Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proximate and Ultimate Analysis
2.2. Energy Residual
2.3. Thermogravimetric Analysis
2.4. Economic Assessment of Material Pyrolysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Proximate and Ultimate Analysis
3.2. Calorific Value and Energy Residual of the Samples
3.3. Calorific Value Density and Weight Loss Comparison
3.4. Economic Assessment of Material Pyrolysis
3.5. Van Krevelen Diagram
3.6. Thermogravimetric Curves
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Environment Agency Closing the Loop—An EU Action Plan for the Circular Economy COM/2015/0614 Final—European Environment Agency. Available online: https://www.eea.europa.eu/policy-documents/com-2015-0614-final (accessed on 28 August 2022).
- Okedu, K.; Al Senaidi, A.S.; Al Hajri, I.; Al Rashdi, I.; Salmani, W. Al Real Time Dynamic Analysis of Solar PV Integration for Energy Optimization. Int. J. Smart Grid 2020, 4, 68–79. [Google Scholar] [CrossRef]
- Lubwama, M.; Yiga, V.A. Development of Groundnut Shells and Bagasse Briquettes as Sustainable Fuel Sources for Domestic Cooking Applications in Uganda. Renew Energy 2017, 111, 532–542. [Google Scholar] [CrossRef]
- Lubwama, M.; Yiga, V.A. Characteristics of Briquettes Developed from Rice and Coffee Husks for Domestic Cooking Applications in Uganda. Renew Energy 2018, 118, 43–55. [Google Scholar] [CrossRef]
- Ujjinappa, S.; Sreepathi, L.K. Production and Quality Testing of Fuel Briquettes Made from Pongamia and Tamarind Shell. Sadhana—Acad. Proc. Eng. Sci. 2018, 43, 58. [Google Scholar] [CrossRef]
- IEA Technology Roadmap—Delivering Sustainable Bioenergy—Analysis—IEA. Available online: https://www.iea.org/reports/technology-roadmap-delivering-sustainable-bioenergy (accessed on 1 September 2022).
- Garrido, M.A.; Conesa, J.A.; Garcia, M.D. Characterization and Production of Fuel Briquettes Made from Biomass and Plastic Wastes. Energies 2017, 10, 850. [Google Scholar] [CrossRef]
- Variny, M.; Varga, A.; Rimár, M.; Janošovský, J.; Kizek, J.; Lukáč, L.; Jablonský, G.; Mierka, O. Advances in Biomass Co-Combustion with Fossil Fuels in the European Context: A Review. Processes 2021, 9, 100. [Google Scholar] [CrossRef]
- Vasileiadou, A. Reduction of CO2 Emissions Through the Co-Combustion of Lignite with Biomass Residues: Renewable and Non-Renewable CO2 per Produced Megajoule and Fuel Characterization. Therm. Sci. Eng. Prog. 2024, 50, 102566. [Google Scholar] [CrossRef]
- Purohit, P.; Chaturvedi, V. Biomass Pellets for Power Generation in India: A Techno-Economic Evaluation. Environ. Sci. Pollut. Res. 2018, 25, 29614–29632. [Google Scholar] [CrossRef]
- Falup, O.; Mircea, I.; Ivan, R.; Ionel, I. Novel Approach for the Current State of Greenhouse Gases Emissions. Rom. Case Study. J. Environ. Prot. Ecol. 2014, 15, 807–818. [Google Scholar]
- Lee, M.; Zhang, N. Technical Efficiency, Shadow Price of Carbon Dioxide Emissions, and Substitutability for Energy in the Chinese Manufacturing Industries. Energy Econ 2012, 34, 1492–1497. [Google Scholar] [CrossRef]
- Demirbas, A. Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues. Prog Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review. Renew. Sustain. Energy Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Gürdil, G.A.K.; Selvi, K.C.; Malaták, J.; Pinar, Y. Biomass Utilization for Thermal Energy. AMA Agric. Mech. Asia Afr. Lat. Am. 2009, 20, 80–85. [Google Scholar]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Key Advances in Biochar Research from 2024—Biochar Today. Available online: https://biochartoday.com/2024/12/20/key-advances-in-biochar-research-from-2024/?utm_source=chatgpt.com (accessed on 16 January 2025).
- Rajput, V.; Saini, I.; Parmar, S.; Pundir, V.; Kumar, V.; Kumar, V.; Naik, B.; Rustagi, S. Biochar Production Methods and Their Transformative Potential for Environmental Remediation. Discov. Appl. Sci. 2024, 6, 408. [Google Scholar] [CrossRef]
- Wu, P.; Fu, Y.; Vancov, T.; Wang, H.; Wang, Y.; Chen, W. Analyzing the Trends and Hotspots of Biochar’s Applications in Agriculture, Environment, and Energy: A Bibliometrics Study for 2022 and 2023. Biochar 2024, 6, 78. [Google Scholar] [CrossRef]
- Šafařík, D.; Hlaváčková, P.; Michal, J. Potential of Forest Biomass Resources for Renewable Energy Production in the Czech Republic. Energies 2022, 15, 47. [Google Scholar] [CrossRef]
- Rečka, L.; Ščasný, M. Brown Coal and Nuclear Energy Deployment: Effects on Fuel-Mix, Carbon Targets, and External Costs in the Czech Republic up to 2050. Fuel 2018, 216, 494–502. [Google Scholar] [CrossRef]
- Červenka, J.; Bače, R.; Brůna, J.; Wild, J.; Svoboda, M.; Heurich, M. Mapping of Mountain Temperate Forest Recovery After Natural Disturbance: A Large Permanent Plot Established on Czech-German Border. Silva Gabreta 2019, 25, 492–510. [Google Scholar]
- Purwestri, R.C.; Hájek, M.; Hochmalová, M.; Palátová, P.; Huertas-Bernal, D.C.; Garciá-Jácome, S.P.; Jarský, V.; Kašpar, J.; Riedl, M.; Marušák, R. The Role of Bioeconomy in the Czech National Forest Strategy: A Comparison with Sweden. Int. For. Rev. 2022, 23, 31–41. [Google Scholar] [CrossRef]
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating Outbreak of Bark Beetles in the Czech Republic: Drivers, Impacts, and Management Implications. For. Ecol. Manag. 2021, 490, 119075. [Google Scholar] [CrossRef]
- Cheng, T.; Veselská, T.; Křížková, B.; Švec, K.; Havlíček, V.; Stadler, M.; Kolařík, M. Insight into the Genomes of Dominant Yeast Symbionts of European Spruce Bark Beetle, Ips typographus. Front. Microbiol. 2023, 14, 1108975. [Google Scholar] [CrossRef]
- Blake, M.; Straw, N.; Kendall, T.; Whitham, T.; Manea, I.A.; Inward, D.; Jones, B.; Hazlitt, N.; Ockenden, A.; Deol, A.; et al. Recent Outbreaks of the Spruce Bark Beetle Ips typographus in the UK: Discovery, Management, and Implications. Trees For. People 2024, 16, 100508. [Google Scholar] [CrossRef]
- Netherer, S.; Schebeck, M.; Morgante, G.; Rentsch, V.; Kirisits, T. European Spruce Bark Beetle, Ips typographus (L.) Males Are Attracted to Bark Cores of Drought-Stressed Norway Spruce Trees with Impaired Defenses in Petri Dish Choice Experiments. Forests 2022, 13, 537. [Google Scholar] [CrossRef]
- Maitah, M.; Toth, D.; Malec, K.; Appiah-Kubi, S.N.K.; Maitah, K.; Pańka, D.; Prus, P.; Janků, J.; Romanowski, R. The Impacts of Calamity Logging on the Sustainable Development of Spruce Fuel Biomass Prices and Spruce Pulp Prices in the Czech Republic. Forests 2022, 13, 97. [Google Scholar] [CrossRef]
- Eurostat Forests, Forestry and Logging—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Forests,_forestry_and_logging#Forests_in_the_EU (accessed on 30 September 2022).
- Nosek, R.; Tun, M.M.; Juchelkova, D. Energy Utilization of Spent Coffee Grounds in the Form of Pellets. Energies 2020, 13, 1235. [Google Scholar] [CrossRef]
- Chen, Y.C.; Jhou, S.Y. Integrating Spent Coffee Grounds and Silver Skin as Biofuels Using Torrefaction. Renew Energy 2020, 148, 275–283. [Google Scholar] [CrossRef]
- Cardarelli, A.; Pinzi, S.; Barbanera, M. Effect of Torrefaction Temperature on Spent Coffee Grounds Thermal Behaviour and Kinetics. Renew Energy 2022, 185, 704–716. [Google Scholar] [CrossRef]
- Malaťák, J.; Passian, L. Heat-Emission Analysis of Small Combustion Equipments for Biomass. Res. Agric. Eng. 2011, 57, 37–50. [Google Scholar] [CrossRef]
- Malaták, J.; Velebil, J.; Bradna, J.; Gendek, A.; Tamelová, B. Evaluation of Co and NoxEmissions in Real-Life Operating Conditions of Herbaceous Biomass Briquettes Combustion. Acta Technol. Agric. 2020, 23, 53–59. [Google Scholar] [CrossRef]
- Tamelová, B.; Malaťák, J.; Velebil, J.; Gendek, A.; Aniszewska, M. Impact of Torrefaction on Fuel Properties of Aspiration Cleaning Residues. Materials 2022, 15, 6949. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, T.L.; Sikirica, N.; Mondini, C.; López, G.; Kuikman, P.J.; Holden, N.M. Biochar, Compost and Biochar-Compost Blend as Options to Recover Nutrients and Sequester Carbon. J. Environ. Manag. 2018, 218, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Sang, F.; Yin, Z.; Wang, W.; Almatrafi, E.; Wang, Y.; Zhao, B.; Gong, J.; Zhou, C.; Zhang, C.; Zeng, G.; et al. Degradation of Ciprofloxacin Using Heterogeneous Fenton Catalysts Derived from Natural Pyrite and Rice Straw Biochar. J. Clean. Prod. 2022, 378, 134459. [Google Scholar] [CrossRef]
- Onsree, T.; Tippayawong, N.; Phithakkitnukoon, S.; Lauterbach, J. Interpretable Machine-Learning Model with a Collaborative Game Approach to Predict Yields and Higher Heating Value of Torrefied Biomass. Energy 2022, 249, 123676. [Google Scholar] [CrossRef]
- Ni, Z.; Bi, H.; Jiang, C.; Wang, C.; Tian, J.; Zhou, W.; Sun, H.; Lin, Q. Investigation of the Co-Pyrolysis of Coal Slime and Coffee Industry Residue Based on Machine Learning Methods and TG-FTIR: Synergistic Effect, Kinetics and Thermodynamic. Fuel 2021, 305, 121527. [Google Scholar] [CrossRef]
- Wang, X.; Deng, S.; Tan, H.; Adeosun, A.; Vujanović, M.; Yang, F.; Duić, N. Synergetic Effect of Sewage Sludge and Biomass Co-Pyrolysis: A Combined Study in Thermogravimetric Analyzer and a Fixed Bed Reactor. Energy Convers Manag. 2016, 118, 399–405. [Google Scholar] [CrossRef]
- Wang, L.; Xie, L.; Ma, H.; Zhou, J. Co-Pyrolysis of Pine Sawdust with Nickel Formate for Understanding Interaction Mechanisms and Enhancing Resistance Toward Biochar Deposition. J. Mater. Res. Technol. 2022, 18, 3751–3763. [Google Scholar] [CrossRef]
- Gendek, A.; Aniszewska, M.; Owoc, D.; Tamelová, B.; Malaťák, J.; Velebil, J.; Krilek, J. Physico-Mechanical and Energy Properties of Pellets Made from Ground Walnut Shells, Coniferous Tree Cones and Their Mixtures. Renew Energy 2023, 211, 248–258. [Google Scholar] [CrossRef]
- Singh, E.; Mishra, R.; Kumar, A.; Shukla, S.K.; Lo, S.L.; Kumar, S. Circular Economy-Based Environmental Management Using Biochar: Driving Towards Sustainability. Process Saf. Environ. Prot. 2022, 163, 585–600. [Google Scholar] [CrossRef]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Vuppaladadiyam, S.S.V.; Sahoo, A.; Murugavelh, S.; Anthony, E.; Bhashkar, T.; Zheng, Y.; Zhao, M.; Duan, H.; Zhao, Y.; et al. Bio-Oil and Biochar from the Pyrolytic Conversion of Biomass: A Current and Future Perspective on the Trade-Off Between Economic, Environmental, and Technical Indicators. Sci. Total Environ. 2023, 857, 159155. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Neogi, S.; Dutta, T.; Powel, M.A.; Banik, P. The Impact of Biochar on Soil Carbon Sequestration: Meta-Analytical Approach to Evaluating Environmental and Economic Advantages. J. Environ. Manag. 2019, 250, 109466. [Google Scholar] [CrossRef]
- Lisowski, A.; Matkowski, P.; Dąbrowska, M.; Piątek, M.; Świętochowski, A.; Klonowski, J.; Mieszkalski, L.; Reshetiuk, V. Particle Size Distribution and Physicochemical Properties of Pellets Made of Straw, Hay, and Their Blends. Waste Biomass Valorization 2020, 11, 63–75. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of Process Parameters on Production of Biochar from Biomass Waste Through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar]
- Wilk, M.; Magdziarz, A.; Kalemba, I.; Gara, P. Carbonisation of Wood Residue into Charcoal During Low Temperature Process. Renew Energy 2016, 85, 507–513. [Google Scholar] [CrossRef]
- Aniszewska, M.; Gendek, A.; Hýsek, Š.; Malat’ák, J.; Velebil, J.; Tamelová, B. Changes in the Composition and Surface Properties of Torrefied Conifer Cones. Materials 2020, 13, 5660. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 Amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652; European Parliament: Bruxelles, Belgium, 2023.
- Jeníček, L.; Tunklová, B.; Malat’ák, J.; Neškudla, M.; Velebil, J. Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. Materials 2022, 15, 6722. [Google Scholar] [CrossRef]
- Jenicek, L.; Neskudla, M.; Malatak, J.; Velebil, J.; Passian, L. Spruce and Barley Elemental and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technol. Agric. 2021, 24, 166–172. [Google Scholar] [CrossRef]
- Tunklová, B.; Jeníček, L.; Malaťák, J.; Neškudla, M.; Velebil, J.; Hnilička, F. Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications. Materials 2022, 15, 8709. [Google Scholar] [CrossRef]
- Jeníček, L.; Tunklová, B.; Malaťák, J.; Velebil, J.; Malaťáková, J.; Neškudla, M.; Hnilička, F. The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment. Materials 2023, 16, 2074. [Google Scholar] [CrossRef]
- Chen, W.H.; Kuo, P.C. Torrefaction and Co-Torrefaction Characterization of Hemicellulose, Cellulose and Lignin as Well as Torrefaction of Some Basic Constituents in Biomass. Energy 2011, 36, 803–811. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, B.J.; Lin, Y.Y.; Chu, Y.S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.S.; Ho, S.H.; Culaba, A.B.; et al. Progress in Biomass Torrefaction: Principles, Applications and Challenges. Prog. Energy Combust. Sci. 2021, 82. [Google Scholar] [CrossRef]
- Lesy ČR O Dřevě|Lesy České Republiky, s. p. Available online: https://lesycr.cz/drevo/ (accessed on 30 September 2022).
- International Coffee Organization—What’s New. Available online: https://www.ico.org/ (accessed on 26 August 2022).
- Rajesh Banu, J.; Yukesh Kannah, R.; Dinesh Kumar, M.; Preethi; Kavitha, S.; Gunasekaran, M.; Zhen, G.; Awasthi, M.K.; Kumar, G. Spent Coffee Grounds Based Circular Bioeconomy: Technoeconomic and Commercialization Aspects. Renew. Sustain. Energy Rev. 2021, 152, 111721. [Google Scholar] [CrossRef]
- ICO International Coffee Organization—Trade Statistics Tables. Available online: https://www.icocoffee.org/documents/cy2024-25/coffee-development-report-2022-23.pdf (accessed on 26 August 2022).
- ČSÚ Spotřeba Potravin—2020|ČSÚ. Available online: https://www.czso.cz/csu/czso/spotreba-potravin (accessed on 1 October 2022).
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Tokimoto, T.; Kawasaki, N.; Nakamura, T.; Akutagawa, J.; Tanada, S. Removal of Lead Ions in Drinking Water by Coffee Grounds as Vegetable Biomass. J. Colloid. Interface Sci. 2005, 281, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef]
- Vivek, V. Global Market Report: Tea|International Institute for Sustainable Development. Available online: https://www.iisd.org/publications/report/global-market-report-tea (accessed on 1 October 2022).
- Doublet, G.; Jungbluth, N. Life Cycle Assessement of Drinking Darjeeling Tea. In Conventional and Organic Darjeeling Tea; ESU-services Ltd.: Uster, Switzerland, 2010. [Google Scholar]
- Cabrera, C.; Artacho, R.; Giménez, R. Beneficial Effects of Green Tea—A Review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef]
- Akbayrak, S.; Özçifçi, Z.; Tabak, A. Activated Carbon Derived from Tea Waste: A Promising Supporting Material for Metal Nanoparticles Used as Catalysts in Hydrolysis of Ammonia Borane. Biomass Bioenergy 2020, 138, 105589. [Google Scholar] [CrossRef]
- Taşar, Ş. Thermal Conversion Behavior of Cellulose and Hemicellulose Fractions Isolated from Tea Leaf Brewing Waste: Kinetic and Thermodynamic Evaluation. Biomass Convers Biorefin. 2022, 12, 2935–2947. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.; Zhao, J.; Wang, Y.H.; Tang, Q.; Khan, I.A. Yellow Tea (Camellia Sinensis L.), a Promising Chinese Tea: Processing, Chemical Constituents and Health Benefits. Food Res. Int. 2018, 107, 567–577. [Google Scholar] [CrossRef]
- Mizuno, S.; Ida, T.; Fuchihata, M.; Namba, K. Effect of Specimen Size on Ultimate Compressive Strength of Bio-Coke Produced from Green Tea Grounds. Mech. Eng. J. 2016, 3, 15–00441. [Google Scholar] [CrossRef]
- Pua, F.L.; Subari, M.S.; Ean, L.W.; Krishnan, S.G. Characterization of Biomass Fuel Pellets Made from Malaysia Tea Waste and Oil Palm Empty Fruit Bunch. Mater. Today Proc. 2020, 31, 187–190. [Google Scholar] [CrossRef]
- Intagun, W.; Kanoksilapatham, W.; Maden, A.; Nobaew, B. Effect of Natural Additive on Pellets Physical Properties and Energy Cost. In Proceedings of the 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering, REPE 2019, Toronto, ON, Canada, 2–4 November 2019; pp. 130–134. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Y. Physical Properties of Solid Fuel Briquettes Made from Caragana korshinskii Kom. Powder Technol. 2014, 256, 293–299. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.C.; Lei, H.; Wang, H.L.; Ning, T.T.; Hao, W.; Hu, X.D. Effects of Addition of Various Ingredients During Pelletizing on Physical Characteristics of Green Tea Residue Pellets. Appl. Eng. Agric. 2014, 30, 49–53. [Google Scholar] [CrossRef]
- McCaffrey, Z.; Torres, L.; Sen Chiou, B.; Ferreira, S.R.; Silva, L.E.; Wood, D.F.; Orts, W.J. Torrefaction of Almond and Walnut Byproducts. Front. Energy Res. 2021, 9, 91. [Google Scholar] [CrossRef]
- Almond Board of California Crop Reports|Almond Almanac Report. Available online: https://www.almonds.com/tools-and-resources/crop-reports/almond-almanac (accessed on 1 September 2022).
- 2021 California Agricultural Statistics Review. Available Online|California Avocado Commission. Available online: https://www.californiaavocadogrowers.com/articles/2021-california-agricultural-statistics-review-available-online (accessed on 1 September 2022).
- Espina, R.U.; Barroca, R.B.; Abundo, M.L.S. Proximate Analysis of the Torrefied Coconut Shells. Int. J. Renew. Energy Res. IJRER 2022, 12, 489–494. [Google Scholar] [CrossRef]
- Silva, M.P.; Nieva Lobos, M.L.; Piloni, R.V.; Dusso, D.; González Quijón, M.E.; Scopel, A.L.; Moyano, E.L. Pyrolytic Biochars from Sunflower Seed Shells, Peanut Shells and Spirulina Algae: Their Potential as Soil Amendment and Natural Growth Regulators. SN Appl. Sci. 2020, 2, 1926. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.K.; Yang, J.E.; Ok, Y.S. Effects of Pyrolysis Temperature on Soybean Stover-and Peanut Shell-Derived Biochar Properties and TCE Adsorption in Water. Bioresour. Technol. 2012, 118, 36–54. [Google Scholar] [CrossRef]
- Apaydin-Varol, E.; Pütün, E.; Pütün, A.E. Slow Pyrolysis of Pistachio Shell. Fuel 2007, 86, 1892–1899. [Google Scholar] [CrossRef]
- Yuan, H.R.; Liu, R.H. Study on Pyrolysis Kinetics of Walnut Shell. J. Therm. Anal. Calorim. 2007, 89, 983–986. [Google Scholar] [CrossRef]
- Açıkalın, K. Thermogravimetric Analysis of Walnut Shell as Pyrolysis Feedstock. J. Therm. Anal. Calorim. 2011, 105, 145–150. [Google Scholar] [CrossRef]
- Wang, Q.; Sarkar, J. Pyrolysis Behaviors of Waste Coconut Shell and Husk Biomasses. Int. J. Energy Prod. Manag. 2018, 3, 34–43. [Google Scholar] [CrossRef]
- Putri, R.W.; Rahmatullah; Haryati, S.; Santoso, B.; Hadi, A.A. The Residence Time and Slow Pyrolysis Temperature Effect on Chemical Composition Pyrolysis Gas Product of Durian (Durio zibethinus Murr) Skin. Chem. Eng. Trans. 2022, 97, 247–252. [Google Scholar] [CrossRef]
- Trubetskaya, A.; Grams, J.; Leahy, J.J.; Johnson, R.; Gallagher, P.; Monaghan, R.F.D.; Kwapinska, M. The Effect of Particle Size, Temperature and Residence Time on the Yields and Reactivity of Olive Stones from Torrefaction. Renew Energy 2020, 160, 998–1011. [Google Scholar] [CrossRef]
- ISO 18125:2017; Solid Biofuels—Determination of Calorific Value. BSI: London, UK, 2017. Available online: https://www.iso.org/standard/61517.html (accessed on 16 January 2025).
- ISO 18122:2022; Solid Biofuels—Determination of Ash Content. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/83190.html (accessed on 16 January 2025).
- ISO 18134-2:2024; Solid Biofuels—Determination of Moisture Content—Part 2: Simplified Method. ISO: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/86024.html (accessed on 16 January 2025).
- Recent Developments in Biomass Pelletization—A Review: BioResources. Available online: https://bioresources.cnr.ncsu.edu/resources/recent-developments-in-biomass-pelletization-a-review/ (accessed on 8 June 2024).
- Malaťák, J.; Jankovský, M.; Malaťáková, J.; Velebil, J.; Gendek, A.; Aniszewska, M. Substituting Solid Fossil Fuels with Torrefied Timber Products. Materials 2023, 16, 7569. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, F.; Pis, J.J. Influence of Torrefaction on the Grindability and Reactivity of Woody Biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef]
- Fermoso, J.; Mašek, O. Thermochemical Decomposition of Coffee Ground Residues by TG-MS: A Kinetic Study. J. Anal. Appl. Pyrolysis. 2018, 130, 249–255. [Google Scholar] [CrossRef]
- Mašek, O.; Brownsort, P.; Cross, A.; Sohi, S. Influence of Production Conditions on the Yield and Environmental Stability of Biochar. Fuel 2013, 103, 151–155. [Google Scholar] [CrossRef]
- Mayson, S.; Williams, I.D. Applying a Circular Economy Approach to Valorize Spent Coffee Grounds. Resour. Conserv. Recycl. 2021, 172, 105659. [Google Scholar] [CrossRef]
- Silva, M.A.; Nebra, S.A.; Machado Silva, M.J.; Sanchez, C.G. The Use of Biomass Residues in the Brazilian Soluble Coffee Industry. Biomass Bioenergy 1998, 14, 457–467. [Google Scholar] [CrossRef]
- Colantoni, A.; Paris, E.; Bianchini, L.; Ferri, S.; Marcantonio, V.; Carnevale, M.; Palma, A.; Civitarese, V.; Gallucci, F. Spent Coffee Ground Characterization, Pelletization Test and Emissions Assessment in the Combustion Process. Sci. Rep. 2021, 11, 5119. [Google Scholar] [CrossRef]
- Sermyagina, E.; Saari, J.; Kaikko, J.; Vakkilainen, E. Integration of Torrefaction and CHP Plant: Operational and Economic Analysis. Appl. Energy 2016, 183, 88–99. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Gendek, A.; Piętka, J.; Aniszewska, M.; Malaťák, J.; Velebil, J.; Tamelová, B.; Krilek, J.; Moskalik, T. Energy Value of Silver Fir (Abies alba) and Norway Spruce (Picea abies) Wood Depending on the Degree of Its Decomposition by Selected Fungal Species. Renew Energy 2023, 215, 118948. [Google Scholar] [CrossRef]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of Spent Coffee Grounds: A Review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar]
- McNutt, J.; He, Q. (Sophia) Spent Coffee Grounds: A Review on Current Utilization. J. Ind. Eng. Chem. 2019, 71, 78–88. [Google Scholar]
- Nepal, R.; Kim, H.J.; Poudel, J.; Oh, S.C. A Study on Torrefaction of Spent Coffee Ground to Improve Its Fuel Properties. Fuel 2022, 318, 123643. [Google Scholar] [CrossRef]
- Bejenari, V.; Marcu, A.; Ipate, A.M.; Rusu, D.; Tudorachi, N.; Anghel, I.; Şofran, I.E.; Lisa, G. Physicochemical Characterization and Energy Recovery of Spent Coffee Grounds. J. Mater. Res. Technol. 2021, 15, 4437–4451. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioproc. Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Sermyagina, E.; Mendoza Martinez, C.L.; Nikku, M.; Vakkilainen, E. Spent Coffee Grounds and Tea Leaf Residues: Characterization, Evaluation of Thermal Reactivity and Recovery of High-Value Compounds. Biomass Bioenergy 2021, 150, 106141. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Z.; Cai, Z.; Fei, B.; Yu, Y.; Liu, X. Effects of Carbonization Conditions on Properties of Bamboo Pellets. Renew Energy 2013, 51, 1–6. [Google Scholar] [CrossRef]
- Skanderová, K.; Malaťák, J.; Bradna, J. Energy Use of Compost Pellets for Small Combustion Plants. Agron. Res. 2015, 13, 413–419. [Google Scholar]
- Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- van Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-Firing. In The Handbook of Biomass Combustion and Co-Firing; Routledge: London, UK, 2012; pp. 1–442. [Google Scholar] [CrossRef]
- Biomasa pro Výrobu Energie—Jan Malaťák, Petr Vaculík, Brožovaná Vazba, Český Jazyk|Knihy Na Martinus.Cz. Available online: https://www.martinus.cz/?uItem=73504 (accessed on 30 September 2022).
- Zhang, W.; Jiang, S.; Wang, K.; Wang, L.; Xu, Y.; Wu, Z.; Shao, H.; Wang, Y.; Miao, M. Thermogravimetric Dynamics and FTIR Analysis on Oxidation Properties of Low-Rank Coal at Low and Moderate Temperatures. Int. J. Coal Prep. Util. 2015, 35, 39–50. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yaman, S. Synergy in Devolatilization Characteristics of Lignite and Hazelnut Shell During Co-Pyrolysis. Fuel 2007, 86, 373–380. [Google Scholar] [CrossRef]
Carbon (wt. %) | Oxygen (wt. %) | Hydrogen (wt. %) | Nitrogen (wt. %) | Ash (wt. %) | Water (wt. %) | Gross Calorific Value (MJ·kg−1) | |
---|---|---|---|---|---|---|---|
Spruce wood | 47.01 ± 0.82 | 38.82 | 6.41 ± 0.14 | 0.23 ± 0.01 | 0.33 ± 0.01 | 7.19 ± 0.09 | 20.17 ± 0.20 |
Spruce wood 250 °C | 52.00 ± 0.62 | 37.79 | 5.98 ± 0.06 | 0.28 ± 0.01 | 0.56 ± 0.01 | 3.38 ± 0.12 | 20.41 ± 0.24 |
Spruce wood 300 °C | 57.24 ± 0.92 | 31.84 | 5.73 ± 0.07 | 0.33 ± 0.01 | 0.71 ± 0.01 | 4.14 ± 0.15 | 22.18 ± 0.16 |
Spruce wood 350 °C | 72.88 ± 0.61 | 16.93 | 4.59 ± 0.03 | 0.41 ± 0.01 | 0.92 ± 0.02 | 4.26 ± 0.05 | 28.42 ± 0.18 |
Spruce wood 450 °C | 79.00 ± 0.44 | 11.14 | 3.32 ± 0.09 | 0.46 ± 0.01 | 1.29 ± 0.07 | 4.78 ± 0.12 | 30.32 ± 0.17 |
Spruce wood 550 °C | 84.34 ± 0.74 | 5.03 | 2.6 ± 0.14 | 0.56 ± 0.01 | 1.63 ± 0.07 | 5.84 ± 0.05 | 32.27 ± 0.29 |
Spent coffee ground | 49.38 ± 0.82 | 31.24 | 7.18 ± 0.05 | 2.22 ± 0.03 | 1.63 ± 0.01 | 8.35 ± 0.11 | 21.51 ± 0.22 |
Spent coffee ground 250 °C | 59.27 ± 0.84 | 28.24 | 6.90 ± 0.04 | 2.68 ± 0.02 | 1.99 ± 0.06 | 0.92 ± 0.01 | 25.38 ± 0.23 |
Spent coffee ground 300 °C | 70.71 ± 0.67 | 14.49 | 6.88 ± 0.11 | 3.39 ± 0.02 | 2.96 ± 0.08 | 1.56 ± 0.02 | 30.63 ± 0.24 |
Spent coffee ground 350 °C | 76.35 ± 0.66 | 7.63 | 6.20 ± 0.06 | 3.99 ± 0.01 | 4.10 ± 0.10 | 1.73 ± 0.03 | 32.65 ± 0.28 |
Spent coffee ground 450 °C | 77.52 ± 0.84 | 5.13 | 3.83 ± 0.10 | 4.43 ± 0.04 | 6.38 ± 0.08 | 2.71 ± 0.11 | 30.78 ± 0.23 |
Spent coffee ground 550 °C | 76.32 ± 0.72 | 3.20 | 3.21 ± 0.04 | 4.11 ± 0.04 | 6.96 ± 0.09 | 6.20 ± 0.06 | 28.34 ± 0.15 |
Tea waste | 46.21 ± 0.63 | 34.83 | 5.99 ± 0.07 | 1.82 ± 0.03 | 4.10 ± 0.05 | 7.04 ± 0.11 | 18.5 ± 0.20 |
Tea waste 250 °C | 55.48 ± 0.45 | 30.64 | 5.45 ± 0.13 | 2.37 ± 0.01 | 5.31 ± 0.10 | 0.74 ± 0.01 | 21.37 ± 0.29 |
Tea waste 300 °C | 64.24 ± 0.44 | 19.31 | 5.04 ± 0.04 | 2.59 ± 0.03 | 7.01 ± 0.07 | 1.80 ± 0.05 | 24.59 ± 0.18 |
Tea waste 350 °C | 68.27 ± 0.53 | 13.38 | 4.43 ± 0.13 | 2.56 ± 0.03 | 8.74 ± 0.09 | 2.58 ± 0.12 | 27.22 ± 0.11 |
Tea waste 450 °C | 72.65 ± 0.68 | 7.63 | 3.32 ± 0.13 | 2.49 ± 0.03 | 11.12 ± 0.16 | 2.76 ± 0.08 | 24.80 ± 0.29 |
Tea waste 550 °C | 73.00 ± 0.80 | 3.93 | 2.76 ± 0.12 | 2.23 ± 0.01 | 11.75 ± 0.13 | 6.29 ± 0.14 | 25.22 ± 0.24 |
Walnut shell | 43.53 ± 0.63 | 39.24 | 6.23 ± 0.06 | 0.48 ± 0.01 | 2.48 ± 0.06 | 8.05 ± 0.10 | 18.51 ± 0.16 |
Walnut shell 250 °C | 55.90 ± 0.89 | 34.54 | 5.35 ± 0.11 | 0.52 ± 0.01 | 3.44 ± 0.05 | 0.25 ± 0.01 | 21.21 ± 0.26 |
Walnut shell 300 °C | 66.88 ± 0.87 | 22.31 | 5.23 ± 0.03 | 0.59 ± 0.01 | 4.54 ± 0.02 | 0.45 ± 0.01 | 26.24 ± 0.25 |
Walnut shell 350 °C | 74.60 ± 0.89 | 12.25 | 4.36 ± 0.09 | 0.69 ± 0.01 | 6.76 ± 0.03 | 1.35 ± 0.10 | 26.72 ± 0.19 |
Walnut shell 450 °C | 82.06 ± 0.49 | 4.14 | 3.52 ± 0.11 | 0.74 ± 0.01 | 8.09 ± 0.05 | 1.47 ± 0.15 | 29.13 ± 0.28 |
Walnut shell 550 °C | 83.24 ± 0.74 | 1.67 | 2.77 ± 0.11 | 0.82 ± 0.01 | 9.84 ± 0.03 | 1.66 ± 0.05 | 30.65 ± 0.28 |
Pistachio shell | 44.53 ± 0.73 | 40.89 | 6.48 ± 0.11 | 0.38 ± 0.01 | 1.00 ± 0.03 | 6.71 ± 0.13 | 17.82 ± 0.27 |
Pistachio shell 250 °C | 54.85 ± 0.45 | 37.10 | 5.86 ± 0.09 | 0.44 ± 0.01 | 1.46 ± 0.04 | 0.29 ± 0.01 | 21.39 ± 0.15 |
Pistachio shell 300 °C | 66.01 ± 0.82 | 25.19 | 5.30 ± 0.13 | 0.49 ± 0.01 | 2.24 ± 0.03 | 0.77 ± 0.01 | 25.99 ± 0.18 |
Pistachio shell 350 °C | 75.69 ± 0.93 | 14.94 | 4.42 ± 0.06 | 0.58 ± 0.01 | 2.74 ± 0.05 | 1.65 ± 0.08 | 28.43 ± 0.28 |
Pistachio shell 450 °C | 82.37 ± 0.45 | 7.53 | 3.57 ± 0.08 | 0.62 ± 0.01 | 4.26 ± 0.09 | 1.65 ± 0.06 | 29.99 ± 0.25 |
Pistachio shell 550 °C | 87.34 ± 0.80 | 2.72 | 2.83 ± 0.14 | 0.72 ± 0.01 | 4.66 ± 0.01 | 1.72 ± 0.04 | 31.34 ± 0.29 |
Peanut shell | 48.97 ± 0.92 | 34.96 | 6.42 ± 0.14 | 1.42 ± 0.03 | 1.75 ± 0.02 | 6.48 ± 0.06 | 20.05 ± 0.11 |
Peanut shell 250 °C | 56.43 ± 0.88 | 32.83 | 6.06 ± 0.05 | 1.56 ± 0.03 | 2.15 ± 0.02 | 0.97 ± 0.01 | 21.22 ± 0.24 |
Peanut shell 300 °C | 63.36 ± 0.66 | 24.77 | 5.76 ± 0.09 | 1.73 ± 0.03 | 2.96 ± 0.09 | 1.43 ± 0.03 | 23.09 ± 0.11 |
Peanut shell 350 °C | 72.33 ± 0.73 | 15.01 | 4.61 ± 0.15 | 1.94 ± 0.03 | 4.24 ± 0.06 | 1.87 ± 0.04 | 25.84 ± 0.23 |
Peanut shell 450 °C | 77.12 ± 0.60 | 9.36 | 3.45 ± 0.09 | 1.88 ± 0.02 | 5.93 ± 0.10 | 2.26 ± 0.11 | 27.17 ± 0.24 |
Peanut shell 550 °C | 81.70 ± 0.82 | 4.87 | 2.84 ± 0.10 | 1.96 ± 0.03 | 6.17 ± 0.01 | 2.46 ± 0.12 | 28.79 ± 0.27 |
0 °C | 250 °C | 300 °C | 350 °C | 450 °C | 550 °C | |
---|---|---|---|---|---|---|
Spruce wood | 18.6 | 19.02 | 20.83 | 27.31 | 29.48 | 31.56 |
Spent coffee ground | 19.74 | 23.85 | 29.09 | 31.26 | 29.88 | 27.49 |
Tea waste | 17.02 | 20.16 | 23.45 | 26.19 | 24.01 | 24.47 |
Walnut shell | 16.96 | 20.03 | 25.09 | 25.74 | 28.33 | 30.00 |
Pistachio shell | 16.24 | 20.11 | 24.81 | 27.43 | 29.17 | 30.68 |
Peanut shell | 18.48 | 19.87 | 21.80 | 24.78 | 26.36 | 28.11 |
0 °C | 250 °C | 300 °C | 350 °C | 450 °C | 550 °C | |
---|---|---|---|---|---|---|
Spruce wood | 18.600 | 18.746 | 20.501 | 26.927 | 28.987 | 30.958 |
Spent coffee ground | 19.740 | 23.576 | 28.761 | 30.877 | 29.387 | 26.888 |
Tea waste | 17.020 | 19.886 | 23.121 | 25.807 | 23.517 | 23.868 |
Walnut shell | 16.960 | 19.756 | 24.761 | 25.357 | 27.837 | 29.398 |
Pistachio shell | 16.240 | 19.836 | 24.481 | 27.047 | 28.677 | 30.078 |
Peanut shell | 18.480 | 19.596 | 21.471 | 24.397 | 25.867 | 27.508 |
0 °C | 250 °C | 300 °C | 350 °C | 450 °C | 550 °C | |
---|---|---|---|---|---|---|
Spruce wood | 100% | 83.49% | 74.90% | 39.56% | 27.59% | 21.84% |
Spent coffee ground | 100% | 79.31% | 52.63% | 37.53% | 22.87% | 20.05% |
Tea waste | 100% | 77.30% | 54.35% | 41.16% | 31.83% | 28.82% |
Walnut shell | 100% | 77.49% | 52.57% | 36.06% | 29.19% | 25.81% |
Pistachio shell | 100% | 72.35% | 45.70% | 31.14% | 24.53% | 21.98% |
Peanut shell | 100% | 83.53% | 65.04% | 41.19% | 31.40% | 27.96% |
0 °C | 250 °C | 300 °C | 350 °C | 450 °C | 550 °C | |
---|---|---|---|---|---|---|
Spruce wood | 18.600 | 15.651 | 15.355 | 10.653 | 7.998 | 6.762 |
Spent coffee ground | 19.740 | 18.697 | 15.136 | 11.587 | 6.720 | 5.392 |
Tea waste | 17.020 | 15.371 | 12.567 | 10.623 | 7.486 | 6.880 |
Walnut shell | 16.960 | 15.309 | 13.018 | 9.144 | 8.127 | 7.587 |
Pistachio shell | 16.240 | 14.352 | 11.189 | 8.422 | 7.035 | 6.612 |
Peanut shell | 18.480 | 16.369 | 13.965 | 10.049 | 8.123 | 7.691 |
0 °C | 250 °C | 300 °C | 350 °C | 450 °C | 550 °C | |
---|---|---|---|---|---|---|
Spruce wood | 18.492 | 15.561 | 15.275 | 10.610 | 7.969 | 6.738 |
Spent coffee ground | 19.632 | 18.612 | 15.079 | 11.547 | 6.696 | 5.371 |
Tea waste | 16.912 | 15.288 | 12.509 | 10.578 | 7.451 | 6.849 |
Walnut shell | 16.852 | 15.225 | 12.961 | 9.105 | 8.095 | 7.559 |
Pistachio shell | 16.132 | 14.274 | 11.140 | 8.388 | 7.009 | 6.589 |
Peanut shell | 18.372 | 16.279 | 13.895 | 10.005 | 8.089 | 7.661 |
0 °C | 250 °C | 300 °C | 350 °C | 450 °C | 550 °C | |
---|---|---|---|---|---|---|
Spruce wood | 20.71 | 24.61 | 25.07 | 36.10 | 48.06 | 56.84 |
Spent coffee ground | 36.67 | 38.69 | 47.75 | 62.36 | 107.53 | 134.06 |
Tea waste | 42.57 | 47.10 | 57.56 | 68.06 | 96.63 | 105.13 |
Walnut shell | 42.72 | 47.29 | 55.55 | 79.07 | 88.94 | 95.25 |
Pistachio shell | 44.63 | 50.44 | 64.63 | 85.84 | 102.73 | 109.28 |
Peanut shell | 39.19 | 44.23 | 51.82 | 71.97 | 89.01 | 93.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeníček, L.; Malaťák, J.; Velebil, J.; Neškudla, M. Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal. Materials 2025, 18, 1495. https://doi.org/10.3390/ma18071495
Jeníček L, Malaťák J, Velebil J, Neškudla M. Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal. Materials. 2025; 18(7):1495. https://doi.org/10.3390/ma18071495
Chicago/Turabian StyleJeníček, Lukáš, Jan Malaťák, Jan Velebil, and Michal Neškudla. 2025. "Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal" Materials 18, no. 7: 1495. https://doi.org/10.3390/ma18071495
APA StyleJeníček, L., Malaťák, J., Velebil, J., & Neškudla, M. (2025). Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal. Materials, 18(7), 1495. https://doi.org/10.3390/ma18071495