Radio Frequency Interference Measurements to Determine the New Frequency Sub-Bands of the Coaxial L-P Cryogenic Receiver of the Sardinia Radio Telescope
Abstract
:1. Introduction
2. Materials and Methods
- Area number 1: a point on the Monti Ixi mountain (Lat. 39.50075958202559° N–Long. 9.26616912945711° E), located at about 2 km from SRT;
- Area number 2: a point on the Union of Municipalities of Gerrei, called Colonia Montana (Lat. 39.4900647290649° N–Long. 9.23939203600374° E), located at about 600 m from SRT.
3. Results and Discussion
3.1. The RFI Measurement Campaign at P-Band
- 275–285 MHz: signals generated by defense systems, such as the Italian Air Force [28];
- 300–330 MHz: signals of radars from the Italian Air Force [28];
- 360–380 MHz: signals generated by defense systems such as the Italian Air Force and other worldwide military communication systems (ground-based and space-based) [28,29]. In particular, this signal belongs to the downlink of the Mobile User Objective System (MUOS), a United States space force narrowband military communication satellite system [29];
- 402–406 MHz: weather balloons that can also generate signals into the RAS band [28];
- 420–450 MHz: signals feed by aeronautical services, amateur radiolocation and active satellite sensors [28].
3.2. The RFI Measurement Campaign at L-Band
- 1200–1300 MHz: several signals derived from aeronautical and air force military radars, active sensors installed on civil and military satellites, GPS satellites, civil and military radio links are detected in this frequency range [28];
- 1300–1350 MHz: signals generated by aeronautical radio navigation systems and several radio navigation satellites [28];
- 1452–1492 MHz: signals of digital audio broadcasting (T-DAB) [28];
- 1615–1630 MHz: radio communication links;
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emery, W.; Campus, A. Chapter 4—Microwave Radiometry. In Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Cryosphere and Land Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 131–290. [Google Scholar]
- Querol, J.; Perez, A.; Camps, A. A Review of RFI Mitigation Techniques in Microwave Radiometry. Remote Sens. 2019, 11, 3042. [Google Scholar] [CrossRef]
- Cohen, J.; Spoelstra, T.; Amborsini, R.; van Driel, W. CRAF Handbook for Radio Astronomy, 3rd ed.; European Science Foundation: Strasbourg, France, 2005; pp. 141–145. [Google Scholar]
- Abidin, Z.Z.; Adnan, S.; Ibrahim, Z.A. RFI profiles of prime candidate sites for the first radio astronomical telescope in Malaysia. New Astron. 2010, 15, 307–312. [Google Scholar] [CrossRef]
- Prayag, V.; Beeharry, G.K.; Vydelingum, N.; Inggs, M. RFI in Mauritius. In Proceedings of the 2016 Radio Frequency Interference (RFI), Socorro, NM, USA, 17–20 October 2016. [Google Scholar] [CrossRef]
- Sitompul, P.P.; Manik, T.; Batubara, M.; Suhandi, B. Radio Frequency Interference Measurements for a Radio Astronomy Observatory Site in Indonesia. Aerospace 2021, 8, 51. [Google Scholar] [CrossRef]
- Peng, B.; Sun, J.M.; Zhang, H.I.; Piao, T.Y.; Li, J.Q.; Lei, L.; Luo, T.; Li, D.H.; Zheng, Y.J.; Nan, R. RFI test observations at a candidate SKA site in China. Exp. Astron. 2004, 17, 423–430. [Google Scholar] [CrossRef]
- Ford, J.M.; Buch, K.D. RFI mitigation techniques in radio astronomy. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar] [CrossRef]
- Ladu, A.; Schirru, L.; Gaudiomonte, F.; Marongiu, P.; Angius, G.; Perini, F.; Vargiu, G.P. Upgrading of the L-P Band Cryogenic Receiver of the Sardinia Radio Telescope: A Feasibility Study. Sensors 2022, 22, 4261. [Google Scholar] [CrossRef]
- Khan, I.; Raut, A.; Sureshkumar, S. Design of Switchable Hairpin Band Pass Filters for Low Frequency Radio Astronomy 2019. In Proceedings of the IEEE MTT-S International Microwave and RF Conference (IMARC), Mumbai, India, 13–15 December 2019. [Google Scholar] [CrossRef]
- Tarongi, J.M.; Camps, A. Radio Frequency Interference Detection and Mitigation Algorithms Based on Spectrogram Analysis. Algorithms 2011, 4, 239–261. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Wang, J.; Huang, S.; Hu, H.; Yang, C. A Software for RFI Analysis of Radio Environment around Radio Telescope. Universe 2023, 9, 277. [Google Scholar] [CrossRef]
- Baan, W.A. Implementing RFI mitigation in radio science. J. Astron. Instrum. 2019, 8, 1940010. [Google Scholar] [CrossRef]
- Perrodin, D.; Burgay, M.; Corongiu, A.; Pilia, M.; Possenti, A.; Iacolina, M.N.; Egron, E.; Ridolfi, A.; Tiburzi, C.; Casu, S.; et al. Pulsar science at the Sardinia radio telescope. In Proceedings of the International Astronomical Union, Macclesfield, UK, 4–8 September 2017. [Google Scholar]
- Egron, E.; Pellizzoni, A.; Giroletti, M.; Righini, S.; Stagni, M.; Orlati, A.; Migoni, C. Single-dish and VLBI observations of CygnusX-3 during the 2016 giant flare episode. Mon. Not. Roy. Astron. Soc. 2017, 471, 2703–2714. [Google Scholar] [CrossRef]
- Pilia, M.; Burgay, M.A.; Possenti, A.N.; Ridolfi, A.L.; Gajjar, V.; Corongiu, A.L.; Perrodin, D.E.; Bernardi, G.I.; Naldi, G.; Pupillo, G.; et al. The lowest-frequency fast radio bursts: Sardinia radio telescope detection of the periodic FRB 180,916 at 328 MHz. Astrophys. J. 2020, 896, L40. [Google Scholar] [CrossRef]
- Schirru, L.; Pisanu, T.; Podda, A. The Ad Hoc Back-End of the BIRALET Radar to Measure Slant-Range and Doppler Shift of Resident Space Objects. Electronics 2021, 10, 577. [Google Scholar] [CrossRef]
- Schirru, L.; Pisanu, T.; Navarrini, A.; Urru, E.; Gaudiomonte, F.; Ortu, P.; Montisci, G. Advantages of Using a C-band Phased Array Feed as a Receiver in the Sardinia Radio Telescope for Space Debris Monitoring. In Proceedings of the 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2–6 July 2019. [Google Scholar] [CrossRef]
- Losacco, M.; Di Lizia, P.; Massari, M.; Naldi, G.; Pupillo, G.; Bianchi, G.; Siminski, J. Initial orbit determination with the multibeam radar sensor BIRALES. Acta Astronaut. 2020, 167, 374–390. [Google Scholar] [CrossRef]
- Prandoni, I.; Murgia, M.; Tarchi, A.; Burgay, M.; Castangia, P.; Egron, E.; Govoni, F.; Pellizzoni, A.; Ricci, R.; Righini, S.; et al. The Sardinia Radio Telescope, From a technological project to a radio observatory. Astron. Astrophys. 2017, 608, 26. [Google Scholar] [CrossRef]
- Bolli, P.; Beltrán, M.; Burgay, M.; Contavalle, C.; Marongiu, P.; Orfei, A.; Pisanu, T.; Stanghellini, C.; Tingay, S.J.; Zacchiroli, G.; et al. A Review of Front-End Receivers for the INAF Radio Telescopes. In Proceedings of the Second URSI Atlantic Radio Science Meeting, Gran Canaria, Spain, 28 May–1 June 2018. [Google Scholar] [CrossRef]
- Peverini, O.A.; Tascone, R.; Virone, G.; Addamo, G.; Olivieri, A.; Orta, R. C-band dual-polarization receiver for the Sardinia Radio-Telescope. In Proceedings of the 2009 International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 14–18 September 2009. [Google Scholar] [CrossRef]
- Orfei, A.; Carbonaro, L.; Cattani, A.; Cremonini, A.; Cresci, L.; Fiocchi, F.; Maccaferri, A.; Maccaferri, G.; Mariotti, S.; Monari, J.; et al. A Multi-Feed Receiver in the 18 to 26.5 GHz Band for Radio Astronomy. IEEE Antennas Propag. Mag. 2010, 52, 62–72. [Google Scholar] [CrossRef]
- Bolli, P.; Gaudiomonte, F.; Ambrosini, R.; Bortolotti, C.; Roma, M.; Barberi, C.; Piccoli, F. The mobile laboratory for radio-frequency interference monitoring at the Sardinia radio telescope. IEEE Antennas Propag. Mag. 2013, 55, 19–24. [Google Scholar] [CrossRef]
- K & L Microwave. Available online: https://www.klmicrowave.com/ (accessed on 31 July 2023).
- Rohde & Schwarz: FSV Signal and Spectrum Analyser. Available online: https://www.rohde-schwarz.com/us/products/test-and-measurement/signal-and-spectrum-analyzers/rs-fsv-signal-and-spectrum-analyzer_63493-10098.html?change_c=true (accessed on 31 July 2023).
- Reactel, Inc. Available online: https://reactel.com/ (accessed on 31 July 2023).
- The European Table of Frequency Allocations and Applications in the Frequency Range 8.3 kHz to 3000 GHz (ECA TABLE). Available online: https://docdb.cept.org/download/4316 (accessed on 31 July 2023).
- Oetting, J.D.; Jen, T. The Mobile User Objective System. Available online: https://secwww.jhuapl.edu/techdigest/Content/techdigest/pdf/V30-N02/30-02-Oetting.pdf (accessed on 31 July 2023).
- Pisanu, T.; Muntoni, G.; Schirru, L.; Ortu, P.; Urru, E.; Montisci, G. Recent Advances of the BIRALET System about Space Debris Detection. Aerospace 2021, 8, 86. [Google Scholar] [CrossRef]
- European VLBI Network. Capabilities—Frequency Coverage and Real-Time (e-EVN) Capabilities. Available online: https://www.evlbi.org/capabilities (accessed on 18 August 2023).
- Green Bank Observatory Website. GBT Receivers & Frequency Ranges. Available online: https://greenbankobservatory.org/science/gbt-observers/gbt-receivers-and-frequency-ranges/ (accessed on 18 August 2023).
- Effelsberg 100 m Teleskop—Receivers for the Effelsberg 100-m Telescope. Available online: https://eff100mwiki.mpifr-bonn.mpg.de/doku.php?id=information_for_astronomers:rx_list (accessed on 18 August 2023).
- Fanti, A.; Schirru, L.; Casu, S.; Lodi, M.B.; Riccio, G.; Mazzarella, G. Improvement and Testing of Models for Field Level Evaluation in Urban Environment. IEEE Trans. Antennas Propag. 2020, 68, 4038–4047. [Google Scholar] [CrossRef]
- Govoni, F.; Bolli, P.; Buffa, F.; Caito, L.; Carretti, E.; Comoretto, G.; Fierro, D.; Melis, A.; Murgia, M.; Navarrini, A.; et al. The high-frequency upgrade of the Sardinia Radio Telescope. In Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 28 August–4 September 2021. [Google Scholar] [CrossRef]
- Navarrini, A.; Olmi, L.; Nesti, R.; Ortu, P.; Marongiu, P.; Orlati, A.; Scalambra, A.; Orfei, A.; Roda, J.; Cattani, A.; et al. Feasibility Study of a W-Band Multibeam Heterodyne Receiver for the Gregorian Focus of the Sardinia Radio Telescope. IEEE Access 2022, 10, 26369–26403. [Google Scholar] [CrossRef]
Note | Name | Frequency Coverage [GHz] | Gain in Band [dB/dBi] |
---|---|---|---|
Channel specifications | Channel A | 0.25–0.45 | 36.5–35 |
Channel B | 1.2–1.8 | 31–28 | |
Antenna specifications | P-band LPDA, model LPA 370–10 | 0.25–0.45 | 11–12 |
L/S-band LPDA, model LPA 2000–10 | 1.2–3.3 | 11–11.5 |
Note | Type of Filter | −3 dB Bandwidth | −30 dB Bandwidth |
---|---|---|---|
P-band microwave filters installed on the original version of the L-P receiver | BPF, model 5B340-357.5/T120-O/O from K&L, Salisbury, MD, USA [25] | 295–420 MHz | 250–460 MHz |
BPF, model 5B340-330/T5O-O/O from K&L, Salisbury, MD, USA [25] | 300–360 MHz | 270–380 MHz | |
BPF, model 3B110-410/T15-O/O from K&L, Salisbury, MD, USA [25] | 402–418 MHz | 380–440 MHz | |
New P-band microwave filters for the upgrade of the L-P receiver | No filter–extragalactic applications | 250–460 MHz | 250–460 MHz |
BPF + Notch filter–Pulsar and VLBI | 290–410 MHz + 380–400 MHz | 270–430 MHz + 385–395 MHz | |
BPF–Pulsar | 290–360 MHz | 270–380 MHz | |
BPF–Space debris, model 3B110-410/T15-O/O from K&L, Salisbury, MD, USA [25] | 402–418 MHz | 380–440 MHz |
Note | Type of Filter | −3 dB Bandwidth | −30 dB Bandwidth |
---|---|---|---|
L-band microwave filters installed on the original version of the L-P receiver | BPF, model 5B120-1540/T520-O/O from K&L, Salisbury, MD, USA [25] | 1250–1820 MHz | 1000–2000 MHz |
BPF, model 5B120-1400/T120-O/O from K&L, Salisbury, MD, USA [25] | 1340–1460 MHz | 1250–1520 MHz | |
BPF, model 5B120-1655/T120-O/O from K&L, Salisbury, MD, USA [25] | 1600–1730 MHz | 1500–1850 MHz | |
Notch filter + BPF + Notch filter, models 6N45-1320/E62.7-O/O from K&L, Salisbury, MD, USA [25] + 5B120-1540/T520-O/O from K&L, Salisbury, MD, USA [25] + 6NS11-1880/E138-O/O from K&L, Salisbury, MD, USA [25] | 1310–1340 MHz + 1250–1820 MHz + 1790–1960 MHz | - | |
New L-band microwave filters for the upgrade of the L-P receiver | BPF–Pulsar | 1320–1780 MHz | 1300–1800 MHz |
BPF–Pulsar and VLBI | 1380–1780 MHz | 1360–1800 MHz | |
BPF–Spectroscopy | 1350–1550 MHz | - | |
BPF–Spectroscopy | 1530–1730 MHz | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirru, L.; Ladu, A.; Gaudiomonte, F. Radio Frequency Interference Measurements to Determine the New Frequency Sub-Bands of the Coaxial L-P Cryogenic Receiver of the Sardinia Radio Telescope. Universe 2023, 9, 390. https://doi.org/10.3390/universe9090390
Schirru L, Ladu A, Gaudiomonte F. Radio Frequency Interference Measurements to Determine the New Frequency Sub-Bands of the Coaxial L-P Cryogenic Receiver of the Sardinia Radio Telescope. Universe. 2023; 9(9):390. https://doi.org/10.3390/universe9090390
Chicago/Turabian StyleSchirru, Luca, Adelaide Ladu, and Francesco Gaudiomonte. 2023. "Radio Frequency Interference Measurements to Determine the New Frequency Sub-Bands of the Coaxial L-P Cryogenic Receiver of the Sardinia Radio Telescope" Universe 9, no. 9: 390. https://doi.org/10.3390/universe9090390
APA StyleSchirru, L., Ladu, A., & Gaudiomonte, F. (2023). Radio Frequency Interference Measurements to Determine the New Frequency Sub-Bands of the Coaxial L-P Cryogenic Receiver of the Sardinia Radio Telescope. Universe, 9(9), 390. https://doi.org/10.3390/universe9090390