Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = cloud-to-ground lightning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 737 KiB  
Article
An Octant-Based Multi-Objective Optimization Approach for Lightning Warning in High-Risk Industrial Areas
by Marcos Antonio Alves, Bruno Alberto Soares Oliveira, Douglas Batista da Silva Ferreira, Ana Paula Paes dos Santos, Osmar Pinto, Fernando Pimentel Silvestrow, Daniel Calvo and Eugenio Lopes Daher
Atmosphere 2025, 16(7), 798; https://doi.org/10.3390/atmos16070798 - 30 Jun 2025
Viewed by 227
Abstract
Lightning strikes are a major hazard in tropical regions, especially in northern Brazil, where open-area industries such as mining are highly exposed. This study proposes an octant-based multi-objective optimization approach for spatial lightning alert systems, focusing on minimizing both false alarm rate (FAR) [...] Read more.
Lightning strikes are a major hazard in tropical regions, especially in northern Brazil, where open-area industries such as mining are highly exposed. This study proposes an octant-based multi-objective optimization approach for spatial lightning alert systems, focusing on minimizing both false alarm rate (FAR) and failure-to-warn (FTW). The method uses NSGA-III to optimize a configuration vector consisting of directional radii and alert thresholds, based solely on historical lightning location data. Experiments were conducted using four years of cloud-to-ground lightning data from a mining area in Pará, Brazil. Fifteen independent runs were executed, each with 96 individuals and up to 150 generations. The results showed a clear trade-off between FAR and FTW, with optimal solutions achieving up to 16% reduction in FAR and 50% reduction in FTW when compared to a quadrant-based baseline. The use of the hypervolume metric confirmed consistent convergence across runs. Sensitivity analysis revealed spatial patterns in optimal configurations, supporting the use of directional tuning. The proposed approach provides a flexible and interpretable model for risk-based alert strategies, compliant with safety regulations such as NBR 5419/2015 and NR-22. It offers a viable solution for automated alert generation in high-risk environments, especially where detailed meteorological data is unavailable. Full article
Show Figures

Figure 1

20 pages, 6074 KiB  
Article
Characterization of Hybrid Lightning Flashes Observed by Fast Antenna Lightning Mapping Array in Summer Thunderstorms
by Dongdong Shi, Jie Shao, Rubin Jiang, Daohong Wang, Ting Wu and Li Wang
Atmosphere 2025, 16(7), 765; https://doi.org/10.3390/atmos16070765 - 22 Jun 2025
Viewed by 246
Abstract
Using the observation data from Fast Antenna Lightning Mapping Array, we have sub-divided 288 hybrid flashes that are obviously different from traditional intracloud (IC) and negative cloud-to-ground (NCG) flashes into three types: IC–NCG lightning (85), NCG–IC lightning (95), and the flashes (108) with [...] Read more.
Using the observation data from Fast Antenna Lightning Mapping Array, we have sub-divided 288 hybrid flashes that are obviously different from traditional intracloud (IC) and negative cloud-to-ground (NCG) flashes into three types: IC–NCG lightning (85), NCG–IC lightning (95), and the flashes (108) with negative leaders originating from the upper parts of bi-level structures of IC flashes. Hereinafter, we refer to these hybrid flashes as hybrid A, B, and C, respectively. The statistical comparisons indicate that characteristics from preliminary breakdown (PB) to return stroke (RS) are significantly different. On average, hybrid A and C flashes have higher initiation altitudes, larger PB–RS intervals, and longer propagation lengths than hybrid B flashes (7.9, 7.8 vs. 5.7 km; 430.3, 239.3 vs. 54.4 ms; 6.4, 7.8 vs. 2.3 km). Compared to 1562 IC and 844 CG flashes, hybrid flashes unsurprisingly have much larger horizontal flash sizes (189, 210, and 126.9 km2 vs. 86.1 and 80.2 km2). In addition, hybrid B flashes tend to produce more RSs and larger RS1st peak currents. The striking points of hybrid C flashes appear to be close to or out of the cloud edge. Based on these statistical results, we discuss the formation mechanisms of three types of hybrid flashes. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 2602 KiB  
Article
Quality Control Technique for Ground-Based Lightning Detection Data Based on Multi-Source Data over China
by Yongfang Xu, Yan Shen, Xiaowei Jiang, Fengyun Tian, Lei Cao and Nan Wang
Remote Sens. 2025, 17(11), 1928; https://doi.org/10.3390/rs17111928 - 2 Jun 2025
Viewed by 557
Abstract
Lightning is one of the most severe natural disasters, characterized by its sudden onset, short duration, and significant damage. Existing quality control (QC) schemes for millisecond-level lightning observation data from a single source are primarily limited by the instrument and equipment, leading to [...] Read more.
Lightning is one of the most severe natural disasters, characterized by its sudden onset, short duration, and significant damage. Existing quality control (QC) schemes for millisecond-level lightning observation data from a single source are primarily limited by the instrument and equipment, leading to inadequate monitoring, forecasting, and early warning accuracy in severe convective weather. This study proposes a comprehensive QC scheme for lightning location data from the China Meteorological Administration ground-based National Lightning Detection Network (CMA-LDN). The scheme integrates radar composite reflectivity (CREF) and FY-4A cloud-top brightness temperature (TBB), exploring the coupled relationship between lightning activity and severe weather processes. Through experimental analysis of convective processes over different time periods, QC thresholds are established based on the CREF, TBB, and area ratio. In this research, CREF ≥ 10 dBZ, TBB ≤ 270 K, and an 80% area ratio are tuned to filter false signals. Based on the regional threshold and area ratio results, gross error elimination and spatiotemporal clustering are combined to achieve an overall QC rate of 28.7%. The most effective quality control (QC) method is spatial-temporal clustering, achieving a QC efficiency of 20.9%. The processed lightning data are further merged with CREF and generated a 1 km and 6 min resolution lightning location dataset, which significantly improves the accuracy of ground-based lightning detection and supports operational forecasting of severe convective weather. Full article
Show Figures

Figure 1

18 pages, 7465 KiB  
Article
New Method for Single-Site Cloud-to-Ground Lightning Location Based on Tri-Pre Processing
by Bingzhe Dai, Qilin Zhang, Jie Li, Yi Liu and Minhong Zhao
Remote Sens. 2025, 17(10), 1766; https://doi.org/10.3390/rs17101766 - 19 May 2025
Viewed by 358
Abstract
The single-site lightning detection system can provide timely and effective information on lightning activity in areas where a multi-site lightning network cannot be built. Using deep learning, the single-site lightning detection achieves better performance than traditional methods, but it is highly dependent on [...] Read more.
The single-site lightning detection system can provide timely and effective information on lightning activity in areas where a multi-site lightning network cannot be built. Using deep learning, the single-site lightning detection achieves better performance than traditional methods, but it is highly dependent on the quality of the training dataset. To address this, this paper proposes a method called Tri-Pre to improve dataset quality and thereby enhance the performance of single-site cloud-to-ground lightning detection based on deep learning. After using the Tri-Pre method, the location model’s distance estimation error decreases by 36.08%. For lightning with propagation distances greater than 1000 km, the average relative error of the results from the built model based on the Tri-Pre method is 3.78%. When verified using additional measured data, the model also shows satisfactory accuracy, particularly for lightning with propagation distances beyond 1000 km. Specifically, for lightning with propagation distances between 1500 and 1600 km, the average relative location error is approximately 5.46%. Full article
Show Figures

Graphical abstract

13 pages, 2526 KiB  
Article
Temporal Evolution of Lightning Properties in the Metropolitan Area of São Paulo (MASP) During the CHUVA-Vale Campaign
by Raquel Gonçalves Pereira, Enrique Vieira Mattos, Thiago Souza Biscaro and Michelle Simões Reboita
Atmosphere 2025, 16(4), 426; https://doi.org/10.3390/atmos16040426 - 6 Apr 2025
Viewed by 483
Abstract
Lightning is associated with severe thunderstorm events and causes hundreds of deaths annually in Brazil. Additionally, it is responsible for losses amounting to millions in Brazil’s electricity and telecommunication sectors. Between November 2011 and March 2012, the CHUVA-Vale do Paraíba (CHUVA-Vale) campaign was [...] Read more.
Lightning is associated with severe thunderstorm events and causes hundreds of deaths annually in Brazil. Additionally, it is responsible for losses amounting to millions in Brazil’s electricity and telecommunication sectors. Between November 2011 and March 2012, the CHUVA-Vale do Paraíba (CHUVA-Vale) campaign was conducted in the Vale do Paraíba region and the Metropolitan Area of São Paulo (MASP), located in southeastern São Paulo state, Brazil, to enhance the understanding of cloud processes, including lightning. During the campaign, several instruments were available: a meteorological radar, lightning location systems, rain gauges, a vertical-pointing radar, a surface tower, and others. In this context, the main goal of this study was to evaluate the temporal evolution of lightning properties, such as frequency, type (cloud-to-ground (CG) and intracloud (IC) lightning), peak current, length, and duration, in the MASP between November 2011 and March 2012. To achieve this objective, lightning data from the Brazilian Lightning Detection Network (BrasilDAT) and the São Paulo Lightning Mapping Array (SPLMA) were utilized. The maximum amount of lightning for the BrasilDAT (322,598 events/month) occurred in January, while for the SPLMA (150,566 events/month), it occurred in February, suggesting that thunderstorms displayed typical summer behavior in the studied region. Most of lightning registered by the BrasilDAT were concentrated between 2:00 and 5:00 pm local time, with a maximum of 5.0 × 104, 6.2 × 103, and 95 events/month.hour for IC, −CG, and +CG lightning, respectively. These results are associated with the favorable conditions of diurnal atmospheric instability caused by surface heating. Regarding the lightning properties from the SPLMA, longer-duration lightning (up to 0.4 s) and larger spatial extension (up to 14 km) occurred during the nighttime period (0–6:00 am local time), while the highest lightning frequency (up to 9 × 104 events month−1 h−1) was observed in the afternoon (3–4:00 pm local time). Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

21 pages, 90701 KiB  
Article
New Insights into Earthquake Light: Rayleigh Scattering as the Source of Blue Hue and a Novel Co-Seismic Cloud Phenomenon
by Neil Evan Whitehead and Ulku Ulusoy
Atmosphere 2025, 16(3), 277; https://doi.org/10.3390/atmos16030277 - 26 Feb 2025
Viewed by 1025
Abstract
The New Zealand Kaikoura Earthquake (Mw 7.8, 14 November 2016) produced co-seismic flashes of earthquake light near the ground at midnight, 230 km north of the epicentre. Mostly, there was a white hemisphere in the atmosphere just above the ground, up to [...] Read more.
The New Zealand Kaikoura Earthquake (Mw 7.8, 14 November 2016) produced co-seismic flashes of earthquake light near the ground at midnight, 230 km north of the epicentre. Mostly, there was a white hemisphere in the atmosphere just above the ground, up to 250 m radius, the colour becoming radially increasingly dark blue. Fifteen videos were available for analysis which led to the following new or reaffirmed conclusions: (i) the blue colour is due to Rayleigh Scattering (new explanation); (ii) the light also sometimes occurs within low clouds but not as lightning—this is a new classification of earthquake light; (iii) the lithology may be greywacke, broadening previous literature emphasis on igneous sources; (iv) the light is most probably explained in our study area by seismically pressured microscopic quartz producing electric fields emerging into the atmosphere and reacting with it—mechanisms relying on particle-grinding or creation of cracks in rock are unlikely in the study area; (v) within the Wellington study area, the light is mostly independent of faults or their movement and is caused by seismic impulses which have travelled hundreds of kilometres from the epicentre—this possible independence from faults has not been clearly emphasised previously; and (vi) electrical grid problems are not the explanation. Full article
Show Figures

Figure 1

12 pages, 3372 KiB  
Article
Lightning Current Distribution of the First and Subsequent Strokes Based on the Lightning Location System: Survey in Yunnan Power Grid
by Yutang Ma, Hongchun Shu, Changxin Xiao, Gaohui Yang, Chengwei Xie, Mengmeng Zhu and Pulin Cao
Atmosphere 2025, 16(1), 15; https://doi.org/10.3390/atmos16010015 - 26 Dec 2024
Viewed by 999
Abstract
Lightning is an electrical discharge phenomenon in the atmosphere caused by charge separation in clouds, which is divided into cloud-to-ground (CG) and cloud-to-cloud (CC) lightning. In recent years, research on the characteristics of multiple-stroke ground lightning and the amplitude of lightning currents has [...] Read more.
Lightning is an electrical discharge phenomenon in the atmosphere caused by charge separation in clouds, which is divided into cloud-to-ground (CG) and cloud-to-cloud (CC) lightning. In recent years, research on the characteristics of multiple-stroke ground lightning and the amplitude of lightning currents has attracted significant attention. The amplitude of lightning currents serves as fundamental data for lightning protection in power systems. Its accurate measurement is crucial for designing and safeguarding power systems. This paper obtains data from a lightning location system and analyzes the probability density distribution of lightning current amplitudes. It is found that the median of lightning currents gradually decreases with an increasing number of multiple strokes, and there is a trend in the change of lightning current steepness. As the number of strokes increases, the median value of amplitude distribution gradually decreases, while the steepness coefficient shows an increasing trend. These research findings contribute to a deeper understanding of the characteristics of lightning and provide important references for lightning prevention and disaster reduction. Full article
(This article belongs to the Special Issue Atmospheric Electricity (2nd Edition))
Show Figures

Figure 1

14 pages, 3774 KiB  
Article
Locating Strong Electromagnetic Pulses Recorded by a Single Satellite with Cluster Analysis and Worldwide Lightning Location Network Observations
by Zongxiang Li, Baofeng Cao, Wenjuan Zhang, Xiaoqiang Li, Xiong Zhang, Yongli Wei, Xiao Li, Changjiao Duan and Peng Li
Remote Sens. 2024, 16(23), 4442; https://doi.org/10.3390/rs16234442 - 27 Nov 2024
Cited by 1 | Viewed by 915
Abstract
The integration of satellite-borne and ground-based global lightning location networks offers a better perspective to study lightning processes and their evolutionary characteristics within thunderstorm clouds, thereby bolstering the predictive capabilities for severe weather phenomena. Currently, the satellite-borne network is in the preliminary testing [...] Read more.
The integration of satellite-borne and ground-based global lightning location networks offers a better perspective to study lightning processes and their evolutionary characteristics within thunderstorm clouds, thereby bolstering the predictive capabilities for severe weather phenomena. Currently, the satellite-borne network is in the preliminary testing phase with a single satellite. The geographic locations of single-satellite detection events primarily rely on synchronous information from coincident ground-based network events; this method is called synchronous locating (SCL). However, variations in detection-frequency bands and system capabilities prevent this method from accurately locating more than a mere 10% of events. To address this limitation, this paper introduces a cluster-analysis-based strategy, utilizing the observations from the Worldwide Lightning Location Network (WWLLN), termed the cluster analysis locating (CAL) method. The CAL method’s performance, influenced by the density-based spatial clustering of applications with noise (DBSCAN), the K-means, and the mean shift algorithms, is examined. Subsequently, an advanced version, mean shift denoised (MSDN)-CAL, is proposed, demonstrating marked improvements in location accuracy and reliability over the other CAL methods. The satellite-borne wideband electromagnetic pulse detector (WEMPD), orbiting at an altitude of approximately 500 km with a 97.5° inclination, captured 1061 strong electromagnetic pulses (EMPs). Among these, trans-ionospheric single pulses (TISPs) and trans-ionospheric pulse pairs (TIPPs) constituted 21.30% and 78.70%, respectively. Using the MSDN-CAL method successfully determines the geographic locations for 81.15% (861 out of 1061) of the events. This success rate represents an approximate eightfold enhancement over the SCL method. The arithmetic mean, geometric mean, and standard deviation of the two-dimensional range deviation of the locating results between the MSDN-CAL method versus the WWLLN-SCL (or the Guangdong-Hong Kong-Macao Lightning Location System (GHMLLS)-SCL) method are 51.06 (176.26) km, 16.17 (92.53) km, and 100.95 (174.79) km, respectively. Furthermore, it has been possible to estimate the occurrence altitudes for 81.92% (684 out of 835) of the TIPP events. The altitude deviations, as determined by comparing them with the GHMLLS-SCL method’s locating results, exhibit an arithmetic mean of 2.08 km, a geometric mean of 1.30 km, and a standard deviation of 2.26 km. The outcomes of this research establish a foundation for deeper investigation into the origins of various event types, their seasonal variations, and their geographical distribution patterns. Moreover, they pave the way for utilizing a single satellite to measure global surface reflectance, thus contributing valuable data for meteorological and atmospheric studies. Full article
Show Figures

Figure 1

11 pages, 1594 KiB  
Article
An Engineering Model to Represent Positive Return Strokes—An Extension of the Modified Transmission Line (MTL) Model
by Vernon Cooray, Farhad Rachidi and Marcos Rubinstein
Atmosphere 2024, 15(11), 1265; https://doi.org/10.3390/atmos15111265 - 22 Oct 2024
Viewed by 769
Abstract
An engineering model to represent positive return strokes is introduced as an extension of the Modified Transmission Line model with Linear Current Decay (MTLL). This extension is grounded in experimental data on the electric fields and currents associated with positive return strokes. The [...] Read more.
An engineering model to represent positive return strokes is introduced as an extension of the Modified Transmission Line model with Linear Current Decay (MTLL). This extension is grounded in experimental data on the electric fields and currents associated with positive return strokes. The core premise of the model is that once the return stroke front reaches the cloud, recoil leader-type activities within the cloud feed the lightning channel with a positive charge. This positive charge then travels to the ground in the form of an M-component, enhancing both the amplitude and duration of the impulse current in the channel and at ground level. The propagation of the return stroke current along the channel follows the MTLL model, while the M-component is treated as a current pulse traveling from the cloud to the ground. At ground level, the M-component current is fully reflected. The model successfully generates electromagnetic fields that resemble those observed from positive return strokes, and it is easily applicable to studies involving the interaction of positive return stroke fields with power lines and the Earth’s upper atmosphere. Full article
(This article belongs to the Special Issue Recent Advances in Lightning Research)
Show Figures

Figure 1

18 pages, 1578 KiB  
Review
The Generation of Seismogenic Anomalous Electric Fields in the Lower Atmosphere, and Its Application to Very-High-Frequency and Very-Low-Frequency/Low-Frequency Emissions: A Review
by Masashi Hayakawa, Yasuhide Hobara, Koichiro Michimoto and Alexander P. Nickolaenko
Atmosphere 2024, 15(10), 1173; https://doi.org/10.3390/atmos15101173 - 30 Sep 2024
Cited by 2 | Viewed by 1160
Abstract
The purpose of this paper is, first of all, to review the previous works on the seismic (or earthquake (EQ)-related) direct current (DC) (or quasi-stationary) electric fields in the lower atmosphere, which is likely to be generated by the conductivity current flowing in [...] Read more.
The purpose of this paper is, first of all, to review the previous works on the seismic (or earthquake (EQ)-related) direct current (DC) (or quasi-stationary) electric fields in the lower atmosphere, which is likely to be generated by the conductivity current flowing in the closed atmosphere–ionosphere electric circuit during the preparation phase of an EQ. The current source is electromotive force (EMF) caused by upward convective transport and the gravitational sedimentation of radon and charged aerosols injected into the atmosphere by soil gasses during the course of the intensification of seismic processes. The theoretical calculations predict that pre-EQ DC electric field enhancement in the atmosphere can reach the breakdown value at the altitudes 2–6 km, suggesting the generation of a peculiar seismic-related thundercloud. Then, we propose to apply this theoretical inference to the observational results of seismogenic VHF (very high frequency) and VLF/LF (very low frequency/low frequency) natural radio emissions. The formation of such a peculiar layer initiates numerous chaotic electrical discharges within this region, leading to the generation of VHF electromagnetic radiation. Earlier works on VHF seismogenic radiation performed in Greece have been compared with the theoretical estimates, and showed a good agreement in the frequency range and intensity. The same idea can also be applied, for the first time, to seismogenic VLF/LF lightning discharges, which is completely the same mechanism with conventional cloud-to-ground lightning discharges. In fact, such seismogenic VLF/LF lightning discharges have been observed to appear before an EQ. So, we conclude in this review that both seismogenic VHF radiation and VLF/LF lightning discharges are regarded as indirect evidence of the generation of anomalous electric fields in the lowest atmosphere due to the emanation of radioactive radon and charged aerosols during the preparation phase of EQs. Finally, we have addressed the most fundamental issue of whether VHF and VLF/LF radiation reported in earlier works is either of atmospheric origin (as proposed in this paper) or of lithospheric origin as the result of microfracturing in the EQ fault region, which has long been hypothesized. This paper will raise a question regarding this hypothesis of lithospheric origin by proposing an alternative atmospheric origin outlined in this review. Also, the data on seismogenic electromagnetic radiation and its inference on perturbations in the lower atmosphere will be suggested to be extensively integrated in future lithosphere–atmosphere–ionosphere coupling (LAIC) studies. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

22 pages, 7001 KiB  
Article
Green Flashes Observed in Optical and Infrared during an Extreme Electric Storm
by Gilbert Green and Naomi Watanabe
Appl. Sci. 2024, 14(16), 6938; https://doi.org/10.3390/app14166938 - 8 Aug 2024
Cited by 1 | Viewed by 1109
Abstract
A strong and fast-moving electrical storm occurred in the Southwest Florida region overnight, from 01:00 UTC on 17 April to 07:00 UTC on 17 April 2023. Video recordings were conducted in the region at Latitude N 26.34° and Longitude W 81.79° for 5 [...] Read more.
A strong and fast-moving electrical storm occurred in the Southwest Florida region overnight, from 01:00 UTC on 17 April to 07:00 UTC on 17 April 2023. Video recordings were conducted in the region at Latitude N 26.34° and Longitude W 81.79° for 5 h and 15 min, from 01:45 UTC to 07:00 UTC. The camera captured the flashes transforming from pinkish, violet, blue, and then emerald green in the sky twice: the first colored flash lasted 2.0 s, and the second one lasted 0.5 s. The characteristics of the flashes were analyzed using video images integrated with lightning flash data from the Geostationary Lightning Mapper (GLM). To gain deeper insights into the associated atmospheric conditions, the Advanced Baseline Imager (ABI) was also used to help understand the spectral anomalies. Both events had similarities: the same pattern of changing luminous colors in the optical images and the trajectory of the lightning discharges, showing clusters and horizontal distributions. Event 1 occurred mainly over the ocean and featured more intense storms, heavier rain, and denser, higher cloud-tops compared to Event 2, which occurred inland and involved dissipating storms. Moreover, the group energy detected in Event 1 was an order of magnitude higher than in Event 2. We attribute the wavelength of the recorded colored luminosity to varying atmospheric molecular concentrations, which ultimately contributed to the unique spectral line. In this study, we explore the correlation between colored flashes and specific atmospheric concentrations. Full article
(This article belongs to the Special Issue Lightning Electromagnetic Fields Research)
Show Figures

Figure 1

12 pages, 4643 KiB  
Article
Three-Dimensional Lightning Characteristics Analysis over the Tibetan Plateau Based on Satellite-Based and Ground-Based Multi-Source Data
by Jie Zhu, Shulin Zhi, Dong Zheng and Zhengguo Yuan
Atmosphere 2024, 15(7), 854; https://doi.org/10.3390/atmos15070854 - 19 Jul 2024
Viewed by 1112
Abstract
Based on the data from the Chinese national ground-based (LFEDA: Low-frequency E-field Detection Array) and satellite-based lightning-detection systems (LMI: Lightning Mapping Imager), the spatial and temporal distribution statistical properties of all types of lightning over the Tibetan Plateau in the summer of 2022 [...] Read more.
Based on the data from the Chinese national ground-based (LFEDA: Low-frequency E-field Detection Array) and satellite-based lightning-detection systems (LMI: Lightning Mapping Imager), the spatial and temporal distribution statistical properties of all types of lightning over the Tibetan Plateau in the summer of 2022 and 2023 are analyzed, and were compared with those in Hainan, which are under quite different geographical conditions. The discrepancy between ground-based and space-borne lightning detection was also discussed. The main results show the following: (1) the characteristics of lightning activities over the Tibetan Plateau based on multi-source data: Most of the high-value lightning areas were located in the transition zone between lower and higher terrain; the diurnal variation of lightning activity was significant, and the most active period concentrated around 15:00 LST (Local Standard Time, the same below). In addition, lightning activities were significantly increased at 21:00 and 0:00, which was related to the unique topography and night rain phenomenon of the plateau. In terms of lightning types, the number of IC (Intra-Cloud) lightning was more than that of CG (Cloud-to-Ground). The study of IC changes is of great significance to the early warning of the plateau DCSs. The spatial distribution of IC at different altitudes was quite different. (2) Comparison of lightning activities between the Tibetan Plateau and Hainan: The hourly variation of lightning activities in Nagqu showed a single peak, while that in Hainan was characterized by a primary peak and a secondary peak, affected by the enhancement of the boundary stream in the low latitude and altitude area of China. At the peak of convection, the lightning activities in Nagqu were less than 1/3 of that in Hainan. However, the duration of high-frequency lightning activities in Nagqu (15–19:00) was about 2 h longer than that in Hainan (15–17:00), which may be related to the fact that the Tibetan Plateau is located in the west of China, where the sunset is later, and solar radiation and convective activities last longer. (3) Analysis of features of LMI: LMI has more advantages in IC detection; LMI has higher detection efficiency for the lightning in the range of 4–6 KM altitude, which is partly related to the stronger convective process and the higher proportion of IC. This work will provide deeper understanding of the characteristics of all types of lightning over the Tibetan Plateau, to reveal the indication significance of lightning for DCSs, and help to promote the development of Chinese satellite-based lightning-detection technology, the optimization of subsequent instruments and the fusion application of ground-based and satellite-based lightning data. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 1006 KiB  
Article
Can Bayesian Networks Improve Ground-Strike Point Classification?
by Wandile Lesejane, Hugh G. P. Hunt, Carina Schumann and Ritesh Ajoodha
Atmosphere 2024, 15(7), 776; https://doi.org/10.3390/atmos15070776 - 28 Jun 2024
Cited by 1 | Viewed by 888
Abstract
Studying cloud-to-ground lightning strokes and ground-strike points provides an alternative method of lightning mapping for lightning risk assessment. Various k-means algorithms have been used to verify the ground-strike points from lightning locating systems, producing results with room for improvement. This paper proposes using [...] Read more.
Studying cloud-to-ground lightning strokes and ground-strike points provides an alternative method of lightning mapping for lightning risk assessment. Various k-means algorithms have been used to verify the ground-strike points from lightning locating systems, producing results with room for improvement. This paper proposes using Bayesian networks (BNs), a model not previously used for this purpose, to classify lightning ground-strike points. A Bayesian network is a probabilistic graphical model that uses Bayes’ theorem to represent the conditional dependencies of variables. The networks created for this research were trained from the data using a score-based structure-learning procedure and the Bayesian information criterion score function. The models were evaluated using confusion matrices and kappa indices and produced accuracy values ranging from 86% to 94% and kappa indices of up to 0.76. While BN models do not outperform k-means algorithms, they offer an alternative by not requiring predetermined distances. However, the easy implementation of the k-means approach means that no significant gain is made by implementing the more complex Bayesian network approach. Full article
(This article belongs to the Special Issue Recent Advances in Lightning Research)
Show Figures

Figure 1

21 pages, 12213 KiB  
Article
A 3D Numerical Model to Estimate Lightning Types for PyroCb Thundercloud
by Surajit Das Barman, Rakibuzzaman Shah, Syed Islam and Apurv Kumar
Appl. Sci. 2024, 14(12), 5305; https://doi.org/10.3390/app14125305 - 19 Jun 2024
Cited by 1 | Viewed by 1369
Abstract
Pyrocumulonimbus (pyroCb) thunderclouds, produced from extreme bushfires, can initiate frequent cloud-to-ground (CG) lightning strikes containing extended continuing currents. This, in turn, can ignite new spot fires and inflict massive harm on the environment and infrastructures. This study presents a 3D numerical thundercloud model [...] Read more.
Pyrocumulonimbus (pyroCb) thunderclouds, produced from extreme bushfires, can initiate frequent cloud-to-ground (CG) lightning strikes containing extended continuing currents. This, in turn, can ignite new spot fires and inflict massive harm on the environment and infrastructures. This study presents a 3D numerical thundercloud model for estimating the lightning of different types and its striking zone for the conceptual tripole thundercloud structure which is theorized to produce the lightning phenomenon in pyroCb storms. More emphasis is given to the lower positive charge layer, and the impacts of strong wind shear are also explored to thoroughly examine various electrical parameters including the longitudinal electric field, electric potential, and surface charge density. The simulation outcomes on pyroCb thunderclouds with a tripole structure confirm the presence of negative longitudinal electric field initiation at the cloud’s lower region. This initiation is accompanied by enhancing the lower positive charge region, resulting in an overall positive electric potential increase. Consequently, negative surface charge density appears underneath the pyroCb thundercloud which has the potential to induce positive (+CG) lightning flashes. With wind shear extension of upper charge layers in pyroCb, the lightning initiation potential becomes negative to reduce the absolute field value and would generate negative (−CG) lightning flashes. A subsequent parametric study is carried out considering a positive correlation between aerosol concentration and charge density to investigate the sensitivity of pyroCb electrification under the influence of high aerosol conditions. The suggested model would establish the basis for identifying the potential area impacted by lightning and could also be expanded to analyze the dangerous conditions that may arise in wind energy farms or power substations in times of severe pyroCb events. Full article
Show Figures

Figure 1

12 pages, 8558 KiB  
Article
Probabilistic Forecasting of Lightning Strikes over the Continental USA and Alaska: Model Development and Verification
by Ned Nikolov, Phillip Bothwell and John Snook
Fire 2024, 7(4), 111; https://doi.org/10.3390/fire7040111 - 28 Mar 2024
Viewed by 2008
Abstract
Lightning is responsible for the most area annually burned by wildfires in the extratropical region of the Northern Hemisphere. Hence, predicting the occurrence of wildfires requires reliable forecasting of the chance of cloud-to-ground lightning strikes during storms. Here, we describe the development and [...] Read more.
Lightning is responsible for the most area annually burned by wildfires in the extratropical region of the Northern Hemisphere. Hence, predicting the occurrence of wildfires requires reliable forecasting of the chance of cloud-to-ground lightning strikes during storms. Here, we describe the development and verification of a probabilistic lightning-strike algorithm running on a uniform 20 km grid over the continental USA and Alaska. This is the first and only high-resolution lightning forecasting model for North America derived from 29-year-long data records. The algorithm consists of a large set of regional logistic equations parameterized on the long-term data records of observed lightning strikes and meteorological reanalysis fields from NOAA. Principal Component Analysis was employed to extract 13 principal components from a list of 611 potential predictors. Our analysis revealed that the occurrence of cloud-to-ground lightning strikes primarily depends on three factors: the temperature and geopotential heights across vertical pressure levels, the amount of low-level atmospheric moisture, and wind vectors. These physical variables isolate the conditions that are favorable for the development of thunderstorms and impact the vertical separation of electric charges in the lower troposphere during storms, which causes the voltage potential between the ground and the cloud deck to increase to a level that triggers electrical discharges. The results from a forecast verification using independent data showed excellent model performance, thus making this algorithm suitable for incorporation into models designed to forecast the chance of wildfire ignitions. Full article
(This article belongs to the Special Issue Probabilistic Risk Assessments in Fire Protection Engineering)
Show Figures

Figure 1

Back to TopTop