Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = clinical target volume delineation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2507 KiB  
Case Report
On the Use of 4D-PET/CT for the Safe SBRT Re-Irradiation of Central Lung Recurrence Within Radiation-Induced Fibrosis: A Clinical Case
by Paul Retif, Emilie Verrecchia-Ramos, Motchy Saleh, Abdourahamane Djibo Sidikou, Romain Letellier, Anwar Al Salah, Estelle Pfletschinger, Fabian Taesch, Sinan Ben-Mahmoud and Xavier Michel
J. Clin. Med. 2025, 14(12), 4015; https://doi.org/10.3390/jcm14124015 - 6 Jun 2025
Viewed by 712
Abstract
Background: The re-irradiation of centrally located lung tumors poses substantial risks due to prior dose exposure and proximity to critical structures. Accurate target delineation is crucial to minimize toxicity and ensure tumor coverage. Four-dimensional positron emission tomography/computed tomography (4D-PET/CT) integrates respiratory motion and [...] Read more.
Background: The re-irradiation of centrally located lung tumors poses substantial risks due to prior dose exposure and proximity to critical structures. Accurate target delineation is crucial to minimize toxicity and ensure tumor coverage. Four-dimensional positron emission tomography/computed tomography (4D-PET/CT) integrates respiratory motion and metabolic data, offering improved delineation over static imaging. Its clinical utility in re-irradiation remains under-reported. Methods: A 67-year-old male presented with the central recurrence of squamous cell carcinoma in the right upper lobe, embedded in radiation-induced fibrosis, following prior chemoradiotherapy. Delineation using static PET underestimated tumor motion. A 4D-PET/CT-guided Stereotactic Body Radiation Therapy (SBRT) plan was developed with a prescription of 60 Gy in eight fractions. A comparative plan using static PET was generated to assess the dosimetric differences. Results: The internal target volume (ITV) from 4D-PET/CT was nearly double the size of the GTV from static PET, with a 5.1 mm discrepancy in the craniocaudal axis. The 4D-PET-based plan achieved 95.0% PTV coverage, while the static PET-based plan covered only 61.7%, illustrating the risk of underdosage without motion-resolved imaging. The patient completed the treatment without acute or late toxicity and showed a sustained metabolic response at one year (SUVmax from 13.4 to 5.8). Conclusions: This case demonstrates the clinical value of 4D-PET/CT in the SBRT re-irradiation of centrally located lung tumors, particularly in fibrotic regions where anatomical imaging is insufficient. It enabled accurate delineation, improved dosimetric coverage, and safe, effective retreatment. These findings support its integration into planning for complex thoracic re-irradiation. Full article
(This article belongs to the Special Issue The Clinical Role of Imaging in Lung Diseases)
Show Figures

Figure 1

26 pages, 1223 KiB  
Systematic Review
Performance of Commercial Deep Learning-Based Auto-Segmentation Software for Prostate Cancer Radiation Therapy Planning: A Systematic Review
by Curtise K. C. Ng
Information 2025, 16(3), 215; https://doi.org/10.3390/info16030215 - 11 Mar 2025
Cited by 1 | Viewed by 1511
Abstract
As yet, there is no systematic review focusing on benefits and issues of commercial deep learning-based auto-segmentation (DLAS) software for prostate cancer (PCa) radiation therapy (RT) planning despite that NRG Oncology has underscored such necessity. This article’s purpose is to systematically review commercial [...] Read more.
As yet, there is no systematic review focusing on benefits and issues of commercial deep learning-based auto-segmentation (DLAS) software for prostate cancer (PCa) radiation therapy (RT) planning despite that NRG Oncology has underscored such necessity. This article’s purpose is to systematically review commercial DLAS software product performances for PCa RT planning and their associated evaluation methodology. A literature search was performed with the use of electronic databases on 7 November 2024. Thirty-two articles were included as per the selection criteria. They evaluated 12 products (Carina Medical LLC INTContour (Lexington, KY, USA), Elekta AB ADMIRE (Stockholm, Sweden), Limbus AI Inc. Contour (Regina, SK, Canada), Manteia Medical Technologies Co. AccuContour (Jian Sheng, China), MIM Software Inc. Contour ProtégéAI (Cleveland, OH, USA), Mirada Medical Ltd. DLCExpert (Oxford, UK), MVision.ai Contour+ (Helsinki, Finland), Radformation Inc. AutoContour (New York, NY, USA), RaySearch Laboratories AB RayStation (Stockholm, Sweden), Siemens Healthineers AG AI-Rad Companion Organs RT, syngo.via RT Image Suite and DirectORGANS (Erlangen, Germany), Therapanacea Annotate (Paris, France), and Varian Medical Systems, Inc. Ethos (Palo Alto, CA, USA)). Their results illustrate that the DLAS products can delineate 12 organs at risk (abdominopelvic cavity, anal canal, bladder, body, cauda equina, left (L) and right (R) femurs, L and R pelvis, L and R proximal femurs, and sacrum) and four clinical target volumes (prostate, lymph nodes, prostate bed, and seminal vesicle bed) with clinically acceptable outcomes, resulting in delineation time reduction, 5.7–81.1%. Although NRG Oncology has recommended each clinical centre to perform its own DLAS product evaluation prior to clinical implementation, such evaluation seems more important for AccuContour and Ethos due to the methodological issues of the respective single studies, e.g., small dataset used, etc. Full article
Show Figures

Figure 1

13 pages, 6870 KiB  
Article
Intra-Arterial Super-Selective Delivery of Yttrium-90 for the Treatment of Recurrent Glioblastoma: In Silico Proof of Concept with Feasibility and Safety Analysis
by Giulia Paolani, Silvia Minosse, Silvia Strolin, Miriam Santoro, Noemi Pucci, Francesca Di Giuliano, Francesco Garaci, Letizia Oddo, Yosra Toumia, Eugenia Guida, Francesco Riccitelli, Giulia Perilli, Alessandra Vitaliti, Angelico Bedini, Susanna Dolci, Gaio Paradossi, Fabio Domenici, Valerio Da Ros and Lidia Strigari
Pharmaceutics 2025, 17(3), 345; https://doi.org/10.3390/pharmaceutics17030345 - 7 Mar 2025
Viewed by 839
Abstract
Background: Intra-arterial cerebral infusion (IACI) of radiotherapeutics is a promising treatment for glioblastoma (GBM) recurrence. We investigated the in silico feasibility and safety of Yttrium-90-Poly(vinyl alcohol)-Microbubble (90Y-PVA-MB) IACI in patients with recurrent GBM and compared the results with those of [...] Read more.
Background: Intra-arterial cerebral infusion (IACI) of radiotherapeutics is a promising treatment for glioblastoma (GBM) recurrence. We investigated the in silico feasibility and safety of Yttrium-90-Poly(vinyl alcohol)-Microbubble (90Y-PVA-MB) IACI in patients with recurrent GBM and compared the results with those of external beam radiation therapy (EBRT). Methods: Contrast-enhanced T1-weighted magnetic resonance imaging (T1W-MRI) was used to delineate the tumor volumes and CT scans were used to automatically segment the organs at risk in nine patients with recurrent GBM. Volumetric Modulated Arc Therapy (VMAT) treatment plans were generated using a clinical treatment planning system. Assuming the relative intensity of each voxel from the MR-T1W as a valid surrogate for the post-IACI 90Y-PVA-MB distribution, a specific 90Y dose voxel kernel was obtained through Monte Carlo (MC) simulations and convolved with the MRI, resulting in a 90Y-PVA-MB-based dose distribution that was then compared with the VMAT plans. Results: The physical dose distribution obtained from the simulation of 1GBq of 90Y-PVA-MBs was rescaled to ensure that 95% of the prescribed dose was delivered to 95% or 99% of the target (i.e., A95% and A99%, respectively). The calculated activities were A95% = 269.2 [63.6–2334.1] MBq and A99% = 370.6 [93.8–3315.2] MBq, while the mean doses to the target were 58.2 [58.0–60.0] Gy for VMAT, and 123.1 [106.9–153.9] Gy and 170.1 [145.9–223.8] Gy for A95% and A99%, respectively. Additionally, non-target brain tissue was spared in the 90Y-PVA-MB treatment compared to the VMAT approach, with a median [range] of mean doses of 12.5 [12.0–23.0] Gy for VMAT, and 0.6 [0.2–1.0] Gy and 0.9 [0.3–1.5] Gy for the 90Y treatments assuming A95% and A99%, respectively. Conclusions: 90Y-PVA-MB IACI using MR-T1W appears to be feasible and safe, as it enables the delivery of higher doses to tumors and lower doses to non-target volumes compared to the VMAT approach. Full article
(This article belongs to the Special Issue CNS Drug Delivery: Recent Advances and Challenges)
Show Figures

Figure 1

23 pages, 776 KiB  
Systematic Review
Performance of Commercial Deep Learning-Based Auto-Segmentation Software for Breast Cancer Radiation Therapy Planning: A Systematic Review
by Curtise K. C. Ng
Multimodal Technol. Interact. 2024, 8(12), 114; https://doi.org/10.3390/mti8120114 - 20 Dec 2024
Cited by 2 | Viewed by 1589
Abstract
As yet, no systematic review on commercial deep learning-based auto-segmentation (DLAS) software for breast cancer radiation therapy (RT) planning has been published, although NRG Oncology has highlighted the necessity for such. The purpose of this systematic review is to investigate the performances of [...] Read more.
As yet, no systematic review on commercial deep learning-based auto-segmentation (DLAS) software for breast cancer radiation therapy (RT) planning has been published, although NRG Oncology has highlighted the necessity for such. The purpose of this systematic review is to investigate the performances of commercial DLAS software packages for breast cancer RT planning and methods for their performance evaluation. A literature search was conducted with the use of electronic databases. Fifteen papers met the selection criteria and were included. The included studies evaluated eight software packages (Limbus Contour, Manteia AccuLearning, Mirada DLCExpert, MVision.ai Contour+, Radformation AutoContour, RaySearch RayStation, Siemens syngo.via RT Image Suite/AI-Rad Companion Organs RT, and Therapanacea Annotate). Their findings show that the DLAS software could contour ten organs at risk (body, contralateral breast, esophagus-overlapping area, heart, ipsilateral humeral head, left and right lungs, liver, and sternum and trachea) and three clinical target volumes (CTVp_breast, CTVp_chestwall, and CTVn_L1) up to the clinically acceptable standard. This can contribute to 45.4%–93.7% contouring time reduction per patient. Although NRO Oncology has suggested that every clinical center should conduct its own DLAS software evaluation before clinical implementation, such testing appears particularly crucial for Manteia AccuLearning, Mirada DLCExpert, and MVision.ai Contour+ as a result of the methodological weaknesses of the corresponding studies such as the use of small datasets collected retrospectively from single centers for the evaluation. Full article
Show Figures

Figure 1

12 pages, 1009 KiB  
Article
The Systemic Inflammation Response Index Efficiently Discriminates between the Failure Patterns of Patients with Isocitrate Dehydrogenase Wild-Type Glioblastoma Following Radiochemotherapy with FLAIR-Based Gross Tumor Volume Delineation
by Sukran Senyurek, Murat Serhat Aygun, Nulifer Kilic Durankus, Eyub Yasar Akdemir, Duygu Sezen, Erkan Topkan, Yasemin Bolukbasi and Ugur Selek
Brain Sci. 2024, 14(9), 922; https://doi.org/10.3390/brainsci14090922 - 15 Sep 2024
Viewed by 1417
Abstract
Background/Objectives: The objective of this study was to assess the connection between the systemic inflammation response index (SIRI) values and failure patterns of patients with IDH wild-type glioblastoma (GB) who underwent radiotherapy (RT) with FLAIR-based gross tumor volume (GTV) delineation. Methods: Seventy-one patients [...] Read more.
Background/Objectives: The objective of this study was to assess the connection between the systemic inflammation response index (SIRI) values and failure patterns of patients with IDH wild-type glioblastoma (GB) who underwent radiotherapy (RT) with FLAIR-based gross tumor volume (GTV) delineation. Methods: Seventy-one patients who received RT at a dose of 60 Gy to the GTV and 50 Gy to the clinical target volume (CTV) and had documented recurrence were retrospectively analyzed. Each patient’s maximum distance of recurrence (MDR) from the GTV was documented in whichever plane it extended the farthest. The failure patterns were described as intra-GTV, in-CTV/out-GTV, distant, and intra-GTV and distant. For analytical purposes, the failure pattern was categorized into two groups, namely Group 1, intra-GTV or in-CTV/out-GTV, and Group 2, distant or intra-GTV and distant. The SIRI was calculated before surgery and corticosteroid administration. A receiver operating characteristic (ROC) curve analysis was used to determine the optimal SIRI cut-off that distinguishes between the different failure patterns. Results: Failure occurred as follows: intra-GTV in 40 (56.3%), in-CTV/out-GTV in 4 (5.6%), distant in 18 (25.4%), and intra-GTV + distant in 9 (12.7%) patients. The mean MDR was 13.5 mm, and recurrent lesions extended beyond 15 mm in only seven patients. Patients with an SIRI score ≥ 3 demonstrated a significantly higher incidence of Group 1 failure patterns than their counterparts with an SIRI score < 3 (74.3% vs. 50.0%; p = 0.035). Conclusions: The present results show that using the SIRI with a cut-off value of ≥3 significantly predicts failure patterns. Additionally, the margin for the GTV can be safely reduced to 15 mm when using FLAIR-based target delineation in patients with GB. Full article
(This article belongs to the Special Issue Brain Tumors: From Molecular Basis to Therapy)
Show Figures

Figure 1

28 pages, 5023 KiB  
Review
Role of 18F-FDG PET/CT in Head and Neck Squamous Cell Carcinoma: Current Evidence and Innovative Applications
by Carmelo Caldarella, Marina De Risi, Mariangela Massaccesi, Francesco Miccichè, Francesco Bussu, Jacopo Galli, Vittoria Rufini and Lucia Leccisotti
Cancers 2024, 16(10), 1905; https://doi.org/10.3390/cancers16101905 - 16 May 2024
Cited by 7 | Viewed by 5380
Abstract
This article provides an overview of the use of 18F-FDG PET/CT in various clinical scenarios of head–neck squamous cell carcinoma, ranging from initial staging to treatment-response assessment, and post-therapy follow-up, with a focus on the current evidence, debated issues, and innovative applications. [...] Read more.
This article provides an overview of the use of 18F-FDG PET/CT in various clinical scenarios of head–neck squamous cell carcinoma, ranging from initial staging to treatment-response assessment, and post-therapy follow-up, with a focus on the current evidence, debated issues, and innovative applications. Methodological aspects and the most frequent pitfalls in head–neck imaging interpretation are described. In the initial work-up, 18F-FDG PET/CT is recommended in patients with metastatic cervical lymphadenectomy and occult primary tumor; moreover, it is a well-established imaging tool for detecting cervical nodal involvement, distant metastases, and synchronous primary tumors. Various 18F-FDG pre-treatment parameters show prognostic value in terms of disease progression and overall survival. In this scenario, an emerging role is played by radiomics and machine learning. For radiation-treatment planning, 18F-FDG PET/CT provides an accurate delineation of target volumes and treatment adaptation. Due to its high negative predictive value, 18F-FDG PET/CT, performed at least 12 weeks after the completion of chemoradiotherapy, can prevent unnecessary neck dissections. In addition to radiomics and machine learning, emerging applications include PET/MRI, which combines the high soft-tissue contrast of MRI with the metabolic information of PET, and the use of PET radiopharmaceuticals other than 18F-FDG, which can answer specific clinical needs. Full article
(This article belongs to the Special Issue Clinical and Translational Research in Head and Neck Cancer)
Show Figures

Figure 1

16 pages, 5375 KiB  
Article
The Utility of Spectroscopic MRI in Stereotactic Biopsy and Radiotherapy Guidance in Newly Diagnosed Glioblastoma
by Abinand C. Rejimon, Karthik K. Ramesh, Anuradha G. Trivedi, Vicki Huang, Eduard Schreibmann, Brent D. Weinberg, Lawrence R. Kleinberg, Hui-Kuo G. Shu, Hyunsuk Shim and Jeffrey J. Olson
Tomography 2024, 10(3), 428-443; https://doi.org/10.3390/tomography10030033 - 20 Mar 2024
Cited by 4 | Viewed by 2820
Abstract
Current diagnostic and therapeutic approaches for gliomas have limitations hindering survival outcomes. We propose spectroscopic magnetic resonance imaging as an adjunct to standard MRI to bridge these gaps. Spectroscopic MRI is a volumetric MRI technique capable of identifying tumor infiltration based on its [...] Read more.
Current diagnostic and therapeutic approaches for gliomas have limitations hindering survival outcomes. We propose spectroscopic magnetic resonance imaging as an adjunct to standard MRI to bridge these gaps. Spectroscopic MRI is a volumetric MRI technique capable of identifying tumor infiltration based on its elevated choline (Cho) and decreased N-acetylaspartate (NAA). We present the clinical translatability of spectroscopic imaging with a Cho/NAA ≥ 5x threshold for delineating a biopsy target in a patient diagnosed with non-enhancing glioma. Then, we describe the relationship between the undertreated tumor detected with metabolite imaging and overall survival (OS) from a pilot study of newly diagnosed GBM patients treated with belinostat and chemoradiation. Each cohort (control and belinostat) were split into subgroups using the median difference between pre-radiotherapy Cho/NAA ≥ 2x and the treated T1-weighted contrast-enhanced (T1w-CE) volume. We used the Kaplan–Meier estimator to calculate median OS for each subgroup. The median OS was 14.4 months when the difference between Cho/NAA ≥ 2x and T1w-CE volumes was higher than the median compared with 34.3 months when this difference was lower than the median. The T1w-CE volumes were similar in both subgroups. We find that patients who had lower volumes of undertreated tumors detected via spectroscopy had better survival outcomes. Full article
(This article belongs to the Special Issue Progress in the Use of Advanced Imaging for Radiation Oncology)
Show Figures

Figure 1

17 pages, 3108 KiB  
Article
Deep Learning for Delineation of the Spinal Canal in Whole-Body Diffusion-Weighted Imaging: Normalising Inter- and Intra-Patient Intensity Signal in Multi-Centre Datasets
by Antonio Candito, Richard Holbrey, Ana Ribeiro, Christina Messiou, Nina Tunariu, Dow-Mu Koh and Matthew D. Blackledge
Bioengineering 2024, 11(2), 130; https://doi.org/10.3390/bioengineering11020130 - 29 Jan 2024
Cited by 1 | Viewed by 1994
Abstract
Background: Whole-Body Diffusion-Weighted Imaging (WBDWI) is an established technique for staging and evaluating treatment response in patients with multiple myeloma (MM) and advanced prostate cancer (APC). However, WBDWI scans show inter- and intra-patient intensity signal variability. This variability poses challenges in accurately quantifying [...] Read more.
Background: Whole-Body Diffusion-Weighted Imaging (WBDWI) is an established technique for staging and evaluating treatment response in patients with multiple myeloma (MM) and advanced prostate cancer (APC). However, WBDWI scans show inter- and intra-patient intensity signal variability. This variability poses challenges in accurately quantifying bone disease, tracking changes over follow-up scans, and developing automated tools for bone lesion delineation. Here, we propose a novel automated pipeline for inter-station, inter-scan image signal standardisation on WBDWI that utilizes robust segmentation of the spinal canal through deep learning. Methods: We trained and validated a supervised 2D U-Net model to automatically delineate the spinal canal (both the spinal cord and surrounding cerebrospinal fluid, CSF) in an initial cohort of 40 patients who underwent WBDWI for treatment response evaluation (80 scans in total). Expert-validated contours were used as the target standard. The algorithm was further semi-quantitatively validated on four additional datasets (three internal, one external, 207 scans total) by comparing the distributions of average apparent diffusion coefficient (ADC) and volume of the spinal cord derived from a two-component Gaussian mixture model of segmented regions. Our pipeline subsequently standardises WBDWI signal intensity through two stages: (i) normalisation of signal between imaging stations within each patient through histogram equalisation of slices acquired on either side of the station gap, and (ii) inter-scan normalisation through histogram equalisation of the signal derived within segmented spinal canal regions. This approach was semi-quantitatively validated in all scans available to the study (N = 287). Results: The test dice score, precision, and recall of the spinal canal segmentation model were all above 0.87 when compared to manual delineation. The average ADC for the spinal cord (1.7 × 10−3 mm2/s) showed no significant difference from the manual contours. Furthermore, no significant differences were found between the average ADC values of the spinal cord across the additional four datasets. The signal-normalised, high-b-value images were visualised using a fixed contrast window level and demonstrated qualitatively better signal homogeneity across scans than scans that were not signal-normalised. Conclusion: Our proposed intensity signal WBDWI normalisation pipeline successfully harmonises intensity values across multi-centre cohorts. The computational time required is less than 10 s, preserving contrast-to-noise and signal-to-noise ratios in axial diffusion-weighted images. Importantly, no changes to the clinical MRI protocol are expected, and there is no need for additional reference MRI data or follow-up scans. Full article
Show Figures

Figure 1

27 pages, 2714 KiB  
Article
Segmentation of 71 Anatomical Structures Necessary for the Evaluation of Guideline-Conforming Clinical Target Volumes in Head and Neck Cancers
by Alexandra Walter, Philipp Hoegen-Saßmannshausen, Goran Stanic, Joao Pedro Rodrigues, Sebastian Adeberg, Oliver Jäkel, Martin Frank and Kristina Giske
Cancers 2024, 16(2), 415; https://doi.org/10.3390/cancers16020415 - 18 Jan 2024
Cited by 4 | Viewed by 3585
Abstract
The delineation of the clinical target volumes (CTVs) for radiation therapy is time-consuming, requires intensive training and shows high inter-observer variability. Supervised deep-learning methods depend heavily on consistent training data; thus, State-of-the-Art research focuses on making CTV labels more homogeneous and strictly bounding [...] Read more.
The delineation of the clinical target volumes (CTVs) for radiation therapy is time-consuming, requires intensive training and shows high inter-observer variability. Supervised deep-learning methods depend heavily on consistent training data; thus, State-of-the-Art research focuses on making CTV labels more homogeneous and strictly bounding them to current standards. International consensus expert guidelines standardize CTV delineation by conditioning the extension of the clinical target volume on the surrounding anatomical structures. Training strategies that directly follow the construction rules given in the expert guidelines or the possibility of quantifying the conformance of manually drawn contours to the guidelines are still missing. Seventy-one anatomical structures that are relevant to CTV delineation in head- and neck-cancer patients, according to the expert guidelines, were segmented on 104 computed tomography scans, to assess the possibility of automating their segmentation by State-of-the-Art deep learning methods. All 71 anatomical structures were subdivided into three subsets of non-overlapping structures, and a 3D nnU-Net model with five-fold cross-validation was trained for each subset, to automatically segment the structures on planning computed tomography scans. We report the DICE, Hausdorff distance and surface DICE for 71 + 5 anatomical structures, for most of which no previous segmentation accuracies have been reported. For those structures for which prediction values have been reported, our segmentation accuracy matched or exceeded the reported values. The predictions from our models were always better than those predicted by the TotalSegmentator. The sDICE with 2 mm margin was larger than 80% for almost all the structures. Individual structures with decreased segmentation accuracy are analyzed and discussed with respect to their impact on the CTV delineation following the expert guidelines. No deviation is expected to affect the rule-based automation of the CTV delineation. Full article
Show Figures

Figure 1

15 pages, 3187 KiB  
Article
Comparison between [68Ga]Ga-PSMA-617 and [18F]FET PET as Imaging Biomarkers in Adult Recurrent Glioblastoma
by Caterina Brighi, Simon Puttick, Amanda Woods, Paul Keall, Paul A. Tooney, David E. J. Waddington, Vicki Sproule, Stephen Rose and Michael Fay
Int. J. Mol. Sci. 2023, 24(22), 16208; https://doi.org/10.3390/ijms242216208 - 11 Nov 2023
Cited by 9 | Viewed by 2890
Abstract
The aim of this prospective clinical study was to evaluate the potential of the prostate specific membrane antigen (PSMA) targeting ligand, [68Ga]-PSMA–Glu–NH–CO–NH–Lys-2-naphthyl-L-Ala-cyclohexane-DOTA ([68Ga]Ga-PSMA-617) as a positron emission tomography (PET) imaging biomarker in recurrent glioblastoma patients. Patients underwent [68 [...] Read more.
The aim of this prospective clinical study was to evaluate the potential of the prostate specific membrane antigen (PSMA) targeting ligand, [68Ga]-PSMA–Glu–NH–CO–NH–Lys-2-naphthyl-L-Ala-cyclohexane-DOTA ([68Ga]Ga-PSMA-617) as a positron emission tomography (PET) imaging biomarker in recurrent glioblastoma patients. Patients underwent [68Ga]Ga-PSMA-617 and O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) PET scans on two separate days. [68Ga]Ga-PSMA-617 tumour selectivity was assessed by comparing tumour volume delineation and by assessing the intra-patient correlation between tumour uptake on [68Ga]Ga-PSMA-617 and [18F]FET PET images. [68Ga]Ga-PSMA-617 tumour specificity was evaluated by comparing its tumour-to-brain ratio (TBR) with [18F]FET TBR and its tumour volume with the magnetic resonance imaging (MRI) contrast-enhancing (CE) tumour volume. Ten patients were recruited in this study. [68Ga]Ga-PSMA-617-avid tumour volume was larger than the [18F]FET tumour volume (p = 0.063). There was a positive intra-patient correlation (median Pearson r = 0.51; p < 0.0001) between [68Ga]Ga-PSMA-617 and [18F]FET in the tumour volume. [68Ga]Ga-PSMA-617 had significantly higher TBR (p = 0.002) than [18F]FET. The [68Ga]Ga-PSMA-617-avid tumour volume was larger than the CE tumour volume (p = 0.0039). Overall, accumulation of [68Ga]-Ga-PSMA-617 beyond [18F]FET-avid tumour regions suggests the presence of neoangiogenesis in tumour regions that are not overly metabolically active yet. Higher tumour specificity suggests that [68Ga]-Ga-PSMA-617 could be a better imaging biomarker for recurrent tumour delineation and secondary treatment planning than [18F]FET and CE MRI. Full article
(This article belongs to the Special Issue The Occurrence, Evolution and Treatment of Glioblastoma)
Show Figures

Figure 1

10 pages, 6618 KiB  
Article
Endoscopic Ultrasound-Guided Fiducial Placement for Stereotactic Body Radiation Therapy in Patients with Pancreatic Cancer
by Irina M. Cazacu, Ben S. Singh, Rachael M. Martin-Paulpeter, Sam Beddar, Stephen Chun, Emma B. Holliday, Albert C. Koong, Prajnan Das, Eugene J. Koay, Cullen Taniguchi, Joseph M. Herman and Manoop S. Bhutani
Cancers 2023, 15(22), 5355; https://doi.org/10.3390/cancers15225355 - 10 Nov 2023
Cited by 4 | Viewed by 2359
Abstract
Accurate delivery of stereotactic body radiotherapy (SBRT) to pancreatic tumors relies on successful EUS-guided placement of fiducial markers. The aim of this study is to report the technical feasibility and safety of EUS-guided fiducial placement and to evaluate the characteristics and technical benefit [...] Read more.
Accurate delivery of stereotactic body radiotherapy (SBRT) to pancreatic tumors relies on successful EUS-guided placement of fiducial markers. The aim of this study is to report the technical feasibility and safety of EUS-guided fiducial placement and to evaluate the characteristics and technical benefit of SBRT in a cohort of patients with pancreatic cancer (PC). A retrospective chart review was performed for all (n = 82) PC patients referred for EUS-guided fiducial placement by a single endosonographer at a tertiary cancer center. Data regarding EUS-related technical details, SBRT characteristics, adverse events, and continuous visibility of fiducials were recorded and analyzed. Most patients included in the study had either locally advanced disease (32 patients, 39%) or borderline resectable disease (29 patients, 35%). Eighty-two PC patients underwent the placement of 230 fiducial markers under EUS guidance. The technical success rate of the fiducial placement was 98%. No immediate EUS-related adverse events were reported. The average time to the simulation CT after fiducial placement was 3.1 days. Of the 216 fiducial markers used for the SBRT delivery, 202 fiducial markers were visible on both the simulation CT and the cone beam CT scan. A median dose of 40cGY was given to all the patients in five fractions. Of these, 41% of the patients reported no SBRT-related toxicities during the follow-up. Fatigue and nausea were the most reported SBRT-related toxicities, which were seen in 35% of the patients post-SBRT. Our results demonstrate that EUS-guided fiducial placement is safe and effective in target volume delineation, facilitating SBRT delivery in PC patients. Further clinical trials are needed to determine the SBRT-related survival benefits in patients with pancreatic cancer. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 5963 KiB  
Review
A Comprehensive Primer on Radiation Oncology for Non-Radiation Oncologists
by Arnaud Beddok, Ruth Lim, Juliette Thariat, Helen A. Shih and Georges El Fakhri
Cancers 2023, 15(20), 4906; https://doi.org/10.3390/cancers15204906 - 10 Oct 2023
Cited by 2 | Viewed by 2680
Abstract
Background: Multidisciplinary management is crucial in cancer diagnosis and treatment. Multidisciplinary teams include specialists in surgery, medical therapies, and radiation therapy (RT), each playing unique roles in oncology care. One significant aspect is RT, guided by radiation oncologists (ROs). This paper serves as [...] Read more.
Background: Multidisciplinary management is crucial in cancer diagnosis and treatment. Multidisciplinary teams include specialists in surgery, medical therapies, and radiation therapy (RT), each playing unique roles in oncology care. One significant aspect is RT, guided by radiation oncologists (ROs). This paper serves as a detailed primer for non-oncologists, medical students, or non-clinical investigators, educating them on contemporary RT practices. Methods: This report follows the process of RT planning and execution. Starting from the decision-making in multidisciplinary teams to the completion of RT and subsequent patient follow-up, it aims to offer non-oncologists an understanding of the RO’s work in a comprehensive manner. Results: The first step in RT is a planning session that includes obtaining a CT scan of the area to be treated, known as the CT simulation. The patients are imaged in the exact position in which they will receive treatment. The second step, which is the primary source of uncertainty, involves the delineation of treatment targets and organs at risk (OAR). The objective is to ensure precise irradiation of the target volume while sparing the OARs as much as possible. Various radiation modalities, such as external beam therapy with electrons, photons, or particles (including protons and carbon ions), as well as brachytherapy, are utilized. Within these modalities, several techniques, such as three-dimensional conformal RT, intensity-modulated RT, volumetric modulated arc therapy, scattering beam proton therapy, and intensity-modulated proton therapy, are employed to achieve optimal treatment outcomes. The RT plan development is an iterative process involving medical physicists, dosimetrists, and ROs. The complexity and time required vary, ranging from an hour to a week. Once approved, RT begins, with image-guided RT being standard practice for patient alignment. The RO manages acute toxicities during treatment and prepares a summary upon completion. There is a considerable variance in practices, with some ROs offering lifelong follow-up and managing potential late effects of treatment. Conclusions: Comprehension of RT clinical effects by non-oncologists providers significantly elevates long-term patient care quality. Hence, educating non-oncologists enhances care for RT patients, underlining this report’s importance. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

20 pages, 25115 KiB  
Review
Recent Advances and Adaptive Strategies in Image Guidance for Cervical Cancer Radiotherapy
by Beatrice Anghel, Crenguta Serboiu, Andreea Marinescu, Iulian-Alexandru Taciuc, Florin Bobirca and Anca Daniela Stanescu
Medicina 2023, 59(10), 1735; https://doi.org/10.3390/medicina59101735 - 27 Sep 2023
Cited by 10 | Viewed by 4589
Abstract
The standard of care for locally advanced cervical cancer is external beam radiotherapy (EBRT) with simultaneous chemotherapy followed by an internal radiation boost. New imaging methods such as positron-emission tomography and magnetic resonance imaging have been implemented into daily practice for better tumor [...] Read more.
The standard of care for locally advanced cervical cancer is external beam radiotherapy (EBRT) with simultaneous chemotherapy followed by an internal radiation boost. New imaging methods such as positron-emission tomography and magnetic resonance imaging have been implemented into daily practice for better tumor delineation in radiotherapy planning. The method of delivering radiation has changed with technical advances in qualitative imaging and treatment delivery. Image-guided radiotherapy (IGRT) plays an important role in minimizing treatment toxicity of pelvic radiation and provides a superior conformality for sparing the organs at risk (OARs) such as bone marrow, bowel, rectum, and bladder. Similarly, three-dimensional image-guided adaptive brachytherapy (3D-IGABT) with computed tomography (CT) or magnetic resonance imaging (MRI) has been reported to improve target coverage and reduce the dose to normal tissues. Brachytherapy is a complementary part of radiotherapy treatment for cervical cancer and, over the past 20 years, 3D-image-based brachytherapy has rapidly evolved and established itself as the gold standard. With new techniques and adaptive treatment in cervical cancer, the concept of personalized medicine is introduced with an enhanced comprehension of the therapeutic index not only in terms of volume (three-dimensional) but during treatment too (four-dimensional). Current data show promising results with integrated IGRT and IGABT in clinical practice and, therefore, better local control and overall survival while reducing treatment-related morbidity. This review gives an overview of the substantial impact that occurred in the progress of image-guided adaptive external beam radiotherapy and brachytherapy. Full article
(This article belongs to the Special Issue Diagnostic and Interventional Imaging in Various Diseases)
Show Figures

Figure 1

26 pages, 3242 KiB  
Review
Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions
by John Michael Bryant, Joseph Weygand, Emily Keit, Ruben Cruz-Chamorro, Maria L. Sandoval, Ibrahim M. Oraiqat, Jacqueline Andreozzi, Gage Redler, Kujtim Latifi, Vladimir Feygelman and Stephen A. Rosenberg
Cancers 2023, 15(7), 2081; https://doi.org/10.3390/cancers15072081 - 30 Mar 2023
Cited by 20 | Viewed by 4956
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead [...] Read more.
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care. Full article
Show Figures

Figure 1

14 pages, 761 KiB  
Article
Internal Guidelines for Reducing Lymph Node Contour Variability in Total Marrow and Lymph Node Irradiation
by Damiano Dei, Nicola Lambri, Sara Stefanini, Veronica Vernier, Ricardo Coimbra Brioso, Leonardo Crespi, Elena Clerici, Luisa Bellu, Chiara De Philippis, Daniele Loiacono, Pierina Navarria, Giacomo Reggiori, Stefania Bramanti, Marcello Rodari, Stefano Tomatis, Arturo Chiti, Carmelo Carlo-Stella, Marta Scorsetti and Pietro Mancosu
Cancers 2023, 15(5), 1536; https://doi.org/10.3390/cancers15051536 - 28 Feb 2023
Cited by 10 | Viewed by 2537
Abstract
Background: The total marrow and lymph node irradiation (TMLI) target includes the bones, spleen, and lymph node chains, with the latter being the most challenging structures to contour. We evaluated the impact of introducing internal contour guidelines to reduce the inter- and intraobserver [...] Read more.
Background: The total marrow and lymph node irradiation (TMLI) target includes the bones, spleen, and lymph node chains, with the latter being the most challenging structures to contour. We evaluated the impact of introducing internal contour guidelines to reduce the inter- and intraobserver lymph node delineation variability in TMLI treatments. Methods: A total of 10 patients were randomly selected from our database of 104 TMLI patients so as to evaluate the guidelines’ efficacy. The lymph node clinical target volume (CTV_LN) was recontoured according to the guidelines (CTV_LN_GL_RO1) and compared to the historical guidelines (CTV_LN_Old). Both topological (i.e., Dice similarity coefficient (DSC)) and dosimetric (i.e., V95 (the volume receiving 95% of the prescription dose) metrics were calculated for all paired contours. Results: The mean DSCs were 0.82 ± 0.09, 0.97 ± 0.01, and 0.98 ± 0.02, respectively, for CTV_LN_Old vs. CTV_LN_GL_RO1, and between the inter- and intraobserver contours following the guidelines. Correspondingly, the mean CTV_LN-V95 dose differences were 4.8 ± 4.7%, 0.03 ± 0.5%, and 0.1 ± 0.1%. Conclusions: The guidelines reduced the CTV_LN contour variability. The high target coverage agreement revealed that historical CTV-to-planning-target-volume margins were safe, even if a relatively low DSC was observed. Full article
Show Figures

Figure 1

Back to TopTop