Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = coal resources security

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2032 KiB  
Review
A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling
by Mustafa Rezaei, Gabriela Sanchez-Lecuona and Omid Abdolazimi
Minerals 2025, 15(7), 720; https://doi.org/10.3390/min15070720 - 9 Jul 2025
Viewed by 926
Abstract
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This [...] Read more.
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This review presents a comprehensive overview of REE geochemistry, mineralogy, and major deposit types including carbonatites, alkaline igneous rocks, laterites, placer deposits, coal byproducts, and marine sediments. It also highlights the global distribution and economic potential of key REE projects. The integration of machine learning has further enhanced exploration by enabling deposit classification and geochemical modeling, especially in data-limited regions. Environmental and health challenges associated with REE mining, processing, and electronic waste (e-waste) recycling are studied, along with the expanding use of REEs in agriculture and medicine. Some recycling efforts offer promise for supply diversification, but significant technological and economic barriers remain. Ensuring a secure and sustainable REE supply will require integrated approaches combining advanced analytics, machine learning, responsible extraction, and coordinated policy efforts. The present review offers a general overview that can be useful for informing future studies and resource-related discussions. Full article
Show Figures

Figure 1

21 pages, 353 KiB  
Article
How Does Income Inequality Affect Rural Households’ Transition to Clean Energy? A Study Based on the Internal Perspective of the Village
by Yixuan Zhang and Jin Wang
Sustainability 2025, 17(14), 6269; https://doi.org/10.3390/su17146269 - 8 Jul 2025
Viewed by 303
Abstract
Promoting clean energy transition in rural areas is a key path to achieving global sustainable development, protecting public health, and promoting ecological livability. Based on data from the China Family Panel Studies (CFPS), this paper employs a multi-dimensional fixed effects model to evaluate [...] Read more.
Promoting clean energy transition in rural areas is a key path to achieving global sustainable development, protecting public health, and promoting ecological livability. Based on data from the China Family Panel Studies (CFPS), this paper employs a multi-dimensional fixed effects model to evaluate the impact of income inequality on rural households’ clean energy transition (CET) and examines its underlying mechanisms. Research findings indicate that income inequality significantly suppresses rural households’ CET, primarily by reducing basic energy consumption and hindering the upgrading of basic energy consumption structures. Government governance quality exerts a significant negative moderating effect on the relationship between income inequality and rural households’ CET. Further analysis shows that the inhibitory effect of income inequality on CET is more significant in the regions with a low economic development level and low coal resource endowment, and in the western and northeastern regions of China. Therefore, while continuously promoting rural income growth, the government should prioritize equitable distribution, strengthen institutional capacity-building, improve the social service and security system, and facilitate rural households’ CET. Full article
Show Figures

Figure 1

24 pages, 1797 KiB  
Article
Structural Obstacles to Energy Transition in Türkiye and Holistic Solution Proposals: A Political, Economic and Social Dimensional Analysis
by Muhammed Ernur Akiner
Energies 2025, 18(10), 2591; https://doi.org/10.3390/en18102591 - 16 May 2025
Viewed by 683
Abstract
This study aims to analyze the multi-dimensional structural obstacles in Türkiye’s energy transition process and offer solutions for a sustainable, fair, and holistic transition. The study simultaneously evaluated energy policies’ economic, environmental, and social impacts; quantitative data, qualitative interviews, spatial analysis, and scenario [...] Read more.
This study aims to analyze the multi-dimensional structural obstacles in Türkiye’s energy transition process and offer solutions for a sustainable, fair, and holistic transition. The study simultaneously evaluated energy policies’ economic, environmental, and social impacts; quantitative data, qualitative interviews, spatial analysis, and scenario modeling techniques were used together. Türkiye’s 2023 energy panorama was examined and compared to the European Union averages. Structural differences in fundamental indicators such as energy intensity, supply security, pricing, and renewable resource use were revealed. According to EPDK, TÜİK, and TEİAŞ, Türkiye’s renewable energy share (42%) fell behind the EU average (63%), energy intensity was high (6.8 MJ per US dollar of GDP), and dependence on fossil fuels (coal 30%, natural gas 25%) threatened energy security. The findings show that the main obstacles to energy transition are insufficient financing, lack of political will, technological incompatibilities, and institutional coordination problems. In this context, the study proposes short-term to long-term transition policies. A multi-layered solution framework was presented, from energy cooperatives to carbon pricing, from net-zero laws to regional development plans. These policies can increase the renewable energy rate to 65% by 2035 and reduce carbon emissions by 50%. The study is one of the first systematic analyses to address energy transition in Türkiye with a holistic approach and is a strategic reference for policymakers. Full article
Show Figures

Figure 1

24 pages, 7107 KiB  
Article
A Synergistic Planning Framework for Low-Carbon Power Systems: Integrating Coal-Fired Power Plant Retrofitting with a Carbon and Green Certificate Market Coupling Mechanism
by Zifan Tang, Yue Yin, Chao Chen, Changle Liu, Zhuoxun Li and Benyao Shi
Energies 2025, 18(9), 2403; https://doi.org/10.3390/en18092403 - 7 May 2025
Viewed by 436
Abstract
The intensifying impacts of climate change induced by carbon emissions necessitate the implementation of urgent mitigation strategies. Given that the power sector is a major contributor to global carbon emissions, strategic decarbonization planning in this sector is of paramount importance. This study proposes [...] Read more.
The intensifying impacts of climate change induced by carbon emissions necessitate the implementation of urgent mitigation strategies. Given that the power sector is a major contributor to global carbon emissions, strategic decarbonization planning in this sector is of paramount importance. This study proposes a synergistic planning framework for low-carbon power systems that integrates coal-fired power plants (CFPPs) and a carbon and green certificate market coupling mechanism, thereby facilitating a “security–economic–low-carbon” tri-objective transition in power systems. The proposed framework facilitates dynamic decision-making regarding the retrofitting of CFPPs, investments in renewable energy resources, and energy storage systems. By evaluating three distinct CFPP retrofitting pathways, the framework enhances economic efficiency and reduces carbon emissions, achieving reductions of 28.67% in total system costs and 2.96% in CO2 emissions. Implementing the carbon–green certificate market coupling mechanism further unlocks the market value of green certificates, thereby providing economic incentives for clean energy projects and increasing flexibility in the allocation of carbon emission quotas for enterprises. Relative to cases that consider only carbon trading or only green certificate markets, the coupled mechanism reduces the total cost by 10.96% and 15.56%, and decreases carbon emissions by 27.10% and 47.36%, respectively. The collaborative planning framework introduced in this study enhances economic performance, increases renewable energy penetration, and reduces carbon emissions, thus facilitating the low-carbon transition of power systems. Full article
(This article belongs to the Special Issue New Power System Planning and Scheduling)
Show Figures

Figure 1

18 pages, 8727 KiB  
Article
The Impacts of Water Policies and Hydrological Uncertainty on the Future Energy Transition of the Power Sector in Shanxi Province, China
by Xingtong Chen, Jijian Lian and Qizhong Guo
Energies 2025, 18(9), 2281; https://doi.org/10.3390/en18092281 - 29 Apr 2025
Viewed by 315
Abstract
Water scarcity under climate change and increasingly stringent water conservation policies may trigger energy security concerns. The current study develops an optimization model to investigate the impacts of water conservation policies and hydrological uncertainties on the regional energy transition process in Shanxi Province, [...] Read more.
Water scarcity under climate change and increasingly stringent water conservation policies may trigger energy security concerns. The current study develops an optimization model to investigate the impacts of water conservation policies and hydrological uncertainties on the regional energy transition process in Shanxi Province, China. The dual-control policies on total water consumption and water intensity are systematically examined for their differential constraints and stimulative effects on various power generation types. Hydrological time series analysis methods are employed to project future water resource variations in Shanxi Province and evaluate their implications for power system optimization. The results indicate that (1) total water constraint policies are more stringent than water intensity constraint policies; (2) changes in water resource availability impose greater restrictions on coal power development than those imposed by current water conservation policies; and (3) when total water resources decrease by approximately 43.5% compared with 2020 levels, Shanxi Province may face electricity shortages. These findings suggest that water conservation policy formulation should be coordinated with regional power sector development planning, while also considering potential energy security risks posed by potential future reductions in water resources. Full article
Show Figures

Figure 1

23 pages, 4611 KiB  
Article
Coupling Coordination Evaluation of Ecological Security in Coal Resource-Exhausted Villages
by Pingjia Luo, Tianlong Liu, Haiyang Cao, Hao Chen and Weixi Chen
Land 2025, 14(4), 897; https://doi.org/10.3390/land14040897 - 18 Apr 2025
Viewed by 395
Abstract
Although the exploitation of coal resources has driven regional economic growth, it has also inflicted considerable ecological damage. The sustainable development of ecological security in coal resource-exhausted villages is challenged by multiple pressures, states, and response requirements. Identifying potential risks and assessing the [...] Read more.
Although the exploitation of coal resources has driven regional economic growth, it has also inflicted considerable ecological damage. The sustainable development of ecological security in coal resource-exhausted villages is challenged by multiple pressures, states, and response requirements. Identifying potential risks and assessing the coupling coordination in these areas is a critical research topic for promoting their transformation and development. This study uses Jiawang District, a representative coal resource-exhausted village in China, as a case study to examine the evolution of ecological security at the rural scale from 2000 to 2021. It innovatively constructs a comprehensive evaluation model based on “resilience support—state characteristics—response mechanism” and integrates coupling coordination degree analysis with grey relational analysis to quantitatively reveal the spatio-temporal differentiation features and driving mechanisms of ecological security coupling coordination in coal resource-depleted rural areas. The findings indicate the following: (1) Between 2000 and 2021, the comprehensive ecological security index of coal resource-exhausted villages in Jiawang District exhibited a sustained upward trend; (2) The coupling coordination degree of six sampled villages across the district displayed a gradient distribution pattern characterized by “higher in the west and lower in the east, higher in the north and lower in the south”, with each unit achieving phased improvements in coordination levels; (3) Through grey relational analysis, key factors influencing the coupling coordination of coal resource-exhausted villages were identified across three dimensions—coupling coordination degree, the overall Jiawang region, and the rural scale. This study offers targeted policy recommendations for coal resource-exhausted villages at varying levels of coupling coordination. Full article
Show Figures

Figure 1

38 pages, 6236 KiB  
Article
Accelerating Towards Sustainability: Policy and Technology Dynamic Assessments in China’s Road Transport Sector
by Yao Yi, Z.Y. Sun, Bi-An Fu, Wen-Yu Tong and Rui-Song Huang
Sustainability 2025, 17(8), 3668; https://doi.org/10.3390/su17083668 - 18 Apr 2025
Viewed by 1051
Abstract
This study examines the policy and technological dynamics shaping China’s road transport sector’s transition to low-carbon sustainability, focusing on battery electric vehicles (BEVs) and hydrogen fuel cell electric vehicles (HFCEVs). As the world’s second-largest carbon emitter, China faces significant challenges in reducing its [...] Read more.
This study examines the policy and technological dynamics shaping China’s road transport sector’s transition to low-carbon sustainability, focusing on battery electric vehicles (BEVs) and hydrogen fuel cell electric vehicles (HFCEVs). As the world’s second-largest carbon emitter, China faces significant challenges in reducing its fossil fuel dependency in road transport, which accounts for diverse emissions and energy security risks. The present work, using a dual tech multi-level perspective (DTMLP) framework integrating multi-level perspective (MLP) and an advocacy coalition framework (ACF), analyzes the interplay of landscape pressures (global carbon constraints), regime dynamics (policy–market interactions), and niche innovations (BEV/FCEV competition). The results reveal BEVs’ dominance in light-duty markets, achieving remarkable operational emission reductions but facing lifecycle carbon lock-ins from battery production and coal-dependent power grids. HFCEVs demonstrate potential for heavy-duty decarbonization but struggle with gray hydrogen reliance and infrastructure gaps. Policy evolution highlights shifting governance from subsidies to market-driven mechanisms, alongside regional disparities in implementation. This study proposes a three-phase roadmap: structural optimization (2025–2030), technological adaptation (2030–2045), and hydrogen–electric system integration (post-2045), emphasizing material innovation, renewable energy alignment, and multi-level governance. Our findings underscore the necessity of coordinated policy–technology synergies, grid decarbonization, and circular economy strategies, to overcome institutional inertia and achieve China’s ‘Dual Carbon’ targets. This work provides actionable insights for global sustainable transport transitions amid competing technological pathways and geopolitical resource constraints. Full article
Show Figures

Figure 1

24 pages, 2042 KiB  
Article
Social Dimension of Poland’s Sustainable Energy Transition as Assessed by Residents of the Silesian Region
by Ewelina Włodarczyk and Joanna Herczakowska
Sustainability 2025, 17(6), 2707; https://doi.org/10.3390/su17062707 - 19 Mar 2025
Cited by 1 | Viewed by 760
Abstract
Sustainable development is a key concept that has been formulated over many years and is currently transforming our world. Decisions made in its spirit are influencing the economic and legal order and the daily lives of people in Europe and around the world. [...] Read more.
Sustainable development is a key concept that has been formulated over many years and is currently transforming our world. Decisions made in its spirit are influencing the economic and legal order and the daily lives of people in Europe and around the world. In Poland, achieving sustainable development requires a number of difficult decisions, and one of them is to transform the energy system toward low carbon. Poland’s energy transition is not an easy task in a country where, for many years, the dominant energy resource in terms of availability, resources and price has been coal. In view of such conditions, the Polish energy system has been based on coal, which in Polish conditions is still of strategic importance in meeting energy needs. For this reason, Poland’s planned move away from coal raises many controversies and concerns, especially in areas where mines operate. At the same time, it should be remembered that the mining industry, in addition to mining companies, brings together a large group of mining-related companies working for the benefit of mining. Due to the fact that it is in the territory of the Upper Silesian Coal Basin that about 80% of the documented balance resources of Polish hard coal are located, it was justified to conduct a survey among the residents of the Silesian Province as the group most likely to be affected by this decision. The aim of the survey was to find out the target group’s opinion on Poland’s transition away from coal. In turn, the main research problem was an attempt to answer the question of what percentage of households in the Silesian Province are opposed to Poland’s transition away from coal and what are the most significant factors influencing their opinion. Hence, this study presents the results of an empirical survey conducted among a randomly selected group of residents of the Silesian Province. The size of the research sample was 385 people. The study took into account factors such as age, place of residence, income, the square footage of the dwelling and the method of heating it, as well as respondents’ professional affiliation with the mining, mining-related, gas or energy industry. The results of the survey and analyses show that the vast majority of Upper Silesian residents are against the departure from coal, which is being planned in Poland’s energy transition. In addition, the most significant factors influencing respondents’ opinion on Poland’s move away from coal were identified and evaluated, revealing two social groups with differing views: one group opposes the move away from coal, prioritizing energy independence, energy security, energy prices and jobs over environmental issues; the other group advocates for the transition mainly for environmental reasons. Full article
Show Figures

Figure 1

21 pages, 4198 KiB  
Article
Decomposition of Intensity and Sustainable Use Countermeasures for the Energy Resources of the Northwestern Five Provinces of China Using the Logarithmic Mean Divisia Index (LMDI) Method and Three Convergence Models
by Zhenxu Zhang, Junsong Jia, Chenglin Zhong, Chengfang Lu and Min Ju
Energies 2025, 18(6), 1330; https://doi.org/10.3390/en18061330 - 8 Mar 2025
Viewed by 980
Abstract
Energy resources are a material basis for regional sustainable development and ecological security. However, this issue has not been adequately studied in Northwest China. Here, we consider the five northwestern provinces of China and break down the change in energy use intensity. Results [...] Read more.
Energy resources are a material basis for regional sustainable development and ecological security. However, this issue has not been adequately studied in Northwest China. Here, we consider the five northwestern provinces of China and break down the change in energy use intensity. Results show that the total energy intensity in the five northwestern provinces decreased from 2.389 tons/104 Chinese yuan (CNY) in 2000 to 0.92 tons/104 CNY in 2021. The main influencing factors for the decline in energy intensity are the industrial energy intensity followed by the industrial structure and the energy structure. There are eight industrial sub-sectors that contributed to the decrease in industrial energy intensity. Conversely, there are seven sub-sectors that increased industrial energy intensity. In addition, there are six sub-sectors with an energy intensity of more than 1 ton/104 CNY. The convergence parameters demonstrate that the energy intensities of the five northwestern provinces did not converge to the same steady-state level, and their gap did not narrow in the short term. While the region’s overall energy intensity has shown a consistent downward trajectory, sectors heavily reliant on traditional fossil fuels—such as coal chemical processing, petroleum refining, and coking—have experienced a paradoxical upward trend in energy consumption. To address this, governments must implement targeted sector-specific measures, including upgrading technical capabilities through advanced coal gasification technologies, optimizing heat integration systems in petroleum refining processes, and streamlining intermediate production stages to minimize energy waste. Full article
(This article belongs to the Special Issue Energy Planning from the Perspective of Sustainability)
Show Figures

Figure 1

17 pages, 1677 KiB  
Article
Assessing the Energy Footprint of Desalination Technologies and Minimal/Zero Liquid Discharge (MLD/ZLD) Systems for Sustainable Water Protection via Renewable Energy Integration
by Argyris Panagopoulos
Energies 2025, 18(4), 962; https://doi.org/10.3390/en18040962 - 17 Feb 2025
Cited by 8 | Viewed by 1838
Abstract
Water scarcity necessitates desalination technologies, yet their high energy demands and brine disposal challenges hinder sustainability. This research study evaluates the energy footprint and carbon emissions of thermal- and membrane-based desalination technologies, alongside Minimal/Zero Liquid Discharge (MLD/ZLD) frameworks, with a focus on renewable [...] Read more.
Water scarcity necessitates desalination technologies, yet their high energy demands and brine disposal challenges hinder sustainability. This research study evaluates the energy footprint and carbon emissions of thermal- and membrane-based desalination technologies, alongside Minimal/Zero Liquid Discharge (MLD/ZLD) frameworks, with a focus on renewable energy source (RES) integration. Data revealed stark contrasts: thermal-based technologies like osmotic evaporation (OE) and brine crystallizers (BCr) exhibit energy intensities of 80–100 kWh/m3 and 52–70 kWh/m3, respectively, with coal-powered carbon footprints reaching 72–100 kg CO2/m3. Membrane-based technologies, such as reverse osmosis (RO) (2–6 kWh/m3) and forward osmosis (FO) (0.8–13 kWh/m3), demonstrate lower emissions (1.8–11.7 kg CO2/m3 under coal). Transitioning to RES reduces emissions by 90–95%, exemplified by renewable energy-powered RO (0.1–0.3 kg CO2/m3). However, scalability barriers persist, including high capital costs, RES intermittency, and technological immaturity in emerging systems like osmotically assisted RO (OARO) and membrane distillation (MD). This research highlights RES-driven MLD/ZLD systems as pivotal for aligning desalination with global climate targets, urging innovations in energy storage, material robustness, and circular economy models to secure water resource resilience. Full article
Show Figures

Graphical abstract

17 pages, 2249 KiB  
Article
A Retrospective Assessment of Türkiye’s Recent Energy Policy in Terms of Energy Security and Climate Change Mitigation
by Hasan Hüseyin Miraç Gül, Hakan Ercan, Bülent Akınoğlu and Şenay Açıkgöz
Energies 2025, 18(4), 951; https://doi.org/10.3390/en18040951 - 17 Feb 2025
Cited by 1 | Viewed by 841
Abstract
Countries prioritize secure and cheap energy over clean energy in their energy policies, and Türkiye is no different. The Strategy Plan 2015–2019 of the Ministry of Energy and Natural Resources emphasizes the exploitation of domestic coal for energy security, while Türkiye intends to [...] Read more.
Countries prioritize secure and cheap energy over clean energy in their energy policies, and Türkiye is no different. The Strategy Plan 2015–2019 of the Ministry of Energy and Natural Resources emphasizes the exploitation of domestic coal for energy security, while Türkiye intends to curb its emissions by 41% by 2030. These two targets contradict in terms of climate change mitigation. In retrospect, this study aims to determine the role of coal, wind, and solar power in energy policy-making through scenario analyses. The results indicate that if Türkiye continued its pre-2020 energy policy, its use of domestic coal would be important for energy security. On the other hand, both wind and solar have the capacity to contribute to the country’s efforts towards energy security and climate change mitigation. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

21 pages, 3535 KiB  
Review
Coal-Hosted Al-Ga-Li-REE Deposits in China: A Review
by Yanbo Zhang, Xiangyang Liu and Wei Zhao
Minerals 2025, 15(1), 74; https://doi.org/10.3390/min15010074 - 14 Jan 2025
Cited by 2 | Viewed by 1416
Abstract
Investigation of the critical metal elements in coal and coal-bearing strata has become one of the hottest research topics in coal geology and coal industry. Coal-hosted Ga-Al-Li-REE deposits have been discovered in the Jungar and Daqingshan Coalfields of Inner Mongolia, China. Gallium, Al, [...] Read more.
Investigation of the critical metal elements in coal and coal-bearing strata has become one of the hottest research topics in coal geology and coal industry. Coal-hosted Ga-Al-Li-REE deposits have been discovered in the Jungar and Daqingshan Coalfields of Inner Mongolia, China. Gallium, Al, and Li in the Jungar coals have been successfully extracted and utilized. This paper reviews the discovery history of coal-hosted Ga-Al-Li-REE deposits, including contents, modes of occurrence, and enrichment origin of critical metals in each coal mine, including Heidaigou, Harewusu, and Guanbanwusu Mines in the Jungar Coalfield and the Adaohai Coal Mine in the Daqingshan Coalfield, as well as the recently reported Lao Sangou Mine. Gallium and Al in the coals investigated mainly occur in kaolinite, boehmite, diaspore, and gorceixite; REEs are mainly hosted by gorceixite and kaolinite; and Li is mainly hosted by cholorite. Gallium, Al, and REEs are mainly derived from the sediment-source region, i.e., weathered bauxite in the Benxi Formation. In addition, REE enrichment is also attributed to the intra-seam parting leaching by groundwater. Lithium enrichment in the coals is of hydrothermal fluid input. The content of Al2O3 and Ga in coal combustions (e.g., fly ash) is higher than 50% and ~100 µg/g, respectively; concentrations of Li in these coals also reach the cut-off grade for industrial recovery (for example, Li concentration in the Haerwusu coals is ~116 µg/g). Investigations of the content, distribution, and mineralization of critical elements in coal not only provide important references for the potential discovery of similar deposits but also offer significant coal geochemical and coal mineralogical evidence for revealing the geological genesis of coal seams, coal seam correlation, the formation and post-depositional modification of coal basins, regional geological evolution, and geological events. Meanwhile, such investigation also has an important practical significance for the economic circular development of the coal industry, environmental protection during coal utilization, and the security of critical metal resources. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 10995 KiB  
Article
Using RES Surpluses to Remove Overburden from Lignite Mines Can Improve the Nation’s Energy Security
by Leszek Jurdziak, Witold Kawalec, Zbigniew Kasztelewicz and Pawel Parczyk
Energies 2025, 18(1), 104; https://doi.org/10.3390/en18010104 - 30 Dec 2024
Cited by 2 | Viewed by 1086
Abstract
The increasing use of renewable energy sources, such as wind and solar energy, presents challenges to the stability and efficiency of other energy sources due to their intermittent and unpredictable surpluses. The unintended consequence of stabilizing the power supply system is an increase [...] Read more.
The increasing use of renewable energy sources, such as wind and solar energy, presents challenges to the stability and efficiency of other energy sources due to their intermittent and unpredictable surpluses. The unintended consequence of stabilizing the power supply system is an increase in emissions and external costs from the suboptimal use of coal power plants. The rising number of RES curtailments needs to be addressed by either the adjusting energy supply from fossil fuel or the flexible energy consumption. In Poland’s energy mix, coal-fired power plants are a critical component in ensuring energy security for the foreseeable future. Using domestic lignite to generate a total power of 8.5 GW can stabilize the national power supply, as it is currently done in Germany, where 15 GW of lignite-fueled power units provide the power supply base for the country. The leading Belchatów power plant comprises 10 retrofitted units and one new unit, with a total rating of 5.5 GW. Access to the new coal deposit, Zloczew, is necessary to ensure its longer operation. The other domestic lignite power plants are located in Central Poland at Patnów (0.47 GW from the new unit and 0.6 GW from its three retrofitted counterparts) and located in the Lusatian lignite basin at Turów (operating a brand new unit rated at 0.5 GW and retrofitted units with a total rating of 1.5 GW). The use of this fuel is currently being penalized as a result of increasing carbon costs. However, the continuous surface mining technology that is used in lignite mines is fully electrified, and large amounts of electric energy are required to remove and dump overburden and mining coal and its conveying to power units (the transport of coal from the new lignite mine Zloczew to the Belchatów power plant would be a long-distance operation). A possible solution to this problem is to focus on the lignite fuel supply operations of these power plants, with extensive simulations of the entire supply chain. A modern lignite mine is operated by one control room, and it can balance the dynamic consumption of surplus renewable energy sources (RESs) and reduce the need for reduction. When a lignite supply chain is operated this way, a high-capacity power bank can be created with energy storage in the form of an open brown coal seam. This would enable an almost emission-free supply of cheap and domestic fossil fuel, making it insensitive to changes in the world prices of energy resources for power units operating at the base of the system. Furthermore, extending the life of relatively new and efficient lignite-fired units in Poland would facilitate the decommissioning of older and exhausted hard coal-fired units. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

24 pages, 7585 KiB  
Article
Opportunities for the Transformation and Development of Power Plants Under Water Stress Conditions: Example of Adamów Power Plant
by Tomasz Kałuża, Jolanta Kanclerz, Mateusz Hämmerling, Ewelina Janicka-Kubiak and Stanisław Zaborowski
Energies 2024, 17(24), 6267; https://doi.org/10.3390/en17246267 - 12 Dec 2024
Cited by 1 | Viewed by 828
Abstract
In the vicinity of the Adamów power plant, which operates in the catchment area of the Kiełbaska river, there is a significant shortage of water resources caused by the intensive use of water by the energy industry and agriculture. The development of the [...] Read more.
In the vicinity of the Adamów power plant, which operates in the catchment area of the Kiełbaska river, there is a significant shortage of water resources caused by the intensive use of water by the energy industry and agriculture. The development of the plant by replacing the outdated coal-fired (lignite-fired) units with modern gas and steam units may contribute significantly to reducing the negative impact on the environment and reduce the demand for water resources relative to coal technology. Gas and steam units are a much more energy-efficient technology. This implies a lower demand for water, a reduction in pollutant emissions, and greater operational flexibility, which enables the units to adapt to changing hydrological and environmental conditions. The high efficiency of these units limits the need for frequent water-refilling, while allowing for a more sustainable and stable production of energy. Based on an analysis of hydrological data for the years 2019–2023, it was estimated that water stress is observed in this catchment area on 198 days per year, which accounts for c.a. 54% of the hydrological year. Therefore, it is assumed that inter-catchment pumping stations with a flow of 0.347 m3∙s−1 will be required. This sets the demand for water at 5.95 million m3 per year. The planned water transfer will be carried out from Jeziorsko reservoir on the Warta river through the catchment area of Teleszyna river. Moreover, there are plans for the reconstruction of the layout of Kiełbaska Duża and Teleszyna rivers, which would involve the restoration of natural run-offs, following the discontinuation of open-pit lignite mining. This will additionally be supported by the reduced demand for water in the water use system when using the modernised power plant. The analysed data made it possible to develop hydrological scenarios that take the future reduction in water stress into account by implementing plans to restore the former hydrographic system in the region. These investments would also foresee the creation of new retention reservoirs (in former mining pits) with a capacity of nearly 900 million m3, which will significantly increase the region’s water resources and retention potential, supporting hydrological and energy security for the years to come. Full article
Show Figures

Figure 1

9 pages, 2175 KiB  
Proceeding Paper
Geographical Spatial Characteristics and Low-Carbon Sustainable Paths of Coal Resource-Exhausted Cities
by Xiaotong Feng, Min Tan, Jihong Dong and Thomas Kienberger
Proceedings 2024, 110(1), 15; https://doi.org/10.3390/proceedings2024110015 - 3 Dec 2024
Cited by 1 | Viewed by 590
Abstract
Resource-exhausted cities are cities where the ratio of exploited reserves to recoverable reserves exceeds 70%. Long-term energy extraction and consumption lead to weak economic growth, idle industrial land, and ecological imbalances. It is imperative to explore sustainable development paths that are green and [...] Read more.
Resource-exhausted cities are cities where the ratio of exploited reserves to recoverable reserves exceeds 70%. Long-term energy extraction and consumption lead to weak economic growth, idle industrial land, and ecological imbalances. It is imperative to explore sustainable development paths that are green and low-carbon. The spatial characteristics of cities and the structure of energy networks are crucial foundations for low-carbon development and energy security in cities. The main research content includes three aspects: (1) The first involves the identification of the distribution characteristics of typical resource- exhausted cities worldwide. This mainly includes coal, oil, metallurgy, forestry, and non-metallic minerals. Among them, coal resource-exhausted cities are the most numerous, mainly distributed in China, Australia, the United States, etc. (2) The second includes an analysis of the spatial characteristics of resource-exhausted cities in China. This involves taking 24 resource-exhausted prefecture-level cities in China as the research objects, integrating geographic data such as Points of Interest (POIs), and using machine learning for accurate quantitative identification and spatial delineation of urban functions. The production space and ecological space of cities show an aggregated distribution pattern, while the living space is randomly distributed. (3) The third is based on urban energy consumption data, utilizing the modified gravity model and social network analysis (SNA), and analyzing the centrality/relevance, relationship density and frequency, and accessibility. The average degree of centrality of the 17 coal-related industries is 5.529, demonstrating the energy network structure of resource-exhausted cities. This paper provides data foundations and technical methods for achieving urban energy renewal, ecosystem stability, and optimized spatial structures. Full article
(This article belongs to the Proceedings of The 31st International Conference on Geoinformatics)
Show Figures

Figure 1

Back to TopTop