Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = coating removal width

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3228 KiB  
Article
Research on the Laser Ablation Threshold of the Graphene/Aluminum Foil Interface Surface
by Ying Xu, Yi Lv, Dongcheng Zhou, Yixin Chen and Boyong Su
Coatings 2025, 15(7), 853; https://doi.org/10.3390/coatings15070853 - 20 Jul 2025
Viewed by 319
Abstract
The aim was to investigate the impact of laser parameters on the surface morphology of ablated graphene and elucidate the interaction mechanism between carbon materials and femtosecond lasers. A pulsed laser with a wavelength of 1030 nm is employed to infer the ablation [...] Read more.
The aim was to investigate the impact of laser parameters on the surface morphology of ablated graphene and elucidate the interaction mechanism between carbon materials and femtosecond lasers. A pulsed laser with a wavelength of 1030 nm is employed to infer the ablation threshold of the surface and interface of graphene coatings formed through ultrasonic spraying. The ablation threshold of the coating–substrate interface is verified by numerical simulation. Incorporating the data of groove width and depth obtained from a three-dimensional profilometer and finite element simulation, an in-depth analysis of the threshold conditions of laser ablation in coating materials is accomplished. The results indicate that when the femtosecond laser frequency is 10 kHz, the pulse width is 290 fs, and the energy density reaches 0.057 J/cm2, the graphene material can be effectively removed. When the energy density is elevated to 2.167 J/cm2, a complete ablation of a graphite coating with a thickness of 1.5 μm can be achieved. The findings of this study validate the evolution law and linear relationship of ablation crater morphology, offering new references for microstructure design and the selection of controllable laser processing parameters. Full article
Show Figures

Figure 1

11 pages, 9609 KiB  
Article
Research on the Influence of Laser Cleaning Parameters on the Removal Effectiveness of Al Metal Layers from Ceramic Substrate Surfaces
by Yuqin Li, Hangchao Wang, Weizhuo Hua, Hang Wang and Yuchang Qing
Coatings 2025, 15(5), 600; https://doi.org/10.3390/coatings15050600 - 18 May 2025
Viewed by 539
Abstract
This study explores a novel method for removing Al metal coatings by using nanosecond pulsed lasers to clean Al metal layers from ceramic substrate surfaces. The impact of laser power and pulse width on the effectiveness of the removal of the Al metal [...] Read more.
This study explores a novel method for removing Al metal coatings by using nanosecond pulsed lasers to clean Al metal layers from ceramic substrate surfaces. The impact of laser power and pulse width on the effectiveness of the removal of the Al metal layer from the ceramic substrate was examined. The findings revealed that a laser with a power of 120 W, a pulse width of 200 ns, a frequency of 240 kHz, and a speed of 6000 mm/s could effectively remove the Al metal layer (50 μm) in a single laser cleaning cycle without causing damage to the ceramic substrate. The mechanism behind the removal of the Al metal layer from the ceramic substrate surface was also investigated. It was discovered that local high temperatures caused by laser irradiation and the difference in thermal expansion coefficients between the metal layer and the ceramic substrate both contribute to the removal of the Al metal layer during the laser cleaning process. This research provides an effective process for removing the Al metal layer. Full article
(This article belongs to the Special Issue Advanced Coating Material for Heritage Preservation, 2nd Edition)
Show Figures

Figure 1

12 pages, 4254 KiB  
Article
A Study of the Laser Removal Process of Al-Si Coating from 22MnB5 Steel
by Tao Zhang, Jihao Xu, Shuxia Lin, Wangwang Yu and Yong Chen
Materials 2023, 16(10), 3709; https://doi.org/10.3390/ma16103709 - 13 May 2023
Cited by 1 | Viewed by 1593
Abstract
22MnB5 hot forming steel is widely used in the automotive industry due to the increasing demand for lightweight vehicles. As surface oxidation and decarburization occur during hot stamping processes, an Al-Si coating is often precoated on surfaces. The coating tends to melt into [...] Read more.
22MnB5 hot forming steel is widely used in the automotive industry due to the increasing demand for lightweight vehicles. As surface oxidation and decarburization occur during hot stamping processes, an Al-Si coating is often precoated on surfaces. The coating tends to melt into the melt pool during the laser welding of the matrix and reduce the strength of the welded joint; therefore, it should be removed. The decoating process by sub-nanosecond and picosecond lasers and process parameter optimization were conducted in this paper. The corresponding analysis of the different decoating processes, the mechanical properties and the elemental distribution was carried out after laser welding and heat treatment. It was found that the Al element has an influence on the strength and elongation of the welded joint. The high-power picosecond laser has a better removal effect than the lower power sub-nanosecond laser. The best mechanical properties of the welded joint were obtained under the process conditions of 1064 nm center wavelength, 15 kW power, 100 kHz frequency, and 0.1 m/s speed. In addition, the content of the coating metal elements (mainly Al) melted into the welded joint is reduced with increasing coating removal width, which significantly improves the mechanical properties of the welded joints. Al in the coating rarely melts into the welding pool when the coating removal width is not less than 0.4 mm, and its mechanical properties can meet the automotive stamping requirements for the welded plate. Full article
Show Figures

Figure 1

19 pages, 4347 KiB  
Article
Design Considerations of an ITO-Coated U-Shaped Fiber Optic LMR Biosensor for the Detection of Antibiotic Ciprofloxacin
by Vikas and Paola Saccomandi
Biosensors 2023, 13(3), 362; https://doi.org/10.3390/bios13030362 - 9 Mar 2023
Cited by 15 | Viewed by 2852
Abstract
The extensive use of antibiotics has become a serious concern due to certain deficiencies in wastewater facilities, their resistance to removal, and their toxic effects on the natural environment. Therefore, substantial attention has been given to the detection of antibiotics because of their [...] Read more.
The extensive use of antibiotics has become a serious concern due to certain deficiencies in wastewater facilities, their resistance to removal, and their toxic effects on the natural environment. Therefore, substantial attention has been given to the detection of antibiotics because of their potential detriment to the ecosystem and human health. In the present study, a novel design of indium tin oxide (ITO) coated U-shaped fiber optic lossy mode resonance (LMR) biosensor is presented for the sensitive detection of the antibiotic ciprofloxacin (CIP). The performance of the designed U-shaped LMR sensor is characterized in terms of its sensitivity, full width at half maximum (FWHM), the figure of merit (FOM), and the limit of detection (LOD). For the proposed U-shaped LMR sensing probe, the various crucial factors such as the thickness (d) of the ITO layer, sensing region length (L), and bending radius (R) are optimized. The thickness of the ITO layer is optimized in such a way that two LMR curves are observed in the transmission spectrum and, thereafter, the performance parameters are evaluated for each LMR. It is observed that the designed U-shaped LMR sensor with optimized parameters shows an approximately seven-fold enhancement in sensitivity compared to the straight-core fiber optic LMR sensor. The numerical results revealed that the designed U-shaped fiber optic LMR biosensor can provide a maximum sensitivity of 17,209.9 nm/RIU with the highest FOM of 91.42 RIU−1, and LOD of 6.3 × 10−5 RIU for the detection of CIP hydrochloride in the concentration range of 0.001 to 0.029 mol∙dm−3. Thus, it is believed that the designed LMR biosensor can practically explore its potential use in environmental monitoring and biomedical applications and hence, opens a new window of opportunity for the researchers working in the field of U-shaped fiber optic LMR biosensing. Full article
(This article belongs to the Special Issue Optical Fiber Biosensor)
Show Figures

Graphical abstract

14 pages, 4024 KiB  
Article
The 3D-Printing Fabrication of Multichannel Silicone Microreactors for Catalytic Applications
by Alejandro Ibáñez-de-Garayo, Mikel Imizcoz, Maitane Maisterra, Fernando Almazán, Diego Sanz, Fernando Bimbela, Alfonso Cornejo, Ismael Pellejero and Luis M. Gandía
Catalysts 2023, 13(1), 157; https://doi.org/10.3390/catal13010157 - 9 Jan 2023
Cited by 6 | Viewed by 3522
Abstract
Microstructured reactors (MSRs) are especially indicated for highly demanding heterogeneous catalysis due to the small channel dimensions that minimize diffusional limitations and enhance mass and heat transport between the fluid and the catalyst. Herein, we present the fabrication protocol of the fused filament [...] Read more.
Microstructured reactors (MSRs) are especially indicated for highly demanding heterogeneous catalysis due to the small channel dimensions that minimize diffusional limitations and enhance mass and heat transport between the fluid and the catalyst. Herein, we present the fabrication protocol of the fused filament 3D printing of silicone monolithic microreactors based on a multichannel design. Microchannels of 200 to 800 µm in width and up to 20 mm in length were developed following the scaffold-removal procedure using acrylonitrile butadiene styrene (ABS) as the material for the 3D-printed scaffold fabrication, polydimethylsiloxane (PDMS) as the building material, and acetone as the ABS removing agent. The main printing parameters such as temperature and printing velocity were optimized in order to minimize the bridging effect and filament collapsing and intercrossing. Heterogeneous catalysts were incorporated into the microchannel walls during fabrication, thus avoiding further post-processing steps. The nanoparticulated catalyst was deposited on ABS scaffolds through dip coating and transferred to the microchannel walls during the PDMS pouring step and subsequent scaffold removal. Two different designs of the silicone monolithic microreactors were tested for four catalytic applications, namely liquid-phase 2-nitrophenol photohydrogenation and methylene blue photodegradation in aqueous media, lignin depolymerization in ethanol, and gas-phase CO2 hydrogenation, in order to investigate the microreactor performance under different reaction conditions (temperature and solvent) and establish the possible range of applications. Full article
Show Figures

Graphical abstract

20 pages, 11890 KiB  
Article
Microstructure and Friction Response of a Novel Eutectic Alloy Based on the Fe-C-Mn-B System
by Oleksandr Tisov, Mykhaylo Pashechko, Alina Yurchuk, Dariusz Chocyk, Jarosław Zubrzycki, Aleksandra Prus and Magda Wlazło-Ćwiklińska
Materials 2022, 15(24), 9031; https://doi.org/10.3390/ma15249031 - 17 Dec 2022
Cited by 2 | Viewed by 1850
Abstract
This paper focuses on the microstructure and tribological properties of novel hardfacing alloy based on Fe-C-Mn-B doped with Ni, Cr, and Si. The 4 mm-thick coating was deposited on the AISI 1045 carbon steel by the MIG-welding method using flux-cored wires in three [...] Read more.
This paper focuses on the microstructure and tribological properties of novel hardfacing alloy based on Fe-C-Mn-B doped with Ni, Cr, and Si. The 4 mm-thick coating was deposited on the AISI 1045 carbon steel by the MIG-welding method using flux-cored wires in three passes. The transition zone thickness between the weld layers was ~80 μm, and the width of the substrate-coating interface was 5–10 μm. The following coating constituents were detected: coarser elongated M2B borides, finer particles of Cr7C3 carbides, and an Fe-based matrix consisting of ferrite and austenite. The nanohardness of the matrix was ~5–6 GPa, carbides ~16–19 GPa, and borides 22–23 GPa. A high cooling rate during coating fabrication leads to the formation of a fine mesh of M7C3 carbides; borides grow in the direction of heat removal, from the substrate to the friction surface, while in the transition zone, carbides become coarser. The dry sliding friction tests using a tribometer in PoD configuration were carried out at contact pressure 4, 7, 10, and 15 MPa against the AISI 1045 carbon steel (water-quenched and low-tempered, 50–52 HRC). The leading wear phenomenon at 4 and 7 MPa is fatigue, and at 10 and 15 MPa it is oxidation and delamination. Full article
Show Figures

Figure 1

13 pages, 2850 KiB  
Article
Optimization of Wire EDM Process Parameters on Cutting Inconel 718 Alloy with Zinc-Diffused Coating Brass Wire Electrode Using Taguchi-DEAR Technique
by Lijun Liu, Muthuramalingam Thangaraj, Panagiotis Karmiris-Obratański, Yuanhua Zhou, Ramamurthy Annamalai, Ryszard Machnik, Ammar Elsheikh and Angelos P. Markopoulos
Coatings 2022, 12(11), 1612; https://doi.org/10.3390/coatings12111612 - 23 Oct 2022
Cited by 26 | Viewed by 4124
Abstract
Inconel 718 alloy has a wide range of applications in the aerospace sector because of its superior mechanical properties and its weldability. The machining of such higher strength materials with complex shapes is possible with wire electrical discharge machining. In the present research, [...] Read more.
Inconel 718 alloy has a wide range of applications in the aerospace sector because of its superior mechanical properties and its weldability. The machining of such higher strength materials with complex shapes is possible with wire electrical discharge machining. In the present research, an endeavor was made to enhance the machining process by utilizing zinc-diffused coating brass wire electrode and Taguchi-Data Envelopment Analysis-based Ranking (DEAR) methodology in the process while machining Inconel 718 alloy. Material removal rate, kerf width, and surface roughness were considered as the quality measures. The optimal arrangement of input factors in the Wire Electrical Discharge Machining (WEDM) process were found as 140 µs (Ton), 50 µs (Toff), 60 V (SV), and 5 kg (WT) among the elected factors with the error accuracy of 1.1%. The pulse-off time has the most significance on formulating the quality measures owing to its importance on deionization in the process. Full article
Show Figures

Figure 1

10 pages, 2873 KiB  
Article
Nonlinear Effects of Pulsed Ion Beam in Ultra-High Resolution Material Removal
by Lingbo Xie, Ye Tian, Feng Shi, Ci Song, Guipeng Tie, Gang Zhou, Jianda Shao and Shijie Liu
Micromachines 2022, 13(7), 1097; https://doi.org/10.3390/mi13071097 - 12 Jul 2022
Cited by 3 | Viewed by 1948
Abstract
Ion beam sputtering is widely utilized in the area of ultra-high precision fabrication, coating, and discovering the microworld. A pulsed ion beam (PIB) can achieve higher material removal resolution while maintaining traditional ion beam removal performance and macro removal efficiency. In this paper, [...] Read more.
Ion beam sputtering is widely utilized in the area of ultra-high precision fabrication, coating, and discovering the microworld. A pulsed ion beam (PIB) can achieve higher material removal resolution while maintaining traditional ion beam removal performance and macro removal efficiency. In this paper, a 0.01 s pulse width beam is used to sputter atom layer deposition (ALD) coated samples. The nano-scale phenomenon is observed by high-resolution TEM. The results show that when the cumulative sputtering time is less than 1.7 s, the sputtering removal of solid by ion beam is accompanied by a nonlinear effect. Furthermore, the shortest time (0.05 s) and lowest thickness (0.35 nm) necessary to remove a uniform layer of material were established. The definition of its nonlinear effect under a very small removal amount guides industrial ultra-high precision machining. It reveals that PIB not only has high removal resolution on nanoscale, but can also realize high volume removal efficiency and large processing diameter at the same time. These features make PIB promising in the manufacturing of high power/energy laser optics, lithography objective lens, MEMS, and other ultra-high precision elements. Full article
(This article belongs to the Special Issue Ultra-Precision Manufacturing Technology)
Show Figures

Figure 1

16 pages, 7646 KiB  
Article
The Machinability Characteristics of Multidirectional CFRP Composites Using High-Performance Wire EDM Electrodes
by Ramy Abdallah, Richard Hood and Sein Leung Soo
J. Compos. Sci. 2022, 6(6), 159; https://doi.org/10.3390/jcs6060159 - 27 May 2022
Cited by 13 | Viewed by 3512
Abstract
Due to the abrasive nature of the material, the conventional machining of CFRP composites is typically characterised by high mechanical forces and poor tool life, which can have a detrimental effect on workpiece surface quality, mechanical properties, dimensional accuracy, and, ultimately, functional performance. [...] Read more.
Due to the abrasive nature of the material, the conventional machining of CFRP composites is typically characterised by high mechanical forces and poor tool life, which can have a detrimental effect on workpiece surface quality, mechanical properties, dimensional accuracy, and, ultimately, functional performance. The present paper details an experimental investigation to assess the feasibility of wire electrical discharge machining (WEDM) as an alternative for cutting multidirectional CFRP composite laminates using high-performance wire electrodes. A full factorial experimental array comprising a total of 8 tests was employed to evaluate the effect of varying ignition current (3 and 5 A), pulse-off time (8 and 10 µs), and wire type (Topas Plus D and Compeed) on material removal rate (MRR), kerf width, workpiece surface roughness, and surface damage. The Compeed wire achieved a lower MRR of up to ~40% compared with the Topas wire when operating at comparable cutting parameters, despite having a higher electrical conductivity. Statistical investigation involving analysis of variance (ANOVA) showed that the pulse-off time was the only significant factor impacting the material removal rate, with a percentage contribution ratio of 67.76%. In terms of cut accuracy and surface quality, machining with the Compeed wire resulted in marginally wider kerfs (~8%) and a higher workpiece surface roughness (~11%) compared to the Topas wire, with maximum recorded values of 374.38 µm and 27.53 µm Sa, respectively. Micrographs from scanning electron microscopy revealed the presence of considerable fibre fragments, voids, and adhered re-solidified matrix material on the machined surfaces, which was likely due to the thermal nature of the WEDM process. The research demonstrated the viability of WEDM for cutting relatively thick (9 mm) multidirectional CFRP laminates without the need for employing conductive assistive electrodes. The advanced coated wire electrodes used in combination with higher ignition current and lower pulse-off time levels resulted in an increased MRR of up to ~15 mm3/min. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, Volume II)
Show Figures

Figure 1

15 pages, 9578 KiB  
Article
Impact Abrasive Wear Resistance of CrN and CrAlN Coatings
by Ying Luo, Chuangming Ning, Yuanyuan Dong, Cong Xiao, Xiaotong Wang, Hang Peng and Zhenbing Cai
Coatings 2022, 12(4), 427; https://doi.org/10.3390/coatings12040427 - 23 Mar 2022
Cited by 15 | Viewed by 3189
Abstract
The impact wear resistance of the hard coating is very important in the high-temperature environment of the nuclear power plant. CrN and CrAlN coatings were prepared using multi-arc ion plating. The impact abrasive wear resistance of the coatings was investigated at varied temperatures [...] Read more.
The impact wear resistance of the hard coating is very important in the high-temperature environment of the nuclear power plant. CrN and CrAlN coatings were prepared using multi-arc ion plating. The impact abrasive wear resistance of the coatings was investigated at varied temperatures through a controlled kinetic energy impact wear rig, and their impact mechanism was elucidated. No extensive spalling was found on the surface of the CrN and CrAlN coatings after 104 impacts under the no-sand condition. The excellent antioxidant properties of the CrN and CrAlN coatings can protect the substrate from oxidation under the no-sand condition at 500 °C. The impact mechanism of the two coatings was plastic deformation under the no-sand condition, and it was mainly material removal under the sand condition. The depth and width of wear scar were larger under the sand condition than under the no-sand condition. The impact wear region was divided into a mixed impact zone and a sand impact zone. Compared with the CrN coating, the CrAlN coating had lower impact force and shallower impact wear scar, proving that it has better anti-impact wear properties. Full article
Show Figures

Figure 1

15 pages, 6392 KiB  
Article
Experimental Study on the Coating Removing Characteristics of High-Pressure Water Jet by Micro Jet Flow
by Dayong Ning, Qibo Wang, Jinxin Tian, Yongjun Gong, Hongwei Du, Shengtao Chen and Jiaoyi Hou
Micromachines 2021, 12(2), 173; https://doi.org/10.3390/mi12020173 - 10 Feb 2021
Cited by 15 | Viewed by 4298
Abstract
In this paper, coating removal characteristics of water jet by micro jet flow affected by cleaning parameters is analyzed. Numerical simulation of fluid field calculates the velocity and pressure distribution of a water jet impinging on a rigid wall, which is used for [...] Read more.
In this paper, coating removal characteristics of water jet by micro jet flow affected by cleaning parameters is analyzed. Numerical simulation of fluid field calculates the velocity and pressure distribution of a water jet impinging on a rigid wall, which is used for design experiments of coating removal affected by jet pressure, traversal speed, and repeated impacting times. The removal width is used as a measure of water jet coating removal capability. Experiment results show that the coating removal width is constant, independent with traversal speed or repeated times when total exposure time of waterjet impingement is fixed. According to results of coating removal by a linear moving water jet, this study also analyzes characteristics of coating removal by rotating jet disc, especially residual coating affected by rotational and moving speed of the cleaning disc. The research is helpful to improve the coating removal efficiency of cleaning disc devices. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flow in Micromachines)
Show Figures

Figure 1

14 pages, 1216 KiB  
Review
Prussian Blue: A Safe Pigment with Zeolitic-Like Activity
by Joan Estelrich and Maria Antònia Busquets
Int. J. Mol. Sci. 2021, 22(2), 780; https://doi.org/10.3390/ijms22020780 - 15 Jan 2021
Cited by 47 | Viewed by 5787
Abstract
Prussian blue (PB) and PB analogues (PBA) are coordination network materials that present important similarities with zeolites concretely with their ability of adsorbing cations. Depending on the conditions of preparation, which is cheap and easy, PB can be classified into soluble PB and [...] Read more.
Prussian blue (PB) and PB analogues (PBA) are coordination network materials that present important similarities with zeolites concretely with their ability of adsorbing cations. Depending on the conditions of preparation, which is cheap and easy, PB can be classified into soluble PB and insoluble PB. The zeolitic-like properties are mainly inherent to insoluble form. This form presents some defects in its cubic lattice resulting in an open structure. The vacancies make PB capable of taking up and trapping ions or molecules into the lattice. Important adsorption characteristics of PB are a high specific area (370 m2 g−1 determined according the BET theory), uniform pore diameter, and large pore width. PB has numerous applications in many scientific and technological fields. PB are assembled into nanoparticles that, due to their biosafety and biocompatibility, can be used for biomedical applications. PB and PBA have been shown to be excellent sorbents of radioactive cesium and radioactive and nonradioactive thallium. Other cations adsorbed by PB are K+, Na+, NH4+, and some divalent cations. PB can also capture gaseous molecules, hydrocarbons, and even luminescent molecules such as 2-aminoanthracene. As the main adsorptive application of PB is the selective removal of cations from the environment, it is important to easily separate the sorbent of the purified solution. To facilitate this, PB is encapsulated into a polymer or coats a support, sometimes magnetic particles. Finally, is remarkable to point out that PB can be recycled and the adsorbed material can be recovered. Full article
(This article belongs to the Special Issue Mesoporous Materials 2020: From Synthesis to Applications)
Show Figures

Graphical abstract

25 pages, 6616 KiB  
Article
Optimization of the Resistance Spot Welding Process of 22MnB5-Galvannealed Steel Using Response Surface Methodology and Global Criterion Method Based on Principal Components Analysis
by Robson Ribeiro, Estevão Luiz Romão, Eduardo Luz, José Henrique Gomes and Sebastião Costa
Metals 2020, 10(10), 1338; https://doi.org/10.3390/met10101338 - 7 Oct 2020
Cited by 9 | Viewed by 5434
Abstract
The 22MnB5-galvannealed steel is extensively used in the hot stamping process to produce car anti-collision structure parts. Furthermore, the resistance spot welding (RSW) is an important process in the automobile industry, especially in body construction, and the 22MnB5-galvannealed steels are a big challenge [...] Read more.
The 22MnB5-galvannealed steel is extensively used in the hot stamping process to produce car anti-collision structure parts. Furthermore, the resistance spot welding (RSW) is an important process in the automobile industry, especially in body construction, and the 22MnB5-galvannealed steels are a big challenge for the joining methods because their microstructure and mechanical properties are different from those of the conventional steels. In view of this, the present paper aims to optimize the parameters of the RSW process of the 22MnB5-galvannealed steel. Initially, the goal was to remove the galvannealed coating and in the next stage, the following responses were maximized: the nugget width, the nugget cross-sectional area, the penetration, the strength, the joint efficiency, and the energy absorption, whereas the indentation, heat affected zone and separation were used as constraints. The process parameters selected were the effective welding time, the effective welding current, the quenching time, and the upslope time. Response surface methodology (RSM) was applied jointly with the global criterion method based on principal components. The results of the multiobjective optimization are close to the individual targets for each response, highlighting the importance of considering the correlation structure presented in the responses. Full article
Show Figures

Figure 1

31 pages, 7662 KiB  
Article
Experimental Investigation of Wire-EDM Machining of Low Conductive Al-SiC-TiC Metal Matrix Composite
by Goutham Murari V.P., Selvakumar G. and Chandrasekhara Sastry C.
Metals 2020, 10(9), 1188; https://doi.org/10.3390/met10091188 - 4 Sep 2020
Cited by 21 | Viewed by 3857
Abstract
The application of metal matrix composites (Al-SiC-TiC) in aerospace and defense industries have surged in the areas of hull safety, aviation fins, and closure units. The close to ideal solution for generating powdered mixture availing ball milling, for processing of a metal matrix [...] Read more.
The application of metal matrix composites (Al-SiC-TiC) in aerospace and defense industries have surged in the areas of hull safety, aviation fins, and closure units. The close to ideal solution for generating powdered mixture availing ball milling, for processing of a metal matrix composite of size 24 × 24 × 5.95 cm3 and composition of 75% Al, 10% SiC, and 10% TiC weight composition is 10:1 ball weight ratio, ball size of 8 mm, rotation speed of 250 rpm, and milling time of 4 h. The powdered mixture is compressed to pellet, sintered for two hours, and further silver coated in a physical vapor deposition setup to surge its electrical conductivity for ease of material removal. To obtain a perfect fit and finish, wire electrical discharge machining cycle has been carried out to machine the component under deionized water and oil + wax + paraffin dielectric mediums in 8 A peak current, 0.45 µs pulse on time, and 45 pulse off time as close to ideal solution, obtained by the technique for the order of preference by similarity to the ideal solution (TOPSIS) analysis. A surge is ascertained in kerf width, material removal rate, and surface roughness in oil + wax + paraffin environment in correlation with deionized water by 0.99–12.78%, 0.18–33.97%, and 2.15–36.86% respectively. The surface morphological study indicates a 32.28%, 42.57%, and 45.73% surge in residual compressive stress, surface roughness and corrosion resistance in oil + wax + paraffin dielectric medium in correlation to deionized water. Full article
Show Figures

Figure 1

7 pages, 1716 KiB  
Article
Direct Writing of Copper Micropatterns Using Near-Infrared Femtosecond Laser-Pulse-Induced Reduction of Glyoxylic Acid Copper Complex
by Mizue Mizoshiri, Keiko Aoyama, Akira Uetsuki and Tomoji Ohishi
Micromachines 2019, 10(6), 401; https://doi.org/10.3390/mi10060401 - 17 Jun 2019
Cited by 20 | Viewed by 4923
Abstract
We have fabricated Cu-based micropatterns in an ambient environment using femtosecond laser direct writing to reduce a glyoxylic acid Cu complex spin-coated onto a glass substrate. To do this, we scanned a train of focused femtosecond laser pulses over the complex film in [...] Read more.
We have fabricated Cu-based micropatterns in an ambient environment using femtosecond laser direct writing to reduce a glyoxylic acid Cu complex spin-coated onto a glass substrate. To do this, we scanned a train of focused femtosecond laser pulses over the complex film in air, following which the non-irradiated complex was removed by rinsing the substrates with ethanol. A minimum line width of 6.1 µm was obtained at a laser-pulse energy of 0.156 nJ and scanning speeds of 500 and 1000 µm/s. This line width is significantly smaller than that obtained in previous work using a CO2 laser. In addition, the lines are electrically conducting. However, the minimum resistivity of the line pattern was 2.43 × 10−6 Ω·m, which is ~10 times greater than that of the pattern formed using the CO2 laser. An X-ray diffraction analysis suggests that the balance between reduction and re-oxidation of the glyoxylic acid Cu complex determines the nature of the highly reduced Cu patterns in the ambient air. Full article
Show Figures

Figure 1

Back to TopTop