Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = coaxial filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6255 KiB  
Article
Dual-Band Filter and Diplexer Design Using Extremely Miniaturized Substrate-Integrated Coaxial Cavity
by Chun-Ming Hung, Ci-Fang Jheng, Keh-Yi Lee, Chung-I G. Hsu and Min-Hua Ho
Sensors 2025, 25(9), 2921; https://doi.org/10.3390/s25092921 - 5 May 2025
Viewed by 626
Abstract
This paper presents the design of a dual-band filter and a diplexer using an extremely miniaturized substrate-integrated coaxial cavity (SICC) structure. The presented dual-band filter can function as a front-end circuit block connected to 5G antennae, enabling dual-passband operation for 5G applications. The [...] Read more.
This paper presents the design of a dual-band filter and a diplexer using an extremely miniaturized substrate-integrated coaxial cavity (SICC) structure. The presented dual-band filter can function as a front-end circuit block connected to 5G antennae, enabling dual-passband operation for 5G applications. The diplexer is designed for use in 5G communication systems, positioned after the 5G antennae to facilitate the switching of transmitting (Tx) and receiving (Rx) signals between the Tx and Rx terminals. The main contribution of this work is the development of a highly miniaturized substrate-integrated coaxial cavity (SICC) to design a dual-band filter (DBF) and a diplexer. The circuit area of the proposed dual-frequency SICC is a mere 2.1% of its conventional substrate-integrated waveguide (SIW) cavity counterpart when operating at the same frequency. A dual-band filter and a diplexer are realized using two and three highly miniaturized SICC resonators, respectively. The dual-band filter is designed to have a transmission zero on each passband side to enhance signal selectively. At most in-band frequencies, the isolation between the diplexer’s channel bands exceeds 20 dB. A sample dual-band filter and diplexer have been fabricated for experimental validation, demonstrating excellent agreement between the measured and simulated data. To the best of the authors’ knowledge, the designed dual-band filter and diplexer achieve the highest circuit area efficiency within the categories of dual-band SIW cavity filters and diplexers. Full article
(This article belongs to the Special Issue Millimeter-Wave Antennas for 5G)
Show Figures

Figure 1

11 pages, 1452 KiB  
Article
Research on Concentricity Detection Method of Automobile Brake Piston Parts Based on Improved Canny Algorithm
by Qinghua Li, Wanting Zhao, Siyuan Cheng and Yi Ji
Appl. Sci. 2025, 15(8), 4397; https://doi.org/10.3390/app15084397 - 16 Apr 2025
Viewed by 326
Abstract
The automotive brake piston component is an important part of the automotive brake system, and the concentricity detection of the first piston component is crucial to ensure driving safety. In this paper, an improved Canny algorithm is proposed for non-contact detection of spring [...] Read more.
The automotive brake piston component is an important part of the automotive brake system, and the concentricity detection of the first piston component is crucial to ensure driving safety. In this paper, an improved Canny algorithm is proposed for non-contact detection of spring concentricity of the first piston component. Firstly, the traditional Canny algorithm is improved by replacing the Gaussian filter with a bilateral filter to fully retain the edge information, and accurate edge detection results are obtained by constructing a multi-scale analysis. After obtaining the edge images, a sub-pixel edge detection method with gray moments is introduced to optimize these edges; secondly, a circle is fitted to the extracted edge points by using the RANSAC algorithm to determine the center position and radius of the circle; and finally, the concentricity of the first piston part is calculated based on the fitting results. The experimental results are compared with those of the CMM and the traditional Canny algorithm, and the results show that the improved Canny algorithm reduces the coaxiality error by 4% and enables effective measurement of the concentricity of the first piston assembly spring. Full article
Show Figures

Figure 1

20 pages, 6823 KiB  
Article
Hybrid Heading Estimation Approach for Micro Coaxial Drones Based on Motion-Adaptive Stabilization and APEKF
by Haoming Yang, Xukai Ding, Liye Zhao and Xingyu Chen
Drones 2025, 9(4), 255; https://doi.org/10.3390/drones9040255 - 27 Mar 2025
Viewed by 517
Abstract
Coaxial drones have garnered popularity owing to their energy efficiency and compact design. However, the precise navigation of these drones in complex and dynamic flight scenarios is limited by inaccuracies in heading/yaw estimation. Conventional heading estimation methods rely on magnetometers and real-time kinematic [...] Read more.
Coaxial drones have garnered popularity owing to their energy efficiency and compact design. However, the precise navigation of these drones in complex and dynamic flight scenarios is limited by inaccuracies in heading/yaw estimation. Conventional heading estimation methods rely on magnetometers and real-time kinematic Global Navigation Satellite Systems (RTK-GNSS), which directly measure heading angle. However, the small size of microdrones restricts the placement of magnetometers away from magnetic interference and prevents the use of directional antennas. Moreover, single-antenna alignment algorithms are highly susceptible to errors caused by nonlinearity, leading to significant inaccuracies in heading estimation. To address these challenges, this paper proposes a hybrid heading estimation approach that integrates Motion-Adaptive Stabilization with an Angle-Parameterized Extended Kalman Filter (APEKF). This method utilizes low-cost GNSS, a magnetometer, and an Inertial Measurement Unit (IMU). Heading is initialized based on the drone’s static attitude, with an adaptive threshold established during takeoff to account for varying flight conditions. As the drone reaches higher altitudes, heading estimation is further stabilized. GNSS velocity observations enhance estimation accuracy through horizontal maneuvering alignment achieved by incorporating multiple sub-filter techniques and residual-based fusion. In the simulations and onboard experiments in this study, the proposed heading estimation method demonstrated a precision of approximately 1.01° post-takeoff, with the alignment speed enhanced by 43%. Moreover, the method outperformed existing estimation techniques and, owing to its low computational overhead, can serve as a reliable full-stage backup across various drone applications. Full article
Show Figures

Figure 1

20 pages, 7158 KiB  
Article
Coded Ultrasonic Ranging for the Distance Measurement of Coaxial Rotor Blades
by Yaohuan Lu, Zhen Qiu, Shan Zhang, Wenchuan Hu, Yongqiang Qiu and Zurong Qiu
Micromachines 2025, 16(2), 240; https://doi.org/10.3390/mi16020240 - 19 Feb 2025
Cited by 1 | Viewed by 731
Abstract
Coaxial rotor helicopters have a wide range of civilian and military applications; however, the collision risk of the upper and lower blades that comes with the coaxial rotor system remains. This paper introduces a blade-tip distance measurement method based on coded ultrasonic ranging [...] Read more.
Coaxial rotor helicopters have a wide range of civilian and military applications; however, the collision risk of the upper and lower blades that comes with the coaxial rotor system remains. This paper introduces a blade-tip distance measurement method based on coded ultrasonic ranging to tackle this challenge. Coded ultrasonic ranging with phase modulation was adopted to improve the measurement rate. In this paper, seven-bit M-sequences and Gold codes are chosen with four periods of 200 kHz sine wave carriers as the excitation signals, and the received signals are filtered by a bandpass filter and decoded by a matching filter. The coding performance is evaluated by the distinguishability and energy level of the received signals. The experimental results show that the measurement rate can reach 3060 Hz for a distance of one meter. They also give the potential solution for other high-speed measurement problems. Full article
Show Figures

Figure 1

17 pages, 1520 KiB  
Article
Fully Canonical Triple-Mode Filter with Source-Load Coupling for 5G Systems
by Cristóbal López-Montes and José R. Montejo-Garai
Sensors 2025, 25(1), 90; https://doi.org/10.3390/s25010090 - 27 Dec 2024
Viewed by 1018
Abstract
This work presents the design of a novel fully canonical triple-mode filter with source–load coupling for 5G applications, exploiting its very compact size for the FR1 band. The design is carried out using circular waveguide technology to attain power handling and low insertion [...] Read more.
This work presents the design of a novel fully canonical triple-mode filter with source–load coupling for 5G applications, exploiting its very compact size for the FR1 band. The design is carried out using circular waveguide technology to attain power handling and low insertion losses. The fully canonical topology allows for increasing the selectivity of the filter since the number of finite transmission zeros is equal to the order of the filter. Given that this topology needs a source–load coupling level that is not possible to achieve with the classical iris ports, coaxial probes are used as input–output ports. A systematic procedure is developed to obtain the initial geometry before the full-wave optimization. The proof of concept is verified by a manufactured prototype at 3.7 GHz with 1.1% relative bandwidth for high coverage of 5G base stations. The results show an excellent agreement between the simulation and the measurement, validating the triple-mode filter and its underlying design process. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

11 pages, 2125 KiB  
Article
Novel Deposition Technique for Fabricating Films with Customized Thickness Profiles
by Chi-Yung Hsieh, Yu-Chi Lin, Xuan-Shan Huang, Jing-Ting Lin and Cheng-Sheng Huang
Micromachines 2024, 15(12), 1412; https://doi.org/10.3390/mi15121412 - 23 Nov 2024
Viewed by 1085
Abstract
This study introduces a novel deposition technique capable of depositing thin films with any arbitrary thickness profile. The apparatus consists of a fixed shadow mask and a rotating sample carrier plate. The shadow mask features a specifically designed opening curve that corresponds to [...] Read more.
This study introduces a novel deposition technique capable of depositing thin films with any arbitrary thickness profile. The apparatus consists of a fixed shadow mask and a rotating sample carrier plate. The shadow mask features a specifically designed opening curve that corresponds to the particular thickness profile of the deposited film. We successfully designed two shadow masks and used them to deposit films with linear thickness gradients of 49.3 and 86.8 Å/mm and films with sinusoidal thickness profiles with a period of 40 mm. Furthermore, a linear variable filter was designed on the basis of a quarter-wavelength stack of Si3N4 and SiO2, combined with a TiO2 cavity layer with a linearly varying thickness. By coaxially rotating the sample carrier plate relative to the shadow mask, films with the desired thickness profiles could be fabricated in a single deposition step without the need for additional rotational or translational devices inside the deposition chamber. By rotating the carrier plate, the chips attached at different circumferential positions can achieve consistent thickness profiles, making this method well-suited for mass production. Full article
Show Figures

Figure 1

13 pages, 4653 KiB  
Article
Research on Process Control of Laser-Based Direct Energy Deposition Based on Real-Time Monitoring of Molten Pool
by Haoda Wang, Jingbin Hao, Mengsen Ding, Xuanyu Zheng, Haifeng Yang and Hao Liu
Coatings 2024, 14(9), 1131; https://doi.org/10.3390/coatings14091131 - 3 Sep 2024
Cited by 1 | Viewed by 1196
Abstract
In the process of laser-based direct energy deposition (DED-LB), the quality of the deposited layer will be affected by the process parameters and the external environment, and there are problems such as poor stability and low accuracy. A molten pool monitoring method based [...] Read more.
In the process of laser-based direct energy deposition (DED-LB), the quality of the deposited layer will be affected by the process parameters and the external environment, and there are problems such as poor stability and low accuracy. A molten pool monitoring method based on coaxial vision is proposed. Firstly, the molten pool image is captured by a coaxial CCD camera, and the geometric features of the molten pool are accurately extracted by image processing techniques such as grayscale, median filtering noise reduction, and K-means clustering combined with threshold segmentation. The molten pool width is accurately extracted by the Canny operator combined with the minimum boundary rectangle method, and it is used as the feedback of weld pool control. The influence of process parameters on the molten pool was further analyzed. The results show that with an increase in laser power, the width and area of the molten pool increase monotonously, but exceeding the material limit will cause distortion. Increasing the scanning speed will reduce the size of the molten pool. By comparing the molten pool under constant power mode and width control mode, it is found that in width control mode, the melt pool width fluctuates less, and the machining accuracy is improved, validating the effectiveness of the real-time control system. Full article
Show Figures

Figure 1

11 pages, 4901 KiB  
Article
A Metamaterial Bandpass Filter with End-Fire Coaxial Coupling
by Xianfeng Tang, Yemin Zang, Xiangqiang Li and Che Xu
Electronics 2024, 13(16), 3158; https://doi.org/10.3390/electronics13163158 - 10 Aug 2024
Cited by 1 | Viewed by 1233
Abstract
A miniaturized metamaterial (MTM) bandpass filter (BPF) based on end-fire coaxial coupling is proposed. End-fire coaxial coupling is achieved by using the coaxial cavity to connect with the SubMiniature version A connector. The subwavelength characteristics of the MTM lead to the miniaturization advantages [...] Read more.
A miniaturized metamaterial (MTM) bandpass filter (BPF) based on end-fire coaxial coupling is proposed. End-fire coaxial coupling is achieved by using the coaxial cavity to connect with the SubMiniature version A connector. The subwavelength characteristics of the MTM lead to the miniaturization advantages of the filter in transverse dimensions. Moreover, the longitudinal length of the coaxial cavity can be sharply reduced by introducing matched blocks. As a result, the proposed filter has miniaturization merit both in transverse and longitudinal dimensions. The full-wave simulation results further reveal that the MTM BPF exhibits the advantages of low loss, low reflection, and low group delay. Additionally, the fractional bandwidth is approximately 13% when |S11| is less than −15 dB. The MTM BPF might have potential applications to array antennas for easily being expanded to two dimensional arrays. Full article
(This article belongs to the Special Issue Electrical Power Systems Quality)
Show Figures

Figure 1

16 pages, 6001 KiB  
Article
Distance Measurement of Contra-Rotating Rotor Blades with Ultrasonic Transducers
by Shan Zhang, Yaohuan Lu, Zhen Qiu, Wenchuan Hu, Zewen Dong, Zurong Qiu and Yongqiang Qiu
Micromachines 2024, 15(6), 676; https://doi.org/10.3390/mi15060676 - 22 May 2024
Cited by 2 | Viewed by 1150
Abstract
Coaxial rotor helicopters have great potential in civilian and commercial uses, with many advantages, but challenges remain in the accurate measurement of rotor blades’ distance to prevent blade collision. In this paper, a blade tip distance measurement method based on ultrasonic measurement window [...] Read more.
Coaxial rotor helicopters have great potential in civilian and commercial uses, with many advantages, but challenges remain in the accurate measurement of rotor blades’ distance to prevent blade collision. In this paper, a blade tip distance measurement method based on ultrasonic measurement window and phase triggering is proposed, and the triggering time of the transmitter is studied. Due to the complexity of the measured signal, bandpass filtering and a time-of-flight (TOF) estimation based on the power density of the received signal are utilised. The method is tested on an experimental test platform with a pair of 200 kHz ultrasonic transducers. The experimental results show that the maximum ranging error is less than 1.0% for the blade tip distance in a range of 100–1000 mm. Compared with the amplitude threshold method, the proposed TOF estimation method works well on the received signal with a low SNR and improves the ranging accuracy by about 5 mm when the blade tip distance is larger than 500 mm. This study provides a good reference for the accurate measurement of rotor blade tip distance, and gives a solution for ranging high-speed rotating objects. Full article
Show Figures

Figure 1

12 pages, 4079 KiB  
Article
A Large Frequency Ratio Dual-Band Integrated Bandpass Filter Based on MCSICL Structure
by Yu Zhu and Xiaochun Li
Electronics 2024, 13(4), 754; https://doi.org/10.3390/electronics13040754 - 13 Feb 2024
Cited by 1 | Viewed by 1240
Abstract
In this paper, a dual-band integrated bandpass filter (DI-BPF) based on a mode composite substrate integrated coaxial line (MCSICL) is proposed for a large frequency ratio. The low-frequency bandpass filter is formed by incorporating an SICL line and a gap into the MCSICL, [...] Read more.
In this paper, a dual-band integrated bandpass filter (DI-BPF) based on a mode composite substrate integrated coaxial line (MCSICL) is proposed for a large frequency ratio. The low-frequency bandpass filter is formed by incorporating an SICL line and a gap into the MCSICL, operating in the fundamental mode of the MCSICL. The high-frequency bandpass filter is formed by introducing grounded vias into the MCSICL, operating in the first high-order mode of the MCSICL. To guide the design, the equivalent circuit models of the low- and high-frequency bandpass filters are built. Based on the equivalent circuit models, the DI-BPF is synthesized for a large frequency ratio. The transitions from the DI-BPF to ground coplanar waveguides (GCPWs) are designed for the low- and high-frequency bandpass filters. The DI-BPF with the transitions is fabricated by the printed circuit board (PCB) process. Measurement results indicate a large frequency ratio of 23.16, with the isolation between the low- and high-frequency bandpass filters exceeding 30 dB from dc to 50 GHz. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 7435 KiB  
Article
A Backing-Layer-Shared Miniature Dual-Frequency Ultrasound Probe for Intravascular Ultrasound Imaging: In Vitro and Ex Vivo Validations
by Yashuo He, Xi Liu, Jiayi Zhang and Chang Peng
Biosensors 2023, 13(11), 971; https://doi.org/10.3390/bios13110971 - 6 Nov 2023
Cited by 6 | Viewed by 3181
Abstract
Intravascular ultrasound (IVUS) imaging has been extensively utilized to visualize atherosclerotic coronary artery diseases and to guide coronary interventions. To receive ultrasound signals within the vessel wall safely and effectively, miniaturized ultrasound transducers that meet the strict size constraints and have a simple [...] Read more.
Intravascular ultrasound (IVUS) imaging has been extensively utilized to visualize atherosclerotic coronary artery diseases and to guide coronary interventions. To receive ultrasound signals within the vessel wall safely and effectively, miniaturized ultrasound transducers that meet the strict size constraints and have a simple manufacturing procedure are highly demanded. In this work, the first known IVUS probe that employs a backing-layer-shared dual-frequency structure and a single coaxial cable is introduced, featuring a small thickness and easy interconnection procedure. The dual-frequency transducer is designed to have center frequencies of 30 MHz and 80 MHz, and both have an aperture size of 0.5 mm × 0.5 mm. The total thickness of the dual-frequency transducer is less than 700 µm. In vitro phantom imaging and ex vivo porcine coronary artery imaging experiments are conducted. The low-frequency transducer achieves spatial resolutions of 40 µm axially and 321 µm laterally, while the high-frequency transducer exhibits axial and lateral resolutions of 17 µm and 247 µm, respectively. A bandpass filter is utilized to separate the ultrasound images. Combining in vitro phantom imaging analysis with ex vivo imaging validation, a comprehensive demonstration of the promising application of the proposed miniature ultrasound probe is established. Full article
Show Figures

Graphical abstract

12 pages, 3420 KiB  
Article
A Test Method for Shielding Effectiveness of Materials against Electromagnetic Pulse Based on Coaxial Flange
by Yifei Liu, Wei Wu, Xiang Chen, Xin Nie, Mo Zhao, Rui Jia and Jinxi Li
Energies 2023, 16(18), 6701; https://doi.org/10.3390/en16186701 - 19 Sep 2023
Cited by 2 | Viewed by 1700
Abstract
Aiming at the evaluation of the shielding effectiveness (SE) of materials against high-intensity electromagnetic pulse (EMP), the shielding mechanism in the frequency domain is investigated, and the factors that determine SE such as conductivity, thickness of material, and test frequency are analyzed. The [...] Read more.
Aiming at the evaluation of the shielding effectiveness (SE) of materials against high-intensity electromagnetic pulse (EMP), the shielding mechanism in the frequency domain is investigated, and the factors that determine SE such as conductivity, thickness of material, and test frequency are analyzed. The attenuated waves of solid and perforated plate materials irradiated by EMP are simulated in CST. The results show that the two materials exhibit low-pass and high-pass filtering characteristics, respectively, which lead to a big difference in the transmitted waves (rise time and pulse width). Based on this, a time domain SE test method using coaxial flange is proposed which can obtain the incident and the transmitted and reflected waves, and the time domain SE of graphenes with different thicknesses (80, 100, 200, and 300 μm) are measured. The characteristics of the reflected and transmitted waves are analyzed in detail, and the change regulations comply with the theoretical shielding model well. The peak value SE and energy density SE, respectively, are calculated. Furthermore, the frequency domain SE can be obtained through the Fourier transform, so the method has a wide application in material SE performance evaluation against high-intensity EMP. Full article
(This article belongs to the Special Issue Electromagnetic Field Computation for Electrical Engineering Devices)
Show Figures

Figure 1

16 pages, 5516 KiB  
Article
Radio Frequency Interference Measurements to Determine the New Frequency Sub-Bands of the Coaxial L-P Cryogenic Receiver of the Sardinia Radio Telescope
by Luca Schirru, Adelaide Ladu and Francesco Gaudiomonte
Universe 2023, 9(9), 390; https://doi.org/10.3390/universe9090390 - 28 Aug 2023
Cited by 2 | Viewed by 1411
Abstract
Radio frequency interference (RFI) represents all unwanted signals detected by radio receivers of a telescope. Unfortunately, the presence of RFI is significantly increasing with the technological development of wireless systems around the world. For this reason, RFI measurement campaigns are periodically necessary to [...] Read more.
Radio frequency interference (RFI) represents all unwanted signals detected by radio receivers of a telescope. Unfortunately, the presence of RFI is significantly increasing with the technological development of wireless systems around the world. For this reason, RFI measurement campaigns are periodically necessary to map the RFI scenario around a telescope. The Sardinia Radio Telescope (SRT) is an Italian instrument that was designed to operate in a wide frequency band between 300 MHz and 116 GHz. One of the receivers of the telescope is a coaxial cryogenic receiver that covered a portion of the P and L bands (i.e., 305–410 MHz and 1300–1800 MHz) in its original version. Although the receiver was used for years to observe bright sources with sufficient results, its sub-bands can be redesigned considering the most recently evolved RFI scenario. In this paper, the results of a RFI measurement campaign are reported and discussed. On the basis of these results, the new sub-bands of the L-P receiver, together with the design of the new microwave filter selector block of the SRT receiver, are presented. In this way, SRT will cover up to 120 MHz and 460 MHz of −3 dB bandwidth at the P-band (290–410 MHz) and L-band (1320–1780 MHz), respectively. The bands of these filters are selected to reject the main RFI with high levels of amplitude and optimize the estimated antenna temperature and sensitivity of the receiver during the research activities, such as pulsar observations, very long baseline interferometer applications and spectroscopy science. Full article
Show Figures

Figure 1

13 pages, 3975 KiB  
Article
Modeling Investigation of Groove Effect on the Multipactor of Dielectric-Loaded Coaxial Low-Pass Filters
by Jincheng Shi, Yuchao Zhao, Weixiang Zhou, Baichang Sun, Jinbo Zhang, Dongliang Wang, Ying Liu, Teng Sun, Xiangtian Zhang and Weihao Tie
Appl. Sci. 2023, 13(15), 8586; https://doi.org/10.3390/app13158586 - 26 Jul 2023
Cited by 2 | Viewed by 1601
Abstract
Multipactor is a common discharge phenomenon occurring in space microwave systems. The surface microstructure has been verified to be effective in mitigating multipactor. In this work, we design a square coaxial low-pass filter (SCLPF) with dielectric sheets loaded to check the multipactor dependence [...] Read more.
Multipactor is a common discharge phenomenon occurring in space microwave systems. The surface microstructure has been verified to be effective in mitigating multipactor. In this work, we design a square coaxial low-pass filter (SCLPF) with dielectric sheets loaded to check the multipactor dependence on the structure parameters of the loaded dielectric sheets, and further model groove structures on the sensitive area surface to lower the risk of multipactor. Simulation results indicate that the SCLPF loaded with alumina and PTFE exhibits favorable operational characteristics, and the multipactor threshold is significantly improved after introducing the surface grooves. Then, we investigate the effects of three typical groove parameters, groove depth, groove number, and aspect ratio, on the multipactor threshold of the SCLPF device. The results show that the multipactor threshold rises at first as the groove number and groove depth increase, and then the threshold reaches a saturation status. For a deeper analysis of multipactor, we discuss how the grooves shelter the secondary electrons, and further mitigate the electron avalanche. Furthermore, the mechanisms of threshold saturation under the effect of groove parameters are analyzed in detail, and a contour map for the multipactor threshold of PTFE-loaded SCLPFs is given, which makes significant sense for predicting the multipactor threshold of the devices with its sensitive surface being grooved. The regularity of modulating the multipactor threshold by the groove structures obtained in this study is of engineering significance for suppressing multipactor in microwave devices in practical applications. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

22 pages, 16835 KiB  
Article
Experimental Study on the Dynamic Characteristics of Gas-Centered Swirl Coaxial Injector under Varying Ambient Pressure
by Xiaoguang Zhang, Wentong Qiao, Qixiang Gao, Dingwei Zhang, Lijun Yang and Qingfei Fu
Aerospace 2023, 10(3), 257; https://doi.org/10.3390/aerospace10030257 - 8 Mar 2023
Cited by 3 | Viewed by 3100
Abstract
To determine the dynamic characteristics of a gas-centered swirl coaxial injector under backpressure, an experimental system of dynamic injection in a backpressure chamber was constructed. Filtered water and nitrogen were used as simulant media for rocket propellants, which are typically used with this [...] Read more.
To determine the dynamic characteristics of a gas-centered swirl coaxial injector under backpressure, an experimental system of dynamic injection in a backpressure chamber was constructed. Filtered water and nitrogen were used as simulant media for rocket propellants, which are typically used with this kind of injector. An inertial flow pulsator was manufactured to generate the pulsation of the flows that feed to the liquid injector. The electric conductance method was adopted to measure liquid film thickness. After the pulsation of incoming flow in the feedline was tested, and the operating conditions for the injector to start pulsating were validated, the effects of the chamber backpressure and the recess length of the injector on the dynamic characteristics of spray, such as liquid film thickness, breakup length, and amplitude of pulsation, have been investigated in detail. Experimental results demonstrated that the increase in chamber backpressure prompts the liquid sheet to rupture earlier with a shorter breakup length, which results from the increased density of the ambient gas. Chamber backpressure suppresses the pulsation of the outlet flow, especially for a longer recess length. Moreover, a decrease in the recess length results in a reduction in breakup length due to an intense gas–liquid shearing in a narrower recess section. For a lower backpressure, the amplitude of outlet flow generally increases when the recess length increases. However, this phenomenon is not obvious for the conditions of higher backpressure and lower pulsation frequency. Full article
(This article belongs to the Special Issue Heat Transfer, Combustion and Flow Dynamics in Propulsion Systems)
Show Figures

Figure 1

Back to TopTop