Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (217)

Search Parameters:
Keywords = coal pyrolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6310 KiB  
Article
Geological Evaluation of In-Situ Pyrolysis Development of Oil-Rich Coal in Tiaohu Mining Area, Santanghu Basin, Xinjiang, China
by Guangxiu Jing, Xiangquan Gao, Shuo Feng, Xin Li, Wenfeng Wang, Tianyin Zhang and Chenchen Li
Energies 2025, 18(15), 4034; https://doi.org/10.3390/en18154034 - 29 Jul 2025
Viewed by 183
Abstract
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index [...] Read more.
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index classification and quantification was employed in combination with the geological features of the Tiaohu mining area to establish a feasibility evaluation index system suitable for in-situ development in the study region. Among these factors, coal quality parameters (e.g., coal type, moisture content, volatile matter, ash yield), coal seam occurrence characteristics (e.g., seam thickness, burial depth, interburden frequency), and hydrogeological conditions (e.g., relative water inflow) primarily govern pyrolysis process stability. Surrounding rock properties (e.g., roof/floor lithology) and structural features (e.g., fault proximity) directly impact pyrolysis furnace sealing integrity, while environmental geological factors (e.g., hazardous element content in coal) determine environmental risk control effectiveness. Based on actual geological data from the Tiaohu mining area, the comprehensive weight of each index was determined. After calculation, the southwestern, central, and southeastern subregions of the mining area were identified as favorable zones for pyrolysis development. A constraint condition analysis was then conducted, accompanied by a one-vote veto index system, in which the thresholds were defined for coal seam thickness (≥1.5 m), burial depth (≥500 m), thickness variation coefficient (≤15%), fault proximity (≥200 m), tar yield (≥7%), high-pressure permeability (≥10 mD), and high-pressure porosity (≥15%). Following the exclusion of unqualified boreholes, three target zones for pyrolysis furnace deployment were ultimately selected. Full article
Show Figures

Figure 1

13 pages, 3175 KiB  
Article
Effect of Temperature and Pyrolysis Atmosphere on Pore Structure of Sintered Coal Gangue Ceramsites
by Baoqiang Zhao, Xiangjie Duan and Yu Li
Materials 2025, 18(14), 3386; https://doi.org/10.3390/ma18143386 - 18 Jul 2025
Viewed by 295
Abstract
The sintering of coal gangue ceramsites (CGCs) using belt roasting technology involves the recirculation of flue gases and variations in oxygen concentrations. This study investigates the effects of temperature and pyrolysis atmosphere on the pore structure of CGCs at three temperature levels: 600 [...] Read more.
The sintering of coal gangue ceramsites (CGCs) using belt roasting technology involves the recirculation of flue gases and variations in oxygen concentrations. This study investigates the effects of temperature and pyrolysis atmosphere on the pore structure of CGCs at three temperature levels: 600 °C, 950 °C, and 1160 °C. The results revealed that apparent porosity is primarily influenced by O2-promoted weight loss and the densification process, while closed porosity is affected by pyrolysis reactions and crystal phase transformations. Below 950 °C, enhancing the oxidative atmosphere facilitates the preparation of porous CGCs, whereas above 950 °C, reducing the oxidative atmosphere favors the preparation of high-strength CGCs. These findings provide valuable insights for the industrial production of CGCs, offering a basis for optimizing sintering parameters to achieve the desired material properties. The latest production equipment, furnished with adjustable atmospheres (such as belt sintering roasters), can better regulate the mechanical properties of the products. Full article
(This article belongs to the Special Issue Advances in Materials Processing (3rd Edition))
Show Figures

Figure 1

18 pages, 3348 KiB  
Article
Moderate-Temperature Pyrolysis Characteristics of Lump Coal Under Varying Coal Particle Sizes
by Yuanpei Luo, Luxuan Liu, Liangguo Lv, Shengping Zhang, Fei Dai, Hongguang Jin and Jun Sui
Energies 2025, 18(12), 3220; https://doi.org/10.3390/en18123220 - 19 Jun 2025
Viewed by 381
Abstract
Pyrolysis is an important methodology for achieving efficient and clean utilization of coal. Lump coal pyrolysis demonstrates distinct advantages over pulverized coal processing, particularly in enhanced gas yield and superior coke quality. As a critical parameter in lump coal pyrolysis, particle size significantly [...] Read more.
Pyrolysis is an important methodology for achieving efficient and clean utilization of coal. Lump coal pyrolysis demonstrates distinct advantages over pulverized coal processing, particularly in enhanced gas yield and superior coke quality. As a critical parameter in lump coal pyrolysis, particle size significantly influences heat transfer and mass transfer during pyrolysis, yet its governing mechanisms remain insufficiently explored. This research systematically investigates pyrolysis characteristics of the low-rank coal from Ordos, Inner Mongolia, across graded particle sizes (2–5 mm, 5–10 mm, 10–20 mm, and 20–30 mm) through pyrolysis experiments. Real-time central temperature monitoring of coal bed coupled with advanced characterization techniques—including X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), gas chromatography (GC), and GC–mass spectrometry (GC-MS)—reveals particle-size-dependent pyrolysis mechanisms. Key findings demonstrate that the larger particles enhance bed-scale convective heat transfer, accelerating temperature propagation from reactor walls to the coal center. However, excessive sizes cause significant intra-particle thermal gradients, impeding core pyrolysis. The 10–20 mm group emerges as optimal—balancing these effects to achieve uniform thermal attainment, evidenced by 20.99 vol% peak hydrogen yield and maximum char graphitization. Tar yield first demonstrates a tendency to rise and then decline, peaking at 14.66 wt.% for 5–10 mm particles. This behavior reflects competing mechanisms: enlarging particle size can improve bed permeability (reducing tar residence time and secondary reactions), but it can also inhibit volatile release and intensify thermal cracking of tar in oversized coal blocks. The BET analysis result reveals elevated specific surface area and pore volume with increasing particle size, except for the 10–20 mm group, showing abrupt porosity reduction—attributed to pore collapse caused by intense polycondensation reactions. Contrasting previous studies predominantly focused on less than 2 mm pulverized coal, this research selects large-size (from 2 mm to 30 mm) lump coal to clarify the effect of particle size on coal pyrolysis, providing critical guidance for industrial-scale lump coal pyrolysis optimization. Full article
Show Figures

Figure 1

19 pages, 3686 KiB  
Review
Combustion Utilization of High-Chlorine Coal: Current Status and Future Prospects
by Kang Hong, Tuo Zhou, Man Zhang, Yuyang Zeng, Weicheng Li and Hairui Yang
Energies 2025, 18(12), 3011; https://doi.org/10.3390/en18123011 - 6 Jun 2025
Viewed by 525
Abstract
Under China’s “dual carbon” goals (carbon peaking and carbon neutrality), the utilization of high-chlorine coal faces significant challenges due to its abundant reserves in regions such as Xinjiang and its notable environmental impacts. This study systematically investigates the combustion characteristics, environmental risks, and [...] Read more.
Under China’s “dual carbon” goals (carbon peaking and carbon neutrality), the utilization of high-chlorine coal faces significant challenges due to its abundant reserves in regions such as Xinjiang and its notable environmental impacts. This study systematically investigates the combustion characteristics, environmental risks, and control strategies for high-chlorine coal. Key findings reveal that chlorine release occurs in three distinct stages, namely low-temperature desorption, medium-temperature organic bond cleavage, and high-temperature inorganic decomposition, with release kinetics governed by coal metamorphism and the reaction atmosphere. Chlorine synergistically enhances mercury oxidation through low-activation-energy pathways but exacerbates boiler corrosion via chloride–sulfate interactions. Advanced control technologies—such as water washing, calcium-based sorbents, and integrated pyrolysis–gasification systems—demonstrate substantial emission reductions. However, challenges remain in addressing high-temperature corrosion and optimizing multi-pollutant synergistic control. This study provides critical insights into the clean utilization of high-chlorine coal, supporting sustainable energy transitions. Full article
Show Figures

Figure 1

16 pages, 3075 KiB  
Article
Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties
by Jaroslav Pokorný, Radek Ševčík, Lucie Zárybnická, Jiří Šál and Luboš Podolka
Buildings 2025, 15(11), 1949; https://doi.org/10.3390/buildings15111949 - 4 Jun 2025
Viewed by 399
Abstract
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need [...] Read more.
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need is constantly growing. Biochar, the porous carbon-based lightweight product, often ends up as a soil fertilizer. However, it can be applied in other industrial sectors, e.g., in plastics production or in modifying cementitious materials intended for construction needs. This work dealt with the application of small amounts of softwood-based biochar up to 2.0 wt.% on hydration kinetics and a wide range of physical and mechanical properties, such as water transport characteristics and flexural and compressive strengths of modified cement pastes. In the comparison with reference specimens, the biochar incorporation into cement pastes brought benefits like the reduction of open porosity, improvement of strength properties, and decreased capillary water absorption of 7-day and 28-day-cured cement pastes. Moreover, biochar-dosed cement pastes showed an increase in heat evolution during the hydration process, accompanied by higher consumption of clinker minerals. Considering all examined characteristics, the optimal dosage of softwood-derived biochar of 1.0 wt.% of Portland cement can be recommended. Full article
Show Figures

Figure 1

16 pages, 1760 KiB  
Article
Preparation of Nitrogen-Rich Tar by Co-Pyrolysis and Analysis of Nitrogen-Containing Compounds in Pyrolysis Products
by Peiqi Chen, Gang Li, Jie Shao, Baoping Bai, Jie Hu, Xiang Han, Anning Zhou, Qiuhong Wang and Fuxin Chen
Appl. Sci. 2025, 15(11), 6284; https://doi.org/10.3390/app15116284 - 3 Jun 2025
Viewed by 426
Abstract
In this study, we use coal as a carbon source from Zhangjiamao and doped with different nitrogen sources for co-pyrolysis. Nitrogen-rich tar was successfully prepared, and the content and variety were also increased. From the elemental analysis, the nitrogen content of all the [...] Read more.
In this study, we use coal as a carbon source from Zhangjiamao and doped with different nitrogen sources for co-pyrolysis. Nitrogen-rich tar was successfully prepared, and the content and variety were also increased. From the elemental analysis, the nitrogen content of all the tars was significantly enhanced, among which the nitrogen content of the tars after co-pyrolysis with melamine was enhanced by 5.21%, and the nitrogen content of coke was enhanced by 10.87%. According to the GC/MS results, it was found that the nitrogen compounds in the tar after full pyrolysis were richer and more abundant than those in Py-GC/MS. For the free radical reaction, the reaction process is extremely rapid, and the 15N substitution product after isotope labeling was successfully captured by adding 15NH4Cl for isotope labeling, which can be more intuitively and accurately illustrated from the m/z change. Among them, 26 nitrogen-containing compounds were screened out, which accounted for 66.28% of the content, and they were categorized. It was found that the five-membered nitrogen heterocycles were the most abundant, accounting for 34.88%. In addition, five other nitrogen-containing compounds containing different functional groups and the tar from the co-pyrolysis of tar-rich coal were also analyzed by GC/MS, among which the tar from melamine had the highest content of nitrogen-containing compounds, with 70.48%. Finally, the functional groups of nitrogen-containing compounds were further analyzed by XPS and FTIR, and the results were consistent with those of GC/MS analysis. In this paper, nitrogen-rich tar was prepared by co-pyrolysis of tar-rich coal and nitrogen compounds. This achievement provides a valuable reference for the high-value utilization of coal tar. Full article
Show Figures

Figure 1

26 pages, 2781 KiB  
Article
Pyrolysis Mechanism of Victorian Brown Coal Under Microwave and Conventional Conditions for Hydrogen-Rich Gas Production
by Quan Sun, Salman Khoshk Rish, Jianglong Yu and Arash Tahmasebi
Energies 2025, 18(11), 2863; https://doi.org/10.3390/en18112863 - 30 May 2025
Viewed by 458
Abstract
Fast microwave pyrolysis technology can effectively convert brown coal into hydrogen-rich syngas. However, the unique pyrolysis behaviour of brown coal under microwave conditions is not fully understood in comparison with conventional pyrolysis. This study used Victorian brown coal as a raw material to [...] Read more.
Fast microwave pyrolysis technology can effectively convert brown coal into hydrogen-rich syngas. However, the unique pyrolysis behaviour of brown coal under microwave conditions is not fully understood in comparison with conventional pyrolysis. This study used Victorian brown coal as a raw material to conduct pyrolysis experiments under conventional and microwave heating methods. The results demonstrate that the microwave-assisted pyrolysis of Victorian brown coal can selectively crack polar functional groups, enhancing H2 and CO production via radical-driven secondary reactions and gasification, while conventional heating favours the formation of tar containing phenols and fewer aromatic compounds. The result is a high-quality syngas (75.03 vol.%) with a hydrogen yield of 10.28 (mmol Gas/g Coal (daf)) at 700 °C under microwave heating, offering a scalable route for valorising low-rank coals. Full article
(This article belongs to the Special Issue Clean Utilization and Conversion Technologies of Coal)
Show Figures

Figure 1

21 pages, 5212 KiB  
Article
Simulation Study on Stability of Air-Supported Membrane Coal Storage Bin Under Fire Scenario
by Yiwen Xia, Yuanda Cheng and Na Li
Buildings 2025, 15(10), 1734; https://doi.org/10.3390/buildings15101734 - 20 May 2025
Viewed by 329
Abstract
Air-supported membrane structures (ASMS) are widely applied in warehouses and large-span venues due to their lightweight and cost-effective nature. However, as a storage building with a lot of combustible material and significant fire hazards, it imposes stringent demands on structural stability and safety. [...] Read more.
Air-supported membrane structures (ASMS) are widely applied in warehouses and large-span venues due to their lightweight and cost-effective nature. However, as a storage building with a lot of combustible material and significant fire hazards, it imposes stringent demands on structural stability and safety. This paper investigates the impact of fire-induced effects on stability using Fire Dynamics Simulator (FDS) software, with a case study focusing on an ASMS coal storage bin. The study comprises two key components: (1) internal pressure stability and (2) thermal stability. Results show that ambient temperature, leakage area and air supply govern non-fire pressure stability, with a 10 K increase reducing pressure by 9.4 Pa. During fires, HRR, location and growth type effect the stability of ASMS buildings. Thermal stability analysis reveals 6 m horizontal spacing can prevent coal ignition (<12.5 kW/m2, <100 °C), while 10 m vertical spacing can avoid PVC membrane pyrolysis. These findings provide critical design guidelines for ASMS fire protection, highlighting the necessity of asymmetric safety margins due to vertical–horizontal radiation anisotropy. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 4390 KiB  
Article
Deformation and Pore Structure Characteristics of Lignite Pyrolysis with Temperature Under Triaxial Stress
by Feng Zhang, Shiwei Niu, Jiawei He, Kai Zhang and Zhongcheng Qin
Processes 2025, 13(5), 1444; https://doi.org/10.3390/pr13051444 - 9 May 2025
Viewed by 421
Abstract
As people pay increasing attention to the clean and efficient mining and utilization of coal resources, efforts to improve the utilization rate of coal, modify coal resources, and carry out coal gasification have become more and more important. The deformation characteristics of lignite, [...] Read more.
As people pay increasing attention to the clean and efficient mining and utilization of coal resources, efforts to improve the utilization rate of coal, modify coal resources, and carry out coal gasification have become more and more important. The deformation characteristics of lignite, the most appropriate coal type for underground coal gasification, are intricately linked to its mechanical properties, permeability characteristics, and mining efficiency throughout the extraction process. The deformation and pore structure characteristics of lignite from room temperature to 650 °C have been studied through high-temperature triaxial penetration testing systems, NMR, and X-CT. As the temperature increases, the porosity of lignite rises, its mechanical strength decreases, and significant deformation occurs, and high temperatures promote pore development in lignite. The axial deformation of lignite pyrolysis is divided into three stages: the dehydration and degassing at room temperature to ~200 °C, the slow deformation between 200 °C and 300 °C, and the pyrolysis deformation from 300 °C to 650 °C. Significant deformation occurs during both the dehydration degassing and pyrolysis deformation stages. Between 250 °C and 650 °C, a large number of highly interconnected pore networks form. Investigating the deformation and pore structure characteristics of lignite is crucial for elucidating its mechanical and permeability features under varying temperature and pressure conditions. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Graphical abstract

16 pages, 6936 KiB  
Article
A Green Synthesis of Controllable Shear-Assisted Catalytically Graphitized Biomass-Derived Carbon and Its Multi-Scale Reinforcement Mechanism in Natural Rubber
by Xingxin Xu, Chengjun Li, Xu Lin, Defa Hou, Yunwu Zheng, Fulin Yang, Hao Sun and Can Liu
Molecules 2025, 30(9), 1936; https://doi.org/10.3390/molecules30091936 - 27 Apr 2025
Viewed by 457
Abstract
Carbon black (CB) serves as the most crucial reinforcing filler in natural rubber (NR) applications. However, conventional CB production relies on petroleum or coal resources, raising concerns about non-renewability and unsustainable resource consumption. Although biomass-derived carbon materials have been explored as alternatives for [...] Read more.
Carbon black (CB) serves as the most crucial reinforcing filler in natural rubber (NR) applications. However, conventional CB production relies on petroleum or coal resources, raising concerns about non-renewability and unsustainable resource consumption. Although biomass-derived carbon materials have been explored as alternatives for natural rubber reinforcement, their practical application remains constrained by inherent limitations such as large particle size and low graphitic structure, which compromise reinforcement efficiency. This study presents a novel walnut shell biochar (WSB) for natural rubber enhancement. The biochar was prepared via conventional pyrolysis and subsequently subjected to an environmentally friendly physical ball-milling process. This treatment effectively increased graphitized domains while enriching surface functional groups. Systematic investigations were conducted on the effects of ball-milling duration and biochar loading on rubber reinforcement performance. Results demonstrate that the biochar-reinforced vulcanizates achieved a 22% improvement in tensile strength compared to unfilled rubber. Notably, at 10 phr loading, the tensile strength of biochar-filled vulcanizates reached 98% of that achieved by CB(N330)-filled counterparts. The study further revealed that biochar incorporation effectively reduced hysteresis loss and enhanced elastic recovery in rubber composites. This work proposes a facile method to develop sustainable biochar-based reinforcing agents with significant potential for natural rubber applications. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Figure 1

26 pages, 4247 KiB  
Review
Precious Metals Catalyze the Saturated Hydrogenation of Polycyclic Aromatic Hydrocarbons in Coal Tar
by Xiaoyu Qiao, Xinru Wang, Changrui Tan, Liang Ma, Bofeng Zhang, Jingpei Cao and Hongyan Wang
Catalysts 2025, 15(4), 397; https://doi.org/10.3390/catal15040397 - 19 Apr 2025
Viewed by 848
Abstract
As a significant by-product of coal pyrolysis processes, coal tar is rich in polycyclic aromatic hydrocarbons (PAHs), garnering considerable attention for their potential conversion into high-value products through saturation hydrogenation. This paper presents a comprehensive review of recent advancements in two key areas: [...] Read more.
As a significant by-product of coal pyrolysis processes, coal tar is rich in polycyclic aromatic hydrocarbons (PAHs), garnering considerable attention for their potential conversion into high-value products through saturation hydrogenation. This paper presents a comprehensive review of recent advancements in two key areas: progress in high-activity saturated hydrogenation of PAHs catalyzed by precious metals and the regulation of cis–trans isomeric configuration of their hydrogenation products. Furthermore, the investigation addresses two critical challenges involved in the field: the susceptibility of precious metal catalysts to sulfur poisoning during the coal tar’s hydrogenation and the difficulty in controlling the stereo-isomerization of hydrogenation products. This review will advance fundamental understanding of PAHs hydrogenation mechanisms and provide critical technical guidance in coal tar utilization, supporting the sustainable development of clean energy technologies and high-value chemical production from coal by-products. Full article
Show Figures

Figure 1

20 pages, 4542 KiB  
Article
Study on the Response of Chemical Kinetics of Fragmented Coal Under Dynamic Load
by Liang Wang, Wushuang Wen, Wenjie Xu, Kai Zhu and Xiaoqing Guan
Sustainability 2025, 17(8), 3677; https://doi.org/10.3390/su17083677 - 18 Apr 2025
Viewed by 383
Abstract
As coal resources deplete and deep mining in high-stress environments becomes more challenging, ensuring safety and sustainability in coal production is a growing concern. This study investigates the dynamic of external load on the oxidation kinetics of coal in goaf, focusing on the [...] Read more.
As coal resources deplete and deep mining in high-stress environments becomes more challenging, ensuring safety and sustainability in coal production is a growing concern. This study investigates the dynamic of external load on the oxidation kinetics of coal in goaf, focusing on the resulting physical and chemical changes. Thermogravimetric (TG), differential thermogravimetric (DTG), and differential scanning calorimetry (DSC) tests were conducted on long-flame coal samples under varying hammer-drop heights. Impact-loaded coal shows a shorter reaction time, higher peak intensity, and lower apparent activation energy than untreated coal. These effects intensify with increasing drop height, resulting in a 13–40% reduction in apparent activation energy. A six-step reaction pathway for pyrolysis and oxidation was developed, and kinetics parameters were determined using genetic algorithms (GA). GA-based inverse modeling produced a comprehensive reaction model for coal oxidation under dynamic load. This work presents a detailed kinetic model for coal oxidation under impact, contributing to better understanding the challenges of safety and sustainability in deep coal mining. Full article
(This article belongs to the Special Issue Design for Sustainability in the Minerals Sector)
Show Figures

Figure 1

17 pages, 2532 KiB  
Article
Characterization of South African Woody and Non-Woody Invasive Alien Plant Species for Sustainable Bio-Oil Production
by Bongiwe Mtshali, Alaika Kassim, Sipho Sibanda and Tilahun Workneh
Energies 2025, 18(8), 1919; https://doi.org/10.3390/en18081919 - 9 Apr 2025
Cited by 1 | Viewed by 532
Abstract
Bio-oil energy use in agricultural systems provides sustainable solutions for powering machinery operations and heating and cooling environments in facilities. However, its potential in South Africa is constrained by the limited availability of energy substrate that does not compromise food production, land use, [...] Read more.
Bio-oil energy use in agricultural systems provides sustainable solutions for powering machinery operations and heating and cooling environments in facilities. However, its potential in South Africa is constrained by the limited availability of energy substrate that does not compromise food production, land use, and water resources. This study investigated the physical and chemical properties of six invasive alien plant species (IAPs), three woody species (Acacia mearnsii, Eucalyptus grandis, and Pinus patula), and three nonwoody species (Lantana camara, Chromolaena odorata, and Solanum mauritianum) to assess their suitability for bio-oil production. Key analyses included structural, elemental, proximate, atomic ratio, higher heating value (HHV), and thermogravimetric analysis (TGA) analyses. The results showed that woody IAPs had a significantly higher structural composition (p < 0.05), improving bio-oil yield. The bio-oil can be blended with diesel for agricultural use, while lignin-derived biochar serves as a soil amendment. Higher carbon and hydrogen contents enhanced HHV and combustion, while lower nitrogen and sulfur levels reduced emissions. Despite oxygen hindering pyrolysis, its bioactive properties support crop protection. Compared to South African coal, IAP-derived bio-oil shares similarities with peat coal and could be used for greenhouse heating. This study promotes energy efficiency in agriculture, reduces fossil fuel dependence, and supports environmental sustainability by repurposing IAPs. Additional studies should focus on lignin pretreatment and bio-oil upgrading to reduce oxygenated compounds. Full article
(This article belongs to the Special Issue Renewable Energy Integration into Agricultural and Food Engineering)
Show Figures

Figure 1

24 pages, 2685 KiB  
Article
Characteristics of Pyrolysis Products of Tar-Rich Coal Under Cryogenic Pretreatment with Liquid Nitrogen
by Tao Xu, Lingyun Chen, Jie Chen, Yurui Lei, Xinxin Wang, Xinyu Yang and Zhifu Yang
Processes 2025, 13(4), 1064; https://doi.org/10.3390/pr13041064 - 2 Apr 2025
Viewed by 623
Abstract
The conventional pyrolysis of tar-rich coals faces limitations in maximizing tar yield and optimizing tar composition, often resulting in inefficient resource utilization and elevated emissions of CO2. This study investigates a novel cryogenic pretreatment method using liquid nitrogen to enhance pyrolysis [...] Read more.
The conventional pyrolysis of tar-rich coals faces limitations in maximizing tar yield and optimizing tar composition, often resulting in inefficient resource utilization and elevated emissions of CO2. This study investigates a novel cryogenic pretreatment method using liquid nitrogen to enhance pyrolysis efficiency, aiming to improve tar yield and transform tar quality for sustainable coal utilization. Three tar-rich coals underwent cryogenic pretreatment at varying temperatures (0 to −90 °C) via liquid nitrogen, followed by pyrolysis. The product distribution (tar, gas) and quality were analyzed and compared to conventional pyrolysis and the Gray–King assay. The cryogenic pretreatment increased the tar yield by 25.8–44.6% compared to conventional methods, achieving a maximum yield of 7.8–16.0 wt% at −90 °C. The emissions of CO2 decreased by 12.7–27.4%, while CH4 and H2 proportions rose by 15.1–60.2%, enhancing gas energy content. The pretreatment reduced benzene compounds by 4.4–13.9 wt% and increased aromatic derivatives by 13.9–20.5 wt%, indicating a shift toward higher-value chemicals. The cryogenic approach demonstrates the dual benefits of boosting tar productivity while reducing carbon emissions, offering a promising path for cleaner and more efficient coal pyrolysis. Full article
Show Figures

Figure 1

21 pages, 4429 KiB  
Article
Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal
by Lukáš Jeníček, Jan Malaťák, Jan Velebil and Michal Neškudla
Materials 2025, 18(7), 1495; https://doi.org/10.3390/ma18071495 - 27 Mar 2025
Viewed by 702
Abstract
This study investigates the potential use of biochar derived from residues—such as spruce wood, spent coffee grounds, tea waste, and nutshells—as a sustainable coal substitute—to enhance the decarbonization of European energetic systems and decrease the dependence on fossil fuels. The biomasses were pyrolyzed [...] Read more.
This study investigates the potential use of biochar derived from residues—such as spruce wood, spent coffee grounds, tea waste, and nutshells—as a sustainable coal substitute—to enhance the decarbonization of European energetic systems and decrease the dependence on fossil fuels. The biomasses were pyrolyzed at 250–550 °C, analyzed for calorific value and composition, and evaluated for energy retention and mass loss. The results show significant energy density improvements, with optimal temperatures varying by material (e.g., spruce wood reached 31.56 MJ·kg−1 at 550 °C, retaining 21.84% of its mass; spent coffee grounds peaked at 31.26 MJ·kg−1 at 350 °C, retaining 37.53%). Economic analysis confirmed pyrolyzed biomass as a cost-effective alternative to coal, especially considering emission allowance costs. Integrating biomass pyrolysis into regional energy systems supports decarbonization, reduces emissions, and advances us towards a circular economy. Full article
(This article belongs to the Special Issue Sustainable Materials for Engineering Applications)
Show Figures

Graphical abstract

Back to TopTop