysopathes Opresko, 2003, Cladopathes Brook, 1889, Heteropathes Opresko, 2011, and Trissopathes Opresko, 2003 (all Cladopathidae), in this gene region. Full article
Show Figures

Figure 1

18 pages, 4786 KB  
Article
Dispersal Mechanisms of Trace Metal Elements in the Environment: The Case of Mineral Wastes Stored in Tshamilemba District of the City of Lubumbashi, DR Congo
by Ben Sadiki, Fabien Ilunga and Michel Shengo
Sustainability 2023, 15(5), 4476; https://doi.org/10.3390/su15054476 - 2 Mar 2023
Viewed by 2868
Abstract
Since 2001, the Tshamilemba quarter, located in the City of Lubumbashi (DRC), has been home to copper- and cobalt-producing plants, which generate great amounts of mineral waste, the storage of which has resulted in environmental pollution. Previous studies conducted in the Tshamilemba district [...] Read more.
Since 2001, the Tshamilemba quarter, located in the City of Lubumbashi (DRC), has been home to copper- and cobalt-producing plants, which generate great amounts of mineral waste, the storage of which has resulted in environmental pollution. Previous studies conducted in the Tshamilemba district have identified the weathering process of stored mineral wastes as the main source of trace metal elements (TMEs) involved in the contamination of soil and well water, and have highlighted the population exposure to cobalt. This study strives to identify or establish the dispersal mechanisms of pollutants in the environment that contaminate soil, surface water and edible plants. This study measured major physicochemical parameters, determined TME concentrations in samples (soil, water and edible plants) and established, based on data from soil sample analysis mathematically processed using Matlab 7.1 software, the spatial distributions of TMEs, in both the upper and deep soil (20 cm). The soil sample analysis revealed an average pH of 7.69 and a value of 9.1 for the near-white crusts collected at some spots. In the soil, TMEs were present in upper layers (Co, Cu, Zn and Fe) and the deep layers (Co, Cu, Pb, Zn and Fe) at phytotoxic concentrations. TMEs were observed in water samples at concentrations (Cu, Co, Mn, Zn and Pb) surpassing the quality standards for drinking water. This also applies to edible plant samples of Saccharum officinarum (Co, Cd, Ni, Mg and Pb) and Musa acuminate (Cd, Co, Pb, Zn, Mn and Ni). TMEs disperse in the environment as airborne particles from aerial erosion and as dissolved species in run-off water, mixed with acidic, metal-rich waters spreading from the weathering of stored mineral waste. TMEs contaminate the surrounding soil near to the surface water and build up in edible plants. Therefore, fear among the population about the environment pollution in Tshamilemba is well justified. Understanding the dispersal mechanisms of TMEs is of paramount importance to better control and to contain mineral pollution and design strategies for minimizing the effects on human health. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

11 pages, 7130 KB  
Article
Study on Sound Velocity and Attenuation of Underwater Cobalt-Rich Crust Based on Biot and BISQ Theories
by Gang Hu, Haiming Zhao and Zelin Li
J. Mar. Sci. Eng. 2022, 10(12), 1880; https://doi.org/10.3390/jmse10121880 - 3 Dec 2022
Cited by 2 | Viewed by 1848
Abstract
A prediction model of the sound velocity and sound attenuation of underwater cobalt-rich crusts (CRCs) was established to solve the problem that it is difficult to predict the sound velocity in thickness measurements of cobalt-rich crusts. Based on Biot theory and BISQ theory, [...] Read more.
A prediction model of the sound velocity and sound attenuation of underwater cobalt-rich crusts (CRCs) was established to solve the problem that it is difficult to predict the sound velocity in thickness measurements of cobalt-rich crusts. Based on Biot theory and BISQ theory, a simplified Biot and BISQ model was proposed for the prediction of the sound velocity and sound attenuation of CRCs by using the Kozeny–Carman (KC) equation. The models could calculate the sound velocity and attenuation by the porosity and detection frequency. Based on the physical and mechanical properties of CRCs, a similarity model of the sound velocity and sound attenuation of CRCs was made by using the similarity theory to solve the problem that it is difficult to measure the acoustic propagation characteristics of CRCs. The sound velocity and sound attenuation of CRC similarity models with different porosities were measured by an underwater transmission experiment and the results of the simplified model calculation and experimental measurements were compared. The results showed that the simplified Biot model was suitable for the CRC sound velocity prediction and the simplified BISQ model was suitable for the CRC sound attenuation prediction, which had a high prediction accuracy. Full article
Show Figures

Figure 1

23 pages, 7995 KB  
Article
A Method for Assessing the Thickness of Cobalt-Rich Crust on Seamounts and Its Application on the Il’ichev Guyot
by Shijuan Yan, Xinyu Shi, Gang Yang, Dewen Du, Yonggang Liu, Jun Ye, Xiangwen Ren, Zhiwei Zhu and Yue Hao
Minerals 2022, 12(12), 1538; https://doi.org/10.3390/min12121538 - 29 Nov 2022
Viewed by 2256
Abstract
Seamount cobalt-rich crusts are rich in cobalt resources and are sought after worldwide. Among different affecting parameters, crust thickness is the most important in evaluating cobalt-rich crust resources in seamounts. Generally, there are two challenges to crust thickness evaluation: firstly, due to high [...] Read more.
Seamount cobalt-rich crusts are rich in cobalt resources and are sought after worldwide. Among different affecting parameters, crust thickness is the most important in evaluating cobalt-rich crust resources in seamounts. Generally, there are two challenges to crust thickness evaluation: firstly, due to high operating costs, most geological stations for seamount exploration have sparse sampling distributions so there are insufficient data to estimate the crust thickness distribution; secondly, a single evaluation method has advantages and disadvantages, and it is not feasible to benefit from the advantages only. These methods cannot simultaneously make full use of the sampling data in local areas, providing a more appropriate evaluation of the whole area. As a result, the estimated results cannot fully reflect the thickness distribution. Based on the thickness data of the station survey and topographic data, geostatistical units are divided, and a comprehensive crust thickness assessment scheme is established on the ArcGIS platform. To this end, the adjacent area method is applied to calculate the crust thickness within the influence range of the station. Combined with the station buffer radius and Thiessen polygon method, the crust thickness within 1.5 km of the survey station was estimated. Then the “slope–distance” Kriging interpolation method was used to calculate the crust thickness in the study area, and the crust thickness in the optimal effective radius area was given to compensate for the missing part in the first step. Finally, the geological blocks were divided using the topographic classification method, and the crust thickness of the remaining unassigned regions was estimated using the mathematical expectation method. The proposed method was applied to evaluate the Il’ichev Guyot’s crust thickness and reasonable results were achieved. It was found that the thickness estimation of the area near the station is consistent with the measured values. Since finer topographic data are used in the calculation, the thickness estimation result is more detailed. In this regard, a simple and effective calculation method was established on the ArcMap platform. The mathematical expectation estimation method of the crust thickness, based on the topographic and geomorphological classification from the perspective of the mineralization mechanism, compensates for the drawbacks of the first two methods originating from the lack of data points. The results show that the proposed method is an appropriate scheme to evaluate seamount crust thickness without comprehensive investigation. Full article
(This article belongs to the Special Issue New Economy Minerals)
Show Figures

Figure 1

26 pages, 9502 KB  
Article
A Study on the Performance Modeling Method for a Deep-Sea Cobalt-Rich Crust Mining Vehicle
by Chao Xie, Ming Chen, Lan Wang, Casey Agee, Shaoming Yao, Jinrong Zheng, Jun Liu, Jiahua Xie, Wen Ou, Jianyu Xiao, Wei Chen and Liquan Wang
Minerals 2022, 12(12), 1521; https://doi.org/10.3390/min12121521 - 28 Nov 2022
Cited by 7 | Viewed by 3966
Abstract
To mine the cobalt-rich crust deposits at the substrate of the slope of the seamount, the mining vehicle needs to walk on the slope and strip the cobalt-rich crust from the substrate. To achieve safety and control, the vehicle needs to stably walk [...] Read more.
To mine the cobalt-rich crust deposits at the substrate of the slope of the seamount, the mining vehicle needs to walk on the slope and strip the cobalt-rich crust from the substrate. To achieve safety and control, the vehicle needs to stably walk on the slope. In this paper, we propose a modeling method for mining vehicle performance based on slope stability and antislip and antiskid conditions. The specific energy of three types of mining vehicles is compared based on dimensionless parameters. The dual-drum type is determined to be the best choice in terms of energy costs, followed by the down-milling type. The performance of the compact mining vehicle based on different slope angles and two sea trial results in the South China Sea indicate that the slope angle, substrate, and crust have significant effects on the stability. The modeling method proposed in this paper can help designers estimate the structure and power of mining vehicles based on mining stability. Full article
Show Figures

Figure 1

14 pages, 8366 KB  
Article
The Significance of Nanomineral Particles during the Growth Process of Polymetallic Nodules in the Western Pacific Ocean
by Qiangtai Huang, Bo He, Zhourong Cai and Qianru Huang
Int. J. Environ. Res. Public Health 2022, 19(21), 13972; https://doi.org/10.3390/ijerph192113972 - 27 Oct 2022
Cited by 6 | Viewed by 2768
Abstract
As a huge reservoir of economic metallic elements, oceanic polymetallic nodules have important strategic significance and are one of the main research objects in marine geology, especially their formation process and genetic mechanism. In this study, polymetallic nodules from the cobalt-rich crust exploration [...] Read more.
As a huge reservoir of economic metallic elements, oceanic polymetallic nodules have important strategic significance and are one of the main research objects in marine geology, especially their formation process and genetic mechanism. In this study, polymetallic nodules from the cobalt-rich crust exploration contract area in the Western Pacific Ocean were taken as the research object. Optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) were used for observation and testing. The results indicate that many nanomineral particles, mainly composed of Fe and Mn, developed in polymetallic nodules from the western Pacific Ocean. The solid–liquid interface process of nanomineral particles plays an important role in the growth and evolution of nodules. We propose that the growth process of polymetallic nodules in the western Pacific Ocean can be divided into three stages. First, terrigenous detritus nucleates, and nanomineral particles composed of Fe, Mn, and other elements form, aggregate and attach to the core to form the initial shell. Second, a dense layer of the shell forms under stable conditions. In the third stage, the redox conditions of the nodules change, and the polymetallic nodules experience a variety of interface process modifications. Full article
(This article belongs to the Special Issue Marine Environmental Geology)
Show Figures

Figure 1

16 pages, 6624 KB  
Article
Research on Recovery of Valuable Metals from Cobalt-Rich Crust Using Carbon as a Reduction Agent during the Acid Baking Process
by Da Li, Xunxiong Jiang, Shengdong Wang, Xudong Sun, Feng Zhao, Linyong Feng and Denggao Zhang
Minerals 2022, 12(10), 1215; https://doi.org/10.3390/min12101215 - 26 Sep 2022
Cited by 5 | Viewed by 2772
Abstract
Cobalt-rich crust is a seabed metal mineral resource that is different from oceanic polymetallic nodules. Based on the higher Co content than polymetallic nodules, the commercial value of cobalt-rich crust may be better than that of polymetallic nodules. Due to the special distribution [...] Read more.
Cobalt-rich crust is a seabed metal mineral resource that is different from oceanic polymetallic nodules. Based on the higher Co content than polymetallic nodules, the commercial value of cobalt-rich crust may be better than that of polymetallic nodules. Due to the special distribution of valuable metals, commercial implementation is always limited. Herein, a novel process is proposed to efficiently and, in an eco-friendly way, recycle valuable metals from cobalt-rich crust. The results indicate that carbon could promote the decomposition of manganite in the cobalt-rich crust during the acid baking process, and the leaching ratio of Mn could increase by 50% when carbon is added during acid baking. In addition, it can be found that the promotion of carbon for Co is stronger at low sulfuric acid consumption than that at high sulfuric acid consumption; however, there is no promotion of carbon for leaching Ni and Cu during the acid baking process. The leaching ratio of Ni, Co, Cu, Mn, and Fe reached 98.59%, 91.62%, 93.81%, 41.27%, and 26.94%, respectively, when the mass ratio of the sulfuric acid and cobalt-rich crust was 0.567, the mass ratio of the carbon and cobalt-rich crust was 0.1, the temperature was 200 °C and the time was 240 min. This research could provide an alternative economic process for recycling valuable metals from cobalt-rich crusts. Full article
(This article belongs to the Special Issue Development Methods and Technologies Used in Deep-Sea Mining)
Show Figures

Figure 1

13 pages, 1535 KB  
Article
Exploring Ocean Floor Geodiversity in Relation to Mineral Resources in the Southwest Pacific Ocean
by Arie Christoffel Seijmonsbergen, Sanne Valentijn, Lisan Westerhof and Kenneth Frank Rijsdijk
Resources 2022, 11(7), 60; https://doi.org/10.3390/resources11070060 - 27 Jun 2022
Cited by 7 | Viewed by 4535
Abstract
The future extraction of mineral resources may irreversibly damage ocean floor geodiversity in the Southwest Pacific Ocean. Therefore, understanding of the spatial distribution of ocean floor geodiversity in relation to mineral resources is important. For that purpose, we first developed a geodiversity index [...] Read more.
The future extraction of mineral resources may irreversibly damage ocean floor geodiversity in the Southwest Pacific Ocean. Therefore, understanding of the spatial distribution of ocean floor geodiversity in relation to mineral resources is important. For that purpose, we first developed a geodiversity index map of the western Pacific Ocean including spatial information of openly available digital layers of four components: seafloor geomorphology, sediment thickness, bathymetry and seafloor roughness. Second, we analysed how these components contributed to the geodiversity index. Finally, correlations between three mineral resources (seafloor massive sulphides, polymetallic nodules and cobalt-rich crusts) and the geodiversity index, its components, and the ocean floor age were calculated. The results showed that the ocean floor environment and the time necessary for the formation of the three mineral resources were predominantly related to the bathymetry component and the age of the ocean floor, and to a lesser extent to the seafloor roughness, geomorphology and sediment thickness components. We conclude that the ocean floor geodiversity index and its components contribute to an improved understanding of the spatial distribution of abiotic seafloor diversity and can be optimized by using higher resolution data. We suggest that ocean floor geodiversity could be considered in future resource extraction to support responsible mining and help limit environmental damage. Full article
(This article belongs to the Special Issue Geodiversity Assessment: What, Why and How?)
Show Figures

Graphical abstract

16 pages, 5922 KB  
Article
First Demonstration of Recognition of Manganese Crust by Deep-Learning Networks with a Parametric Acoustic Probe
by Feng Hong, Minyan Huang, Haihong Feng, Chengwei Liu, Yong Yang, Bo Hu, Dewei Li and Wentao Fu
Minerals 2022, 12(2), 249; https://doi.org/10.3390/min12020249 - 16 Feb 2022
Cited by 6 | Viewed by 3596
Abstract
The quantitative evaluations of mineral resources and delineation of promising areas in survey regions for future mining have attracted many researchers’ interest. Cobalt-Rich manganese crusts (Mn-crusts), as one of the three significant strategic submarine mineral resources, lack effective and low-cost detection devices for [...] Read more.
The quantitative evaluations of mineral resources and delineation of promising areas in survey regions for future mining have attracted many researchers’ interest. Cobalt-Rich manganese crusts (Mn-crusts), as one of the three significant strategic submarine mineral resources, lack effective and low-cost detection devices for surveying since the challenging distribution requires a high vertical and horizontal resolution. To solve this problem, we have built an engineering prototype parametric acoustic probe named PPPAAP19. With the echo data acquired by the probe, the interpretation of the accurate thickness information and the seabed classification using the deep learning network-based method are realized. We introduce the acoustic dataset of the minerals collected from two sea trials. Firstly, the preprocessing method and data augment strategy used to form the dataset are described. Afterward, the performances of several baseline approaches are assessed on the dataset, and the experimental results show that they all achieve high accuracy for binary classification. We find that the end-to-end approach for binary classification based on a 1D Convolution Neural Network has a comprehensive advantage. Such a demonstration validates the possibility of binary classification for recognizing the ferromanganese crust only in an acoustic manner, which may significantly contribute to the efficiency of the survey. Full article
Show Figures

Figure 1

14 pages, 2657 KB  
Proceeding Paper
A Critical Review on Evaluation of the Marine Resources Mining versus the Land-Based Ones for REE
by Konstantinos Papavasileiou
Mater. Proc. 2021, 5(1), 112; https://doi.org/10.3390/materproc2021005112 - 10 Feb 2022
Cited by 1 | Viewed by 2765
Abstract
It is now scientifically proven that specific categories of submarine raw materials, especially deep seas such as Mn and Fe oxides, polymetallic nodules, polymetallic sulfides (SMS) and some deep-sea sediment categories, can have significant potential for some critical metals for future use. One [...] Read more.
It is now scientifically proven that specific categories of submarine raw materials, especially deep seas such as Mn and Fe oxides, polymetallic nodules, polymetallic sulfides (SMS) and some deep-sea sediment categories, can have significant potential for some critical metals for future use. One characteristic of these deposits is that although they often have lower Rare Earth Elements (REE) contents than the well-known land deposits, their sizes are very extensive, much higher than the land-based deposits. Therefore, the future use of these submarine formations as a source of REEs can be an important alternative to the exponentially growing demand for these strategic metals. These formations have significant potential to be a source of REEs in the markets when they are extracted as byproducts of the most critical metals such as copper, nickel, cobalt and manganese, from Mn nodules. To prove how realistic, the extraction of REE from those deposits is in market terms, we studied the economotechnical dimension and the potential or REEs compared to those of the well-known on-land REE deposits. Two studies are presented concerning the existing exploration pre-feasibility cases for REEs originated from two existing licences granted by the International Seabed Authority (ISA) in the Clarion Clipperton Zone (CCZ). The examination of these two cases has clearly shown that compared to the corresponding deposits of REE inland, the total basket prices of these submarine deposits are higher due to the higher contents of heavy REE such as Nd, Pr and Dy and Sm, Eu, Gd, Tb and Y in these marine deposits. Considering that the prices in the international markets for most of the REE oxides between 2019 and 2021 were very high, they gave these deposits even greater economic value. The significant advantage of the mining and metallurgical treatment of these manganese nodules and cobalt-rich manganese crusts is also related to the fact that REEs are not part of the crystal lattice of the minerals that host them, in contrast to what happens with land-based deposits. This makes their metallurgical processing more manageable and cheaper. This fact makes mining and metallurgical treatment economically favourable. On the other hand, the very low Th and U concentrations in these deep-sea deposits do not pose environmental risks in many well-known land-based REE deposits. Full article
(This article belongs to the Proceedings of International Conference on Raw Materials and Circular Economy)
Show Figures

Figure 1

Back to TopTop