Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (350)

Search Parameters:
Keywords = clonal growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 681 KiB  
Review
Unraveling Glioblastoma Heterogeneity: Advancing Immunological Insights and Therapeutic Innovations
by Joshua H. Liu, Maksym Horiachok, Santosh Guru and Cecile L. Maire
Brain Sci. 2025, 15(8), 833; https://doi.org/10.3390/brainsci15080833 (registering DOI) - 2 Aug 2025
Viewed by 215
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, largely due to its profound intratumoral heterogeneity and immunosuppressive microenvironment. Various classifications of GBM subtypes were created based on transcriptional and methylation profiles. This effort, followed by the development of new [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, largely due to its profound intratumoral heterogeneity and immunosuppressive microenvironment. Various classifications of GBM subtypes were created based on transcriptional and methylation profiles. This effort, followed by the development of new technology such as single-nuclei sequencing (snRNAseq) and spatial transcriptomics, led to a better understanding of the glioma cells’ plasticity and their ability to transition between diverse cellular states. GBM cells can mimic neurodevelopmental programs to resemble oligodendrocyte or neural progenitor behavior and hitchhike the local neuronal network to support their growth. The tumor microenvironment, especially under hypoxic conditions, drives the tumor cell clonal selection, which then reshapes the immune cells’ functions. These adaptations contribute to immune evasion by progressively disabling T cell and myeloid cell functions, ultimately establishing a highly immunosuppressive tumor milieu. This complex and metabolically constrained environment poses a major barrier to effective antitumor immunity and limits the success of conventional therapies. Understanding the dynamic interactions between glioma cells and their microenvironment is essential for the development of more effective immunotherapies and rational combination strategies aimed at overcoming resistance and improving patient outcomes. Full article
(This article belongs to the Special Issue Recent Advances in Translational Neuro-Oncology)
Show Figures

Figure 1

13 pages, 919 KiB  
Article
Phenological Stage and Nitrogen Input Coordinately Regulate Bud Bank Dynamics and Shoot Allocation in an Alpine Clonal Perennial Grass
by Keyan He, Qingping Zhou, Lin He, Lili He, Haihong Dang, Xiaoxing Wei, Qian Wang and Jiahao Wang
Plants 2025, 14(14), 2164; https://doi.org/10.3390/plants14142164 - 14 Jul 2025
Viewed by 292
Abstract
Belowground buds play a vital role in the clonal propagation and structural regulation of perennial herbaceous plants, especially in alpine environments, where vegetative renewal depends heavily on bud bank dynamics. However, the interactive effects of nitrogen addition and phenological stages on bud development [...] Read more.
Belowground buds play a vital role in the clonal propagation and structural regulation of perennial herbaceous plants, especially in alpine environments, where vegetative renewal depends heavily on bud bank dynamics. However, the interactive effects of nitrogen addition and phenological stages on bud development and aboveground branching remain poorly understood. In this study, we examined the responses of rhizome buds, tiller buds, and aboveground tiller types of Kentucky bluegrass to six nitrogen levels (0, 6, 9, 12, 15, and 18 g/m2) across five growth stages on the Qinghai–Tibet Plateau. The results showed that moderate nitrogen input (N2, 9 g/m2) significantly enhanced total bud density, particularly at the heading and maturity stages, indicating a threshold response. Aboveground reproductive tiller density peaked at N2 (9 g/m2), while vegetative and total tiller densities plateaued beyond N3 (12 g/hm2), suggesting a diminishing marginal effect of nitrogen on aboveground tiller density. Furthermore, bud density showed stage-specific correlations with tiller types: vegetative tillers were primarily influenced at the heading stage, and reproductive tillers were mainly influenced at the mature stage, with weakened associations in senescence. These findings highlight the phenological specificity and non-linear response of clonal grass regeneration to nitrogen input and provide a theoretical basis for optimizing nutrient management in cold alpine grasslands. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

19 pages, 2268 KiB  
Article
Methyl Jasmonate and Ammonium Bicarbonate: Distinct and Synergistic Impacts on Indoor Cannabis Production Dynamics
by Jose F. Da Cunha Leme Filho, Spencer Schuchman, Avery Shikanai, Shiksha Sharma, Thais Alberti, Andre A. Diatta, Alan Walters and Karla L. Gage
Int. J. Plant Biol. 2025, 16(3), 78; https://doi.org/10.3390/ijpb16030078 - 8 Jul 2025
Viewed by 437
Abstract
As high-CBD cannabis (Cannabis sativa L.) gains legal and commercial relevance in the United States, studies evaluating how external inputs impact critical traits remain limited. This study investigates the effects of methyl jasmonate (MeJA), ammonium bicarbonate (AB), and the genetic source (mother [...] Read more.
As high-CBD cannabis (Cannabis sativa L.) gains legal and commercial relevance in the United States, studies evaluating how external inputs impact critical traits remain limited. This study investigates the effects of methyl jasmonate (MeJA), ammonium bicarbonate (AB), and the genetic source (mother plant identity) on the growth and secondary metabolite traits of indoor cannabis. Plants were treated with 1 mM MeJA and/or AB under controlled conditions, and key traits, such as plant height, chlorophyll content, biomass, trichome density, and cannabinoid concentration, were measured. The MeJA treatment led to a significant 32% increase in trichome density. However, it did not significantly alter CBD or THC concentrations. The AB treatment enhanced vegetative growth, increasing chlorophyll content and plant height while reducing CBD concentrations, but the biomass gains could compensate for the lower cannabinoid in the total production. An interaction between MeJA and AB altered the CBD content, suggesting that MeJA may mitigate AB’s negative effect on cannabinoid synthesis. The genetic source significantly influenced most of the measured traits, highlighting the role of the genotype in trait expression and the importance of clonal consistency. These findings highlight the complex dynamics of external inputs and genetic factors in cannabis production, emphasizing the need for further research to optimize cultivation strategies. Future studies should refine input combinations and doses to improve both yield and cannabinoid profiles. Full article
Show Figures

Figure 1

15 pages, 2674 KiB  
Article
Transcriptome of Two-Hybrid Poplar (Populus alba × P. tomentiglandulosa) During Adventitious Root Formation After Stem Cutting
by Siyeon Byeon and Il Hwan Lee
Biology 2025, 14(7), 751; https://doi.org/10.3390/biology14070751 - 23 Jun 2025
Viewed by 333
Abstract
Poplar (Populus spp.) is an economically and ecologically important temperate tree species known for its rapid growth. Clonal propagation has facilitated genetic advancements, but it remains challenging due to substantial variations in rooting capacity among poplar species and clones. Poplar clones were [...] Read more.
Poplar (Populus spp.) is an economically and ecologically important temperate tree species known for its rapid growth. Clonal propagation has facilitated genetic advancements, but it remains challenging due to substantial variations in rooting capacity among poplar species and clones. Poplar clones were divided into two groups based on their rooting ability (high or low), and their transcriptome was analyzed for 3 weeks following stem-cutting propagation to investigate the rooting mechanisms of a hybrid of two fast-growing poplar species (Populus alba × P. tomentiglandulosa). The root length and area of the high-rooting group were 668.7% and 198.4% greater than those of the low-rooting ability group, respectively (maximum p < 0.001). Compared to week 0, genes involved in auxin signaling, cell wall organization, and secondary metabolite biosynthesis were consistently upregulated at 1, 2, and 3 weeks after planting, respectively. The expression of genes associated with cell wall differentiation and flavonoid biosynthesis was greater in the high- than in the low-rooting group at week 2. MYB and AP2/ERF transcription factors, which regulate flavonoid biosynthesis, as well as chalcone isomerase, a key enzyme in early flavonoid biosynthesis and root formation, were upregulated in the high-rooting group. The flavonoid biosynthesis pathway is important in rooting after stem cutting of Populus alba × P. tomentiglandulosa hybrids. Full article
(This article belongs to the Special Issue Molecular Biology of Plants)
Show Figures

Figure 1

15 pages, 2110 KiB  
Article
The Integrative Taxonomy and Mitochondrial Genome Evolution of Freshwater Planarians (Platyhelminthes: Tricladida): The Discovery of a New Clade in Southern China
by Yimeng Yang, Zhizhuo Huang, Xiaowen Fang, Pinyi Li, Yexin Li, Xiuying Hou, Yongjun Li, Hengwen Yang, Chunxia Jing, Zhinan Yin and Guang Yang
Genes 2025, 16(6), 704; https://doi.org/10.3390/genes16060704 - 13 Jun 2025
Viewed by 687
Abstract
Background: The genus Dugesia (Platyhelminthes: Tricladida) includes a large diversity of free-living freshwater flatworms and is important for studies on regeneration and evolution. This study aims to describe a newly discovered asexual planarian species from southern China and explore its genetic characteristics and [...] Read more.
Background: The genus Dugesia (Platyhelminthes: Tricladida) includes a large diversity of free-living freshwater flatworms and is important for studies on regeneration and evolution. This study aims to describe a newly discovered asexual planarian species from southern China and explore its genetic characteristics and regenerative abilities. Methods: An integrative taxonomic analysis was conducted using morphology, karyology, histology, molecular phylogeny (18S, 28S, COI, mitogenome), and genome size estimation via flow cytometry. Regeneration was assessed by standardized amputations, and long-term asexual propagation was observed under laboratory conditions for three years. Results: Phylogenetic analyses using nuclear (18S, 28S rDNA) and mitochondrial (COI, mitogenome) markers confirmed that Dugesia cantonensis Guang Yang & Zhinan Yin, sp. nov. forms a distinct clade within Dugesia. Its 18,125 bp mitogenome contains 36 genes but lacks atp8. D. cantonensis displays a distinctive morphology, notably a pharynx located near the head. All body fragments regenerated into complete individuals within nine days. Remarkably, one individual produced ~10⁵ clonal descendants over three years via repeated amputation, maintaining stable regenerative ability and growth across generations. Karyological analysis revealed a diploid karyotype (2n = 16) consisting of eight chromosome pairs. The nuclear genome size was estimated at approximately 2.5 Gb using Danio rerio as an internal standard. Histological examination showed no detectable reproductive organs, confirming the species as an exclusively asexual lineage. Conclusions: D. cantonensis represents a new planarian strain with stable propagation and regeneration. These features make it a valuable resource for regenerative biology and comparative genomic studies. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

16 pages, 853 KiB  
Article
Response of the Invasive Alien Plant Duchesnea indica (Andrews) Teschem. to Different Environmental and Competitive Settings
by Maja Kreća, Nina Šajna and Mirjana Šipek
Plants 2025, 14(11), 1563; https://doi.org/10.3390/plants14111563 - 22 May 2025
Viewed by 406
Abstract
Indian mock strawberry (Duchesnea indica, syn. Potentilla indica), a clonal invasive plant native to Asia, has rapidly spread in Europe, where its ecological adaptation allows it to thrive under varying environmental conditions. It is mostly found in urban habitats such [...] Read more.
Indian mock strawberry (Duchesnea indica, syn. Potentilla indica), a clonal invasive plant native to Asia, has rapidly spread in Europe, where its ecological adaptation allows it to thrive under varying environmental conditions. It is mostly found in urban habitats such as lawns, parks, and urban and peri-urban forests, where it thrives in various plant communities. It can become dominant in certain communities, indicating its competitive advantage over native plants. Due to similar habitat preferences, it often coexists with the native species Glechoma hederacea, with which it shares other characteristics such as clonal growth. This study investigates the effects of light, nutrients, and competition on the growth, morphology, and physiology of D. indica. A controlled pot experiment exposed plants to combinations of sunlight and shade, optimal and increased nutrient levels, and competitive scenarios with the native plant G. hederacea. The plant traits of biomass, leaf and ramet number, stolon and flower production, leaf greenness, the photosynthetic efficiency of Photosystem II, and stomatal conductance were assessed. Results revealed that light and nutrient availability significantly enhanced growth metrics. In shaded conditions, D. indica adapted with elongated petioles and increased specific leaf area. Competition significantly reduced growth, with G. hederacea outperforming D. indica. These findings highlight the complex interplay between abiotic and biotic factors in influencing invasive species impact, providing essential insights for ecosystem management. Full article
(This article belongs to the Special Issue Plant Invasions across Scales)
Show Figures

Figure 1

17 pages, 10579 KiB  
Article
Multiple Transcriptomic Networks Regulate the Callus Development Process in Panax ginseng
by Jaewook Kim, Jung-Woo Lee and Ick-Hyun Jo
Agronomy 2025, 15(5), 1244; https://doi.org/10.3390/agronomy15051244 - 20 May 2025
Viewed by 627
Abstract
Callus induction is one of the most important techniques in plant-based industries. Important features in the use of callus induction are the maintenance of pluripotency and the proliferation of cells. Although the importance of callus induction is also understood in ginseng, there are [...] Read more.
Callus induction is one of the most important techniques in plant-based industries. Important features in the use of callus induction are the maintenance of pluripotency and the proliferation of cells. Although the importance of callus induction is also understood in ginseng, there are no studies on the genetic modules associated with callus induction and growth regulation. Panax ginseng embryo tissue was wounded and cultured in callus-inducing media, and its time-course physiology was observed. Time-course callus samples were collected for total RNA extraction and RNA-Seq analysis using the Illumina HiSeq X Ten platform. P. ginseng embryo tissue was wounded and treated with varying amounts of gamma radiation in callus-inducing media, and samples were also collected for total RNA extraction and RNA-Seq analysis. A combinatory analysis of various network analyses was used to reveal the regulatory network underlying callus development. We were able to determine the time-course physiology of callus development and the dose-dependent effect of gamma radiation on callus development. Network analysis revealed two networks correlated with callus induction and two networks correlated with callus growth. Our research provides a regulatory network illustrating how callus is induced and growth is regulated in P. ginseng. This result would be helpful in the development of a cell culture system or clonal propagation protocol in P. ginseng. Full article
Show Figures

Figure 1

13 pages, 1686 KiB  
Article
Spartina alterniflora-Derived Biochar Alters Biomass Allocation and Root Traits of Native Scirpus mariqueter
by Yaoyao Tang, Jingwen Gao, Pengcheng Jiang, Junzhen Li, Ming Wu, Shengwu Jiao, Long Zhang, Niu Li and Xuexin Shao
Diversity 2025, 17(5), 357; https://doi.org/10.3390/d17050357 - 18 May 2025
Viewed by 401
Abstract
Coastal wetlands provide vital ecosystem services, yet large-scale removal of invasive Spartina alterniflora disrupts soil carbon pools and fragments habitats. Converting this biomass to biochar may enhance restoration outcomes, though ecological effects remain poorly understood. We evaluated how Spartina alterniflora-derived biochar (0%, [...] Read more.
Coastal wetlands provide vital ecosystem services, yet large-scale removal of invasive Spartina alterniflora disrupts soil carbon pools and fragments habitats. Converting this biomass to biochar may enhance restoration outcomes, though ecological effects remain poorly understood. We evaluated how Spartina alterniflora-derived biochar (0%, 0.5%, 1%, and 3%) influences growth performance, clonal reproduction, root morphology, and rhizosphere properties of native Scirpus mariqueter. Moderate biochar addition (1%) significantly boosted plant performance, increasing total biomass by 64.5%, aboveground biomass by 36.7%, and belowground biomass by 115.0%, while root length increased by 135.8%. Biochar improved soil moisture and nutrient availability, including nitrate nitrogen (NO3⁻-N), ammonium nitrogen (NH4⁺-N), and available phosphorus (AP), while stimulating nitrification and promoting clonal propagation. In contrast, high-dose biochar (3%) elevated soil salinity and electrical conductivity, leading to suppressed plant growth and reproductive allocation. Correlation analysis revealed strong positive associations between root volume and soil nutrient levels. Our findings demonstrate that moderate application of Spartina alterniflora-derived biochar enhances plant productivity and soil function, potentially improving carbon sequestration in restored coastal wetlands. This study provides insights into ecological recycling of invasive biomass and supports biochar as a viable tool for sustainable wetland restoration, though potential risks at high concentrations warrant further investigation. Full article
(This article belongs to the Special Issue Wetland Biodiversity and Ecosystem Conservation)
Show Figures

Figure 1

11 pages, 2071 KiB  
Article
Vegetative and Reproductive Allocation in an Aquatic Macrophyte: The Effects of Light, Nutrients, and Epiphytic Heterocytous Cyanobacteria
by Michel Biondi, Larissa Langsdorff Pimenta, Gabriela Costa Rodrigues, Gustavo Pereira Lima, Marcelo Gomes Marçal Vieira Vaz and Flávia de Freitas Coelho
Limnol. Rev. 2025, 25(2), 22; https://doi.org/10.3390/limnolrev25020022 - 6 May 2025
Viewed by 311
Abstract
The study evaluated the vegetative growth and reproductive strategies of the macrophyte Pistia stratiotes under varying nutrient (carbon and nitrogen) and light (full sun and 70% shade) conditions, as well as its epiphytic association with heterocytous cyanobacteria. Plants were collected from a reservoir, [...] Read more.
The study evaluated the vegetative growth and reproductive strategies of the macrophyte Pistia stratiotes under varying nutrient (carbon and nitrogen) and light (full sun and 70% shade) conditions, as well as its epiphytic association with heterocytous cyanobacteria. Plants were collected from a reservoir, transferred to a greenhouse, and subjected to six treatments, with sampling every 15 days. Clonal growth was higher in nitrogen-supplemented treatments, while flowering was more pronounced in carbon-supplemented treatments. Heterocyte production by epiphytic cyanobacteria on roots positively correlated with P. stratiotes total biomass, suggesting the macrophyte utilizes nitrogen fixed by periphytic cyanobacteria. The results highlight the importance of nitrogen and carbon for growth and reproduction, with distinct resource allocation for rosettes (nitrogen) and flowers (carbon). The P. stratiotes-cyanobacteria association may enhance macrophyte population expansion, underscoring the ecological role of these microorganisms. Full article
Show Figures

Graphical abstract

11 pages, 1217 KiB  
Article
New Bulgarian Rootstocks for Sour Cherry Cultivars (Prunus cerasus L.)
by Dimitar Vasilev, Svetoslav Malchev and Lilyana Nacheva
Plants 2025, 14(9), 1352; https://doi.org/10.3390/plants14091352 - 30 Apr 2025
Viewed by 411
Abstract
Research was conducted at the Agricultural Experiment Station—Khan Krum, Northeast Bulgaria during the period of 2014–2017. The aim of the study is to investigate the suitability of selected hybrids No.20-181 and No.20-192, obtained by interspecific crossing ‘Polevka’ (Prunus cerasus L.) × ‘Compact [...] Read more.
Research was conducted at the Agricultural Experiment Station—Khan Krum, Northeast Bulgaria during the period of 2014–2017. The aim of the study is to investigate the suitability of selected hybrids No.20-181 and No.20-192, obtained by interspecific crossing ‘Polevka’ (Prunus cerasus L.) × ‘Compact Van’ (Prunus avium L.) as clonal rootstocks for sour cherries. The rootstocks were grafted in a nursery with the cultivars ‘M-15’, ‘Nefris’, ‘Fanal’ and ‘Schattenmorelle’. Prunus mahaleb seedlings were used as the standard for comparison. Characteristics determining growth, the quality of the planting material and the compatibility of the rootstocks with commercial cultivars were tested. The average grafting success rate reported in the spring of the analyzed cultivar–rootstock combinations varied as follows: P. mahaleb (83–90%), hybrid No.20-192 (87–91%) and hybrid No.20-181 (82–85%). The selected hybrid 20-192 (‘Argo 2’) rootstock produces relatively weaker growth than the mahaleb. Hybrid 20-181 (‘Argo 1’) is characterized by the weakest growth. Both tested rootstock hybrids produce planting material with standard trunk diameter and tree height. With the weak growth that rootstock 20-181 induces in the grafted cultivar and the drought tolerance observed in 20-192, it is appropriate to continue the study in an orchard. Full article
Show Figures

Figure 1

15 pages, 2758 KiB  
Article
Photosynthetic Characterization of Oil Palm (Elaeis guineensis Jacq.) Seedlings During Late In Vitro Development and Acclimatization
by Rodrigo Andrés Avila-Diazgranados, Wilmer Tezara and Hernán Mauricio Romero
Plants 2025, 14(9), 1299; https://doi.org/10.3390/plants14091299 - 25 Apr 2025
Viewed by 732
Abstract
Oil palm (Elaeis guineensis Jacq.) is the leading global oil-producing crop due to its high oil yield. Increasing global demands for palm oil require efficient propagation. Conventional breeding is practical but slow, making micropropagation an attractive alternative for rapidly multiplying superior genotypes. [...] Read more.
Oil palm (Elaeis guineensis Jacq.) is the leading global oil-producing crop due to its high oil yield. Increasing global demands for palm oil require efficient propagation. Conventional breeding is practical but slow, making micropropagation an attractive alternative for rapidly multiplying superior genotypes. However, transitioning from in vitro to ex vitro conditions causes physiological stress, restricting survival and productivity. This study assessed gas exchange and chlorophyll fluorescence dynamics during acclimatization from in vitro conditions to field establishment, comparing the seedlings obtained in vitro with conventional seed-derived palm seedlings to conventional seed-derived palms. A pronounced photosynthetic efficiency decline occurred after transfer from in vitro culture, followed by a gradual recovery. The photosynthetic rate (A) increased from 0.86 µmol m−2 s−1 early in acclimatization to 15.43 µmol m−2 s−1 in field-established seedlings. Physiological characterization using CO2 and light response curves identified the reductions in carboxylation efficiency and overall quantum yield CO2. These biochemical constraints gradually diminished during acclimatization, facilitating a transition from heterotrophic to autotrophic growth. Chlorophyll fluorescence analysis revealed remarkable photoinhibition during initial ex vitro stages, indicated by a decreased maximum quantum efficiency of photosystem II. However, the seedlings progressively restored photochemical function throughout subsequent acclimatization phases. These findings highlight the importance of carefully regulating environmental parameters—particularly irradiance, humidity, and carbon availability—during early seedling acclimatization. The effective management of growth conditions significantly mitigates physiological stress, ensuring robust photosynthetic activity and optimized stomatal regulation. The improved acclimatization practices, therefore, can substantially enhance seedling survival rates, physiological resilience, and the overall field performance of micropropagated oil palms. Future research should focus on refining acclimatization protocols, emphasizing targeted physiological interventions to maximize the efficiency, commercial viability, and sustainability of oil palm clonal propagation. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture—2nd Edition)
Show Figures

Figure 1

17 pages, 2151 KiB  
Article
Clonal Variation in Growth, Physiology and Ultrastructure of Populus alba L. Seedlings Under NaCl Stress
by Mejda Abassi, Mohammed S. Lamhamedi, Ali Albouchi, Damase Khasa and Zoubeir Bejaoui
Forests 2025, 16(5), 721; https://doi.org/10.3390/f16050721 - 23 Apr 2025
Viewed by 307
Abstract
Afforestation and reforestation (A/R) of non-agricultural and marginal saline lands by promoting fast-growing and salinity-tolerant woody species are crucial strategies to overcome land degradation and vegetation cover scarcity. To obtain basic information before using Populus alba clones in such degraded areas, morpho-physiological and [...] Read more.
Afforestation and reforestation (A/R) of non-agricultural and marginal saline lands by promoting fast-growing and salinity-tolerant woody species are crucial strategies to overcome land degradation and vegetation cover scarcity. To obtain basic information before using Populus alba clones in such degraded areas, morpho-physiological and cellular responses to salt stress were investigated. The experiment was conducted in a nursery where cuttings of three P. alba clones (MA-104, MA-195 and OG) were grown for 90 days in 100 mM NaCl versus a non-saline control. A global approach highlighting clonal differences in terms of dry mass production and plant physiological performance was achieved by comparing plant water status, gas exchange, ionic selectivity, osmotic adjustment and chloroplast ultrastructure under the two treatments. Dry mass production and eco-physiological processes were reduced in response to salt stress, with substantial clonal variation. Clone MA-104 exhibited salinity-tolerant behaviour in contrast to clone MA-195 and OG’s medium or sensitive behaviour towards the stress. Tolerance mechanisms may be attributed to enhanced stomatal control and osmotic adjustment, thereby enabling the maintenance of turgor in plants subjected to salt stress. The chloroplast ultrastructure also showed modifications that are often involved in adaptation to salinity stress. Full article
(This article belongs to the Special Issue Physiological Mechanisms of Plant Responses to Environmental Stress)
Show Figures

Figure 1

22 pages, 5931 KiB  
Article
Seed Train Intensification and TFDF-Based Perfusion for MDCK Cell-Based Influenza A Virus Production
by Tilia Zinnecker, Emelie Wicke, Udo Reichl, Sven Göbel and Yvonne Genzel
Processes 2025, 13(5), 1286; https://doi.org/10.3390/pr13051286 - 23 Apr 2025
Viewed by 1136
Abstract
The production of influenza A virus (IAV) using Madin-Darby Canine Kidney (MDCK) cells is a key strategy for efficient influenza vaccine manufacturing. However, challenges remain in optimizing cell culture processes for higher yield and efficiency. This study aims to evaluate different process intensification [...] Read more.
The production of influenza A virus (IAV) using Madin-Darby Canine Kidney (MDCK) cells is a key strategy for efficient influenza vaccine manufacturing. However, challenges remain in optimizing cell culture processes for higher yield and efficiency. This study aims to evaluate different process intensification strategies on two distinct clonal MDCK suspension cell lines (C59 and C113) for improved IAV production. A semi-perfusion strategy was used to push cells towards high cell density (HCD), achieving up to 17 × 106 C113 cells/mL and 42 × 106 C59 cells/mL, respectively. Next, a Tangential Flow Depth Filtration (TFDF)-based perfusion process with direct harvest during IAV production was established, resulting in high titers and a 10-fold higher space-time yield for C59 and a 4-fold improvement for C113 compared to batch operation. In addition, the suitability of N-1 perfusion was evaluated for batch and intensified fed-batch processes. Cells taken from the N-1 perfusion showed different cell-specific growth rates, but this had no effect on virus titers except for processes started from oxygen-deprived precultures. Finally, comparable virus titers were obtained when the production bioreactor was directly inoculated from an HCD cryovial. Taken together, seed train intensification and TFDF-based perfusion majorly reduced process times and improved IAV production. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Graphical abstract

12 pages, 3005 KiB  
Article
Direct Shoot Regeneration from the Finger Millet’s In Vitro-Derived Shoot Apex and Genetic Fidelity Study with ISSR Markers
by Theivanayagam Maharajan, Veeramuthu Duraipandiyan and Thumadath Palayullaparambil Ajeesh Krishna
BioTech 2025, 14(2), 29; https://doi.org/10.3390/biotech14020029 - 18 Apr 2025
Viewed by 962
Abstract
Globally, people are cultivating finger millet, an important cereal, to improve food availability and health benefits for humans. However, the biotechnological research on this millet is limited and insufficient in this field. The primary focus of this study is to optimize an efficient [...] Read more.
Globally, people are cultivating finger millet, an important cereal, to improve food availability and health benefits for humans. However, the biotechnological research on this millet is limited and insufficient in this field. The primary focus of this study is to optimize an efficient regenerated protocol for initiating further plant transformation studies, using the shoot apex as an explant and various growth regulators. For example, three cytokinins (BAP, TDZ, and Kin) at different concentrations were used to induce multiple shoots of finger millet. Among these, TDZ (4.5 µM) provided the maximum number (17.3) of shoots as compared to BAP and Kin. IBA (2.46 µM), along with MS medium, was used for the induction of roots, where 5.6 roots were produced in an individual shoot and the length of the root was longer with a size of 8.2 cm after two weeks of incubation. The clonal fidelity of the in vitro regenerated plantlets of finger millet was confirmed by ISSR primers. Overall, the present work developed a robust and reliable procedure for the establishment of efficient and reproducible regeneration through the shoot apex that will be useful for the genetic improvement of this crop. The genetic enhancement of these millets as well as the successful creation of transgenic plant varieties modified for resistance to biotic and abiotic challenges in the near future would be aided by this study. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

17 pages, 7103 KiB  
Article
Standardized Protocol for Somatic Embryogenesis from Vegetative Organs in Hybrid Sweetgum (L. styraciflua × L. formosana)
by Hongxuan Li, Yingming Fan, Jindian Kang, Shuaizheng Qi, Fen Bao, Ying Li, Long Cheng, Dingju Zhan, Zhenwu Pang, Jian Zhao and Jinfeng Zhang
Forests 2025, 16(4), 670; https://doi.org/10.3390/f16040670 - 11 Apr 2025
Viewed by 467
Abstract
Embryos propagated from vegetative organs can maintain the excellent characteristics of the ortet tree and can make full use of the advantages of somatic embryogenesis technology in the large-scale clonal propagation of forest trees. However, in forest trees, a major obstacle to reproducing [...] Read more.
Embryos propagated from vegetative organs can maintain the excellent characteristics of the ortet tree and can make full use of the advantages of somatic embryogenesis technology in the large-scale clonal propagation of forest trees. However, in forest trees, a major obstacle to reproducing seedlings through somatic embryogenesis is the challenge of inducing somatic embryos using vegetative organs as explants. In this study, we have successfully developed a procedure to induce somatic embryogenesis (SE) in adult hybrid sweetgum trees for the first time. Leaves, petioles, and stem segments isolated from test-tube seedlings of three genotypes of hybrid sweetgum trees were used as explants to induce SE. The induction of SE was significantly influenced by genotype, explant type, and medium composition. The highest induction and proliferation efficiencies were achieved using a modified Blaydes’ medium supplemented with 1.0 mg/L 2,4-D and 0.5 mg/L 6-BA. Mature somatic embryos were obtained in media without plant growth regulators (PGRs). Among the three genotypes, only FX-12 failed to induce somatic embryos in all the explants. Petiole explants of FX-2 yielded 22 somatic embryos per gram. In FX-54, somatic embryos were induced from both leaf and petiole explants. The PGR concentration in the germination medium significantly affected the efficiency of somatic embryo germination, with the best germination results observed in modified Blaydes’ medium containing 0.5 mg/L 6-BA. This procedure resulted in over 60% of somatic embryos developing normally into plantlets. This study develops an SE system using vegetative organs as explants for the first time, providing technical support for large-scale asexual propagation and molecular breeding in hybrid sweetgum. Full article
Show Figures

Figure 1

Back to TopTop