Performance of Commercial Deep Learning-Based Auto-Segmentation Software for Breast Cancer Radiation Therapy Planning: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Article Selection
2.3. Data Extraction and Synthesis
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Buelens, P.; Willems, S.; Vandewinckele, L.; Crijns, W.; Maes, F.; Weltens, C.G. Clinical evaluation of a deep learning model for segmentation of target volumes in breast cancer radiotherapy. Radiother. Oncol. 2022, 171, 84–90. [Google Scholar] [CrossRef]
- Choi, M.S.; Choi, B.S.; Chung, S.Y.; Kim, N.; Chun, J.; Kim, Y.B.; Chang, J.S.; Kim, J.S. Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer. Radiother. Oncol. 2020, 153, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Duma, M.N.; Kulms, T.; Knippen, S.; Teichmann, T.; Wittig, A. Breast clinical target volume: HU-based glandular CTVs and ESTRO CTVs in modern and historical radiotherapy treatment planning. Strahlenther. Onkol. 2022, 198, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.R. Fifty years of progress in radiation therapy for breast cancer. Am. Soc. Clin. Oncol. Educ. Book 2014, 34, 21–25. [Google Scholar] [CrossRef]
- Chang, J.S.; Chang, J.H.; Kim, N.; Kim, Y.B.; Shin, K.H.; Kim, K. Intensity modulated radiotherapy and volumetric modulated arc therapy in the treatment of breast cancer: An updated review. J. Breast Cancer 2022, 25, 349–365. [Google Scholar] [CrossRef]
- Milo, M.L.H.; Nyeng, T.B.; Lorenzen, E.L.; Hoffmann, L.; Møller, D.S.; Offersen, B.V. Atlas-based auto-segmentation for delineating the heart and cardiac substructures in breast cancer radiation therapy. Acta Oncol. 2022, 61, 247–254. [Google Scholar] [CrossRef]
- Byun, H.K.; Chang, J.S.; Choi, M.S.; Chun, J.; Jung, J.; Jeong, C.; Kim, J.S.; Chang, Y.; Chung, S.Y.; Lee, S.; et al. Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy. Radiat. Oncol. 2021, 16, 203. [Google Scholar] [CrossRef]
- Chung, S.Y.; Chang, J.S.; Choi, M.S.; Chang, Y.; Choi, B.S.; Chun, J.; Keum, K.C.; Kim, J.S.; Kim, Y.B. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery. Radiat. Oncol. 2021, 16, 44. [Google Scholar] [CrossRef] [PubMed]
- Poortmans, P.M.P.; Takanen, S.; Marta, G.N.; Meattini, I.; Kaidar-Person, O. Winter is over: The use of artificial intelligence to individualise radiation therapy for breast cancer. Breast 2020, 49, 194–200. [Google Scholar] [CrossRef]
- van Pelt, V.W.J.; Gerrets, S.; Simões, R.; Elkhuizen, P.H.M.; Janssen, T.M. Evaluation of delineating the target volume by radiation therapists in breast cancer patients. Tech. Innov. Patient Support Radiat. Oncol. 2021, 17, 78–81. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, F.; Chen, W.; Tao, Y.; Liu, X.; Zhang, F.; Shen, J.; Guan, H.; Zhen, H.; Wang, S.; et al. Automatic segmentation of clinical target volume and organs-at-risk for breast conservative radiotherapy using a convolutional neural network. Cancer Manag. Res. 2021, 13, 8209–8217. [Google Scholar] [CrossRef] [PubMed]
- Im, J.H.; Lee, I.J.; Choi, Y.; Sung, J.; Ha, J.S.; Lee, H. Impact of denoising on deep-learning-based automatic segmentation framework for breast cancer radiotherapy planning. Cancers 2022, 14, 3581. [Google Scholar] [CrossRef]
- Jung, J.W.; Mille, M.M.; Ky, B.; Kenworthy, W.; Lee, C.; Yeom, Y.S.; Kwag, A.; Bosch, W.; MacDonald, S.; Cahlon, O.; et al. Application of an automatic segmentation method for evaluating cardiac structure doses received by breast radiotherapy patients. Phys. Imaging Radiat. Oncol. 2021, 19, 138–144. [Google Scholar] [CrossRef]
- Xie, X.; Song, Y.; Ye, F.; Yan, H.; Wang, S.; Zhao, X.; Dai, J. Prior information guided auto-contouring of breast gland for deformable image registration in postoperative breast cancer radiotherapy. Quant. Imaging Med. Surg. 2021, 11, 4721–4730. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Gu, Y.; Shen, Z.; Zhu, X.; Ge, Y. A deep learning based automatic segmentation approach for anatomical structures in intensity modulation radiotherapy. Math. Biosci. Eng. 2021, 18, 7506–7524. [Google Scholar] [CrossRef]
- Zeleznik, R.; Weiss, J.; Taron, J.; Guthier, C.; Bitterman, D.S.; Hancox, C.; Kann, B.H.; Kim, D.W.; Punglia, R.S.; Bredfeldt, J.; et al. Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer. NPJ Digit. Med. 2021, 4, 43. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Jung, J.W.; Lee, S.W.; Lee, C.; Lee, C.; Mille, M.M. A deep learning segmentation method to assess dose to organs at risk during breast radiotherapy. Phys. Imaging Radiat. Oncol. 2023, 28, 100520. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Guo, Y.; Fang, Y.; Wu, Z.; Wang, J.; Hu, W. Geometric and dosimetric evaluation of deep learning based auto-segmentation for clinical target volume on breast cancer. J. Appl. Clin. Med. Phys. 2023, 24, e13951. [Google Scholar] [CrossRef]
- Kazemimoghadam, M.; Yang, Z.; Chen, M.; Rahimi, A.; Kim, N.; Alluri, P.; Nwachukwu, C.; Lu, W.; Gu, X. A deep learning approach for automatic delineation of clinical target volume in stereotactic partial breast irradiation (S-PBI). Phys. Med. Biol. 2023, 68, 105011. [Google Scholar] [CrossRef]
- Colbert, Z.M.; Ramachandran, P. Auto-segmentation of thoracic organs in CT scans of breast cancer patients using a 3D U-net cascaded into 2D patchGANs. Biomed. Phys. Eng. Express. 2023, 9, 055011. [Google Scholar] [CrossRef]
- Choi, M.S.; Chang, J.S.; Kim, K.; Kim, J.H.; Kim, T.H.; Kim, S.; Cha, H.; Cho, O.; Choi, J.H.; Kim, M.; et al. Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study. Breast 2024, 73, 103599. [Google Scholar] [CrossRef]
- Sun, Z.; Ng, C.K.C. Artificial intelligence (enhanced super-resolution generative adversarial network) for calcium deblooming in coronary computed tomography angiography: A feasibility study. Diagnostics 2022, 12, 991. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.K.C.; Leung, V.W.S.; Hung, R.H.M. Clinical evaluation of deep learning and atlas-based auto-contouring for head and neck radiation therapy. Appl. Sci. 2022, 12, 11681. [Google Scholar] [CrossRef]
- Sun, Z.; Ng, C.K.C. Finetuned super-resolution generative adversarial network (artificial intelligence) model for calcium deblooming in coronary computed tomography angiography. J. Pers. Med. 2022, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Leung, V.W.S.; Ng, C.K.C.; Lam, S.K.; Wong, P.T.; Ng, K.Y.; Tam, C.H.; Lee, T.C.; Chow, K.C.; Chow, Y.K.; Tam, V.C.W.; et al. Computed tomography-based radiomics for long-term prognostication of high-risk localized prostate cancer patients received whole pelvic radiotherapy. J. Pers. Med. 2023, 13, 1643. [Google Scholar] [CrossRef] [PubMed]
- Radici, L.; Ferrario, S.; Borca, V.C.; Cante, D.; Paolini, M.; Piva, C.; Baratto, L.; Franco, P.; La Porta, M.R. Implementation of a commercial deep learning-based auto segmentation software in radiotherapy: Evaluation of effectiveness and impact on workflow. Life 2022, 12, 2088. [Google Scholar] [CrossRef]
- Hou, Z.; Gao, S.; Liu, J.; Yin, Y.; Zhang, L.; Han, Y.; Yan, J.; Li, S. Clinical evaluation of deep learning-based automatic clinical target volume segmentation: A single-institution multi-site tumor experience. Radiol. Med. 2023, 128, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Vaassen, F.; Boukerroui, D.; Looney, P.; Canters, R.; Verhoeven, K.; Peeters, S.; Lubken, I.; Mannens, J.; Gooding, M.J.; van Elmpt, W. Real-world analysis of manual editing of deep learning contouring in the thorax region. Phys. Imaging Radiat. Oncol. 2022, 22, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Doolan, P.J.; Charalambous, S.; Roussakis, Y.; Leczynski, A.; Peratikou, M.; Benjamin, M.; Ferentinos, K.; Strouthos, I.; Zamboglou, C.; Karagiannis, E. A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy. Front. Oncol. 2023, 13, 1213068. [Google Scholar] [CrossRef] [PubMed]
- Tsui, T.; Podgorsak, A.; Roeske, J.C.; Small, W., Jr.; Refaat, T.; Kang, H. Geometric and dosimetric evaluation for breast and regional nodal auto-segmentation structures. J. Appl. Clin. Med. Phys. 2024, 25, e14461. [Google Scholar] [CrossRef]
- Almberg, S.S.; Lervåg, C.; Frengen, J.; Eidem, M.; Abramova, T.M.; Nordstrand, C.S.; Alsaker, M.D.; Tøndel, H.; Raj, S.X.; Wanderås, A.D. Training, validation, and clinical implementation of a deep-learning segmentation model for radiotherapy of loco-regional breast cancer. Radiother. Oncol. 2022, 173, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Bakx, N.; van der Sangen, M.; Theuws, J.; Bluemink, H.; Hurkmans, C. Comparison of the output of a deep learning segmentation model for locoregional breast cancer radiotherapy trained on 2 different datasets. Tech. Innov. Patient Support Radiat. Oncol. 2023, 26, 100209. [Google Scholar] [CrossRef] [PubMed]
- Bakx, N.; Rijkaart, D.; van der Sangen, M.; Theuws, J.; van der Toorn, P.P.; Verrijssen, A.S.; van der Leer, J.; Mutsaers, J.; van Nunen, T.; Reinders, M.; et al. Clinical evaluation of a deep learning segmentation model including manual adjustments afterwards for locally advanced breast cancer. Tech. Innov. Patient Support Radiat. Oncol. 2023, 26, 100211. [Google Scholar] [CrossRef]
- Mikalsen, S.G.; Skjøtskift, T.; Flote, V.G.; Hämäläinen, N.P.; Heydari, M.; Rydén-Eilertsen, K. Extensive clinical testing of deep learning segmentation models for thorax and breast cancer radiotherapy planning. Acta Oncol. 2023, 62, 1184–1193. [Google Scholar] [CrossRef] [PubMed]
- Marschner, S.; Datar, M.; Gaasch, A.; Xu, Z.; Grbic, S.; Chabin, G.; Geiger, B.; Rosenman, J.; Corradini, S.; Niyazi, M.; et al. A deep image-to-image network organ segmentation algorithm for radiation treatment planning: Principles and evaluation. Radiat. Oncol. 2022, 17, 129. [Google Scholar] [CrossRef] [PubMed]
- Pera, Ó.; Martínez, Á.; Möhler, C.; Hamans, B.; Vega, F.; Barral, F.; Becerra, N.; Jimenez, R.; Fernandez-Velilla, E.; Quera, J.; et al. Clinical validation of Siemens’ syngo.via automatic contouring system. Adv. Radiat. Oncol. 2023, 8, 101177. [Google Scholar] [CrossRef]
- Hu, Y.; Nguyen, H.; Smith, C.; Chen, T.; Byrne, M.; Archibald-Heeren, B.; Rijken, J.; Aland, T. Clinical assessment of a novel machine-learning automated contouring tool for radiotherapy planning. J. Appl. Clin. Med. Phys. 2023, 24, e13949. [Google Scholar] [CrossRef]
- Yamauchi, R.; Itazawa, T.; Kobayashi, T.; Kashiyama, S.; Akimoto, H.; Mizuno, N.; Kawamori, J. Clinical evaluation of deep learning and atlas-based auto-segmentation for organs at risk delineation. Med. Dosim. 2024, 49, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Heilemann, G.; Buschmann, M.; Lechner, W.; Dick, V.; Eckert, F.; Heilmann, M.; Herrmann, H.; Moll, M.; Knoth, J.; Konrad, S.; et al. Clinical implementation and evaluation of auto-segmentation tools for multi-site contouring in radiotherapy. Phys. Imaging Radiat. Oncol. 2023, 28, 100515. [Google Scholar] [CrossRef]
- Lin, H.; Xiao, H.; Dong, L.; Teo, K.B.; Zou, W.; Cai, J.; Li, T. Deep learning for automatic target volume segmentation in radiation therapy: A review. Quant. Imaging Med. Surg. 2021, 11, 4847–4858. [Google Scholar] [CrossRef]
- Isaksson, L.J.; Summers, P.; Mastroleo, F.; Marvaso, G.; Corrao, G.; Vincini, M.G.; Zaffaroni, M.; Ceci, F.; Petralia, G.; Orecchia, R.; et al. Automatic segmentation with deep learning in radiotherapy. Cancers 2023, 15, 4389. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, G.; Jameson, M.; Vinod, S.; Field, M.; Dowling, J.; Sowmya, A.; Holloway, L. Deep learning for segmentation in radiation therapy planning: A review. J. Med. Imaging Radiat. Oncol. 2021, 65, 578–595. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Gu, P.; Wang, Y.; Wang, Z. Advances in automatic delineation of target volume and cardiac substructure in breast cancer radiotherapy (review). Oncol. Lett. 2023, 25, 110. [Google Scholar] [CrossRef] [PubMed]
- Matoska, T.; Patel, M.; Liu, H.; Beriwal, S. Review of deep learning based autosegmentation for clinical target volume: Current status and future directions. Adv. Radiat. Oncol. 2024, 9, 101470. [Google Scholar] [CrossRef]
- Curran, W.J., Jr.; DiSaia, P.J.; Wolmark, N. NRG Oncology research opportunities within the new National Clinical Trials Network. Semin. Oncol. 2014, 41, 553–555. [Google Scholar] [CrossRef]
- Rong, Y.; Chen, Q.; Fu, Y.; Yang, X.; Al-Hallaq, H.A.; Wu, Q.J.; Yuan, L.; Xiao, Y.; Cai, B.; Latifi, K.; et al. NRG Oncology assessment of artificial intelligence deep learning-based auto-segmentation for radiation therapy: Current developments, clinical considerations, and future directions. Int. J. Radiat. Oncol. Biol. Phys. 2024, 119, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.K.C. Artificial intelligence for radiation dose optimization in pediatric radiology: A systematic review. Children 2022, 9, 1044. [Google Scholar] [CrossRef]
- Ng, C.K.C. Diagnostic performance of artificial intelligence-based computer-aided detection and diagnosis in pediatric radiology: A systematic review. Children 2023, 10, 525. [Google Scholar] [CrossRef]
- Ng, C.K.C. Generative adversarial network (generative artificial intelligence) in pediatric radiology: A systematic review. Children 2023, 10, 1372. [Google Scholar] [CrossRef] [PubMed]
- PRISMA Statement. Available online: https://www.prisma-statement.org/ (accessed on 24 October 2024).
- Mridha, M.F.; Hamid, M.A.; Monowar, M.M.; Keya, A.J.; Ohi, A.Q.; Islam, M.R.; Kim, J.M. A comprehensive survey on deep-learning-based breast cancer diagnosis. Cancers 2021, 13, 6116. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Shah, K.A.; Ng, C.K.C. Workplace violence in medical radiation science: A systematic review. Radiography 2024, 30, 440–447. [Google Scholar] [CrossRef]
- Ng, C.K.C. A review of the impact of the COVID-19 pandemic on pre-registration medical radiation science education. Radiography 2022, 28, 222–231. [Google Scholar] [CrossRef]
- Liu, X.; Li, K.W.; Yang, R.; Geng, L.S. Review of deep learning based automatic segmentation for lung cancer radiotherapy. Front. Oncol. 2021, 11, 717039. [Google Scholar] [CrossRef]
- Yang, C.; Qin, L.H.; Xie, Y.E.; Liao, J.Y. Deep learning in CT image segmentation of cervical cancer: A systematic review and meta-analysis. Radiat. Oncol. 2022, 17, 175. [Google Scholar] [CrossRef] [PubMed]
- Fassia, M.K.; Balasubramanian, A.; Woo, S.; Vargas, H.A.; Hricak, H.; Konukoglu, E.; Becker, A.S. Deep learning prostate MRI segmentation accuracy and robustness: A systematic review. Radiol. Artif. Intell. 2024, 6, e230138. [Google Scholar] [CrossRef]
- Vasey, B.; Ursprung, S.; Beddoe, B.; Taylor, E.H.; Marlow, N.; Bilbro, N.; Watkinson, P.; McCulloch, P. Association of clinician diagnostic performance with machine learning-based decision support systems: A systematic review. JAMA Netw. Open. 2021, 4, e211276. [Google Scholar] [CrossRef]
- Imrey, P.B. Limitations of meta-analyses of studies with high heterogeneity. JAMA Netw. Open. 2020, 3, e1919325. [Google Scholar] [CrossRef] [PubMed]
- Mongan, J.; Moy, L.; Kahn, C.E., Jr. Checklist for artificial intelligence in medical imaging (CLAIM): A guide for authors and reviewers. Radiol. Artif. Intell. 2020, 2, e200029. [Google Scholar] [CrossRef]
- Sivanesan, U.; Wu, K.; McInnes, M.D.F.; Dhindsa, K.; Salehi, F.; van der Pol, C.B. Checklist for artificial intelligence in medical imaging reporting adherence in peer-reviewed and preprint manuscripts with the highest Altmetric Attention Scores: A meta-research study. Can. Assoc. Radiol. J. 2023, 74, 334–342. [Google Scholar] [CrossRef]
- Bhandari, A.; Scott, L.; Weilbach, M.; Marwah, R.; Lasocki, A. Assessment of artificial intelligence (AI) reporting methodology in glioma MRI studies using the Checklist for AI in Medical Imaging (CLAIM). Neuroradiology 2023, 65, 907–913. [Google Scholar] [CrossRef]
- Tejani, A.S.; Klontzas, M.E.; Gatti, A.A.; Mongan, J.T.; Moy, L.; Park, S.H.; Kahn, C.E., Jr.; CLAIM 2024 Update Panel. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 update. Radiol. Artif. Intell. 2024, 6, e240300. [Google Scholar] [CrossRef]
- Zeverino, M.; Piccolo, C.; Marguet, M.; Jeanneret-Sozzi, W.; Bourhis, J.; Bochud, F.; Moeckli, R. Sensitivity of automated and manual treatment planning approaches to contouring variation in early-breast cancer treatment. Phys. Med. 2024, 123, 103402. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, L.V.; Van den Bosch, L.; Aljabar, P.; Peressutti, D.; Both, S.; Steenbakkers, R.J.H.M.; Langendijk, J.A.; Gooding, M.J.; Brouwer, C.L. Improving automatic delineation for head and neck organs at risk by deep learning contouring. Radiother. Oncol. 2020, 142, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.Y.K.; Leung, V.W.S.; Hung, R.H.M.; Ng, C.K.C. Comparative study of Eclipse and RayStation multi-criteria optimization-based prostate radiotherapy treatment planning quality. Diagnostics 2024, 14, 465. [Google Scholar] [CrossRef]
- Rezaei, M.; Mohammadbeigi, A.; Khoshgard, K.; Haghparast, A. CT images and radiotherapy treatment planning of patients with breast cancer: A dataset. Data Brief 2017, 13, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Moran, J.M.; Koelling, T.; Chughtai, A.; Chan, J.L.; Freedman, L.; Hayman, J.A.; Jagsi, R.; Jolly, S.; Larouere, J.; et al. Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 10–18. [Google Scholar] [CrossRef]
- Kong, F.M.; Ritter, T.; Quint, D.J.; Senan, S.; Gaspar, L.E.; Komaki, R.U.; Hurkmans, C.W.; Timmerman, R.; Bezjak, A.; Bradley, J.D.; et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: Atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1442–1457. [Google Scholar] [CrossRef] [PubMed]
- Mackay, K.; Bernstein, D.; Glocker, B.; Kamnitsas, K.; Taylor, A. A review of the metrics used to assess auto-contouring systems in radiotherapy. Clin. Oncol. 2023, 35, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Waffenschmidt, S.; Knelangen, M.; Sieben, W.; Bühn, S.; Pieper, D. Single screening versus conventional double screening for study selection in systematic reviews: A methodological systematic review. BMC Med. Res. Methodol. 2019, 19, 132. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Software Name and Version | Author, Year and Country | Geometric Accuracy | ||
---|---|---|---|---|
DLAS | IOV | DLAS VS IOV | ||
Limbus AI Inc. | ||||
Contour v1.5.0 | Radici et al. (2022), Italy [26] | Mean DSC, DCOM (mm) and PVD: contralateral breast (0.72, 7.7 and −5.0%); heart (0.92, 4.2 and 12.0%); L (0.99, 0.1 and 1.0%) and R lungs (0.99, 0.2 and 1.0%) | NA | NA |
Manteia Medical Technologies | ||||
AccuLearning AI | Hou et al. (2023), China [27] | Mean DSC and HD95 (mm) for U-Net: CTVp_breast (0.86 and 15.0) | NA | NA |
Mirada Medical Ltd. | ||||
DLCExpert | Vaassen et al. (2022), The Netherlands and UK [28] | Median DSC, sDSC, APL (mm) and MSHD (mm): contralateral breast (0.90, 0.62, 2321.8 and 10.0); esophagus (0.60, 0.33, 756.0 and 3.3); heart (0.91, 0.61, 1497.5 and 7.5); L (1.00, 0.99, 513.0 and 1.3) and R lungs (1.00, 0.99, 601.5 and 1.4); thyroid (0.66, 0.34, 479.5 and 3.4); CTVp_breast (0.88, 0.57, 2665.8 and 12.4) | NA | NA |
Radformation Inc. | ||||
AutoContour | Tsui et al. (2024), US [30] | Mean DSC, HD (mm) and MSD (mm): CTVn_L1-3 (0.70, 36.3 and 5.2); CTVn_L4 (0.54, 41.0 and 9.7); CTVn_IMN (0.33, 41.8 and 9.0); CTVp_breast (0.85, 38.1 and 4.3); CTVp_chestwall (0.71, 38.5 and 6.9) | NA | NA |
RaySearch Laboratories AB | ||||
RayStation v9B | Almberg et al. (2022), Norway [31] | Mean DSC and HD95 (mm): CTVn_L1 (0.80 and 9.0); CTVn_L2 (0.76 and 10.0); CTVn_L3 (0.80 and 5.5); CTVn_L4 (0.80 and 4.3); CTVn_interpect (0.68 and 12.2); CTVn_IMN (0.71 and 8.0); CTVp_breast (0.95 and 5.3); contralateral breast (0.94 and 8.9); esophagus (0.85 and 4.0); heart (0.96 and 5.4); ipsilateral humeral head (0.93 and 4.4); L (0.98 and 1.6) and R lungs (0.98 and 1.5); LAD (0.54 and 7.3); spinal canal (0.91 and 4.7); sternum (0.95 and 1.2); thyroid (0.78 and 4.5); trachea (0.93 and 4.9) | Mean DSC and HD95 (mm): CTVn_L1 (0.74 and 14.6); CTVn_L2 (0.62 and 16.2); CTVn_L3 (0.67 and 9.4); CTVn_L4 (0.72 and 6.1); CTVn_interpect (0.61 and 14.5); CTVn_IMN (0.64 and 8.9); CTVp_breast (0.94 and 5.7); contralateral breast (0.91 and 11.2); esophagus (0.83 and 3.0); heart (0.95 and 6.7); LAD (0.44 and 20.7); spinal canal (0.85 and 8.8); thyroid (0.81 and 3.9); trachea (0.90 and 4.2) | DLAS outperforming ROs/RTTs for all CTVs and OARs with statistically significant differences (p < 0.001–0.022) except for DSC and HD95 of CTVp_breast and thyroid and HD95 of CTVn_interpect, contralateral breast, esophagus, heart and trachea |
RayStation v9B/10B-SP1 | Bakx et al. (2023), The Netherlands [32] | Mean DSC, HD95 (mm) and sDSC: CTVn_L1 (0.76, 13.3 and 0.65); CTVn_L2 (0.69, 10.1 and 0.80); CTVn_L3 (0.67, 8.7 and 0.75); CTVn_L4 (0.33, 16.4 and 0.43); CTVp_breast (0.92, 8.8 and 0.86); esophagus (0.32, 161.0 and 0.42); esophagus-overlapping area (0.85, 2.3 and 0.99); heart (0.93, 9.5 and 0.82); ipsilateral humeral head (0.85, 8.3 and 0.82); L (0.96, 4.6 and 0.93) and R lungs (0.96, 5.4 and 0.92); thyroid (0.71, 7.1 and 0.87) | NA | NA |
RayStation v9B/10B-SP1 | Bakx et al. (2023), The Netherlands [33] | Mean DSC, HD95 (mm) and sDSC: CTVn_L1 (0.78, 13.6 and 0.69); CTVn_L2 (0.71, 10.4 and 0.82); CTVn_L3 (0.73, 6.8 and 0.82); CTVn_L4 (0.57, 7.2 and 0.75); CTVp_breast (0.93, 14.4 and 0.83); esophagus (0.70, 10.4 and 0.88); heart (0.94, 7.1 and 0.81); ipsilateral humeral head (0.88, 7.6 and 0.86); L (0.98, 2.2 and 0.98) and R lungs (0.99, 2.2 and 0.98); thyroid (0.63, 8.2 and 0.81) | NA | NA |
RayStation v11B-SP2 | Mikalsen et al. (2023), Norway [34] | Mean DSC and HD95 (mm): CTVn_L1 (0.72 and 12.0); CTVn_L2 (0.66 and 12.0); CTVn_L3 (0.76 and 7.0); CTVn_L4 (0.70 and 7.7); CTVn_interpect (0.66 and 12.0); CTVn_IMN (0.67 and 12.0); CTVp_breast (0.91 and 9.8); heart (0.94 and 5.6); lungs (0.98 and 1.4) | NA | NA |
RayStation v9B | Zeverino et al. (2024), Switzerland [65] | Median DSC, HD95 (mm), sDSC, HD (mm), HD99 (mm) and ΔV: contralateral breast (0.90, 6.3, 0.90, 15.5, 11.7 and −4.7%); heart (0.94, 6.8, 0.86, 11.0, 8.0 and −4.2%); L (0.98, 2.1, 0.98, 23.5, 7.2 and 0.2%) and R lungs (0.98, 2.0, 0.98, 24.3, 7.9 and −0.3%); LAD (0.39, 18.2, 0.73, 25.2, 23.1 and 1.9 cm3) | NA | NA |
Siemens Healthineers AG | ||||
syngo.via RT Image Suite VB50/AI-Rad Companion Organs RT VA20 | Marschner et al. (2022), Germany and US [35] | Mean DSC, HD95 (mm), MSD (mm), ΔV, RMSD (mm), sensitivity, specificity, JCI, DI, GMI, CVD (mm) and L, R, anterior, posterior, superior and inferior boundaries (mm): heart (0.92, 4.4, 1.6, 2.1%, 2.2, 0.91, 0.99, 0.85, 0.06, 0.08, 4.7, −0.3, 0.0, −0.4, 0.0, −4.9 and −8.5); L (0.97, 2.7, 0.8, −0.9%, 1.8, 0.98, 0.99, 0.95, 0.03, 0.02, 2.0, −0.26, −4.9, 0.6, −0.1, −0.7 and −1.8) and R lungs (0.97, 2.9, 1.0, −0.9%, 1.8, 0.98, 0.99, 0.95, 0.03, 0.03, 2.1, 2.5, 0.8, 0.7, −0.2, −0.5 and −1.5) | NA | NA |
AI-Rad Companion Organs RT VA31 | Hu et al. (2023), Australia [37] | Mean DSC, HD (mm), sensitivity and precision: contralateral breast (0.89, 23.3, 0.91 and 0.88); esophagus (0.75, 15.9, 0.76 and 0.75); heart (0.93, 11.1, 0.89 and 0.98); L (0.96, 21.7, 0.99 and 0.93) and R lungs (0.97, 28.3, 0.99 and 0.95); spinal canal (0.69, 4.9, 0.98 and 0.54) | NA | NA |
syngo.via RT Image Suite VB40 | Pera et al. (2023), Germany and Spain [36] | Median DSC: body (0.99); contralateral breast (0.89); esophagus (0.99); L (0.98) and R lungs (0.98); spinal canal (0.98) | NA | NA |
AI-Rad Companion Organs RT VA30 | Yamauchi et al. (2024), Japan [38] | Median DSC, HD95 (mm) and MDA (mm): contralateral breast (0.89, 22.7 and 2.2); esophagus (0.80, 4.4 and 0.7); heart (0.95, 10.0 and 1.5); L and R lungs (0.97, 8.8 and 0.9); spinal canal (0.78, 4.7 and 1.0) | NA | NA |
Limbus AI Inc, RaySearch Laboratories AB, and Therapanacea | ||||
Contour v1.5.0, RayStation v11B and Annotate v1.10.0 | Heilemann et al. (2023), Austria [39] | Median DSC and HD (mm) for Contour/RayStation/Annotate: heart (0.88 and 1.6/0.91 and 1.3/0.88 and 1.9); L and R lungs (0.97 and 2.0/0.95 and 1.4/0.97 and 1.4) | NA | NA |
Mirada Medical Ltd., MVision.ai, Radformation Inc., RaySearch Laboratories AB and Therapanacea | ||||
DLCExpert v2.6.4.47181, Contour+ v1.2.1, AutoContour v1.0.25.0, RayStation v12.0.0.932 and Annotate v1.10.0 | Doolan et al. (2023), Cyprus and Germany [29] | Median DSC, HD (mm), sDSC and APL (mm) for DLCExpert/Contour+/AutoContour/RayStation/Annotate: contralateral breast (0.86, 29.2, 0.25 and 28,963.0/0.90, 21.4, 0.34 and 25,807.5/0.82, 37.5, 0.16 and 34,386.0/0.84, 24.8, 0.15 and 34,985.5/0.89, 24.9, 0.31 and 28,250.0); esophagus (0.73, 21.2, 0.50 and 3522.0/0.79, 19.1, 0.59 and 2504.0/0.76, 19.4, 0.51 and 3200.0/0.81, 13.6, 0.64 and 2260.0/0.84, 9.9, 0.63 and 2441.0); heart (0.94, 16.7, 0.42 and 19236.0/0.95, 10.8, 0.49 and 17,922.0/0.95, 10.7, 0.46 and 20,252.0/0.95, 12.0, 0.46 and 19,262.0/0.94, 10.5, 0.48 and 18,115.0); ipsilateral humeral head (NA/0.91, 19.9, 0.66 and 2670.0/0.91, 20.6, 0.68 and 2216.0/0.81, 44.4, 0.53 and 4520.0/0.86, 36.9, 0.63 and 3567.0); L (0.97, 24.1, 0.56 and 35,206.0/0.97, 25.3, 0.61 and 32,763.0/0.96, 24.6, 0.54 and 37,397.0/0.96, 28.4, 0.55 and 37,980.0/0.97, 26.8, 0.61 and 32,844.0) and R lungs (0.96, 19.7, 0.57 and 29,982.0/0.96, 20.4, 0.60 and 27,896.0/0.95, 21.7, 0.48 and 35,266.0/0.96, 23.4, 0.57 and 31,733.0/0.96, 19.5, 0.60 and 28,851.0); liver (0.96, 17.4, 0.55 and 29,255.0/0.97, 18.4, 0.60 and 25,995.0/0.96, 24.9, 0.54 and 31,248.0/0.96, 22.7, 0.58 and 26,532.0/0.97, 22.1, 0.59 and 28,043.0); spinal canal (0.82, 9.2, 0.52 and 5239.0/0.83, 6.5, 0.48 and 5293.5/0.84, 6.3, 0.53 and 5092.0/0.84, 7.7, 0.53 and 4959.0/0.85, 6.7, 0.55 and 5175.0) | NA | NA |
Software Name and Version | Author, Year and Country | Evaluation Results | ||
---|---|---|---|---|
Subjective | Efficiency | Dosimetric | ||
Limbus AI Inc. | ||||
Contour v1.5.0 | Radici et al. (2022), Italy [26] | NA | Mean time reduction/patient: 46.0% (7.0 min) | No clinically relevant difference of doses to OARs between DLAS and manual contouring |
Manteia Medical Technologies | ||||
AccuLearning AI | Hou et al. (2023), China [27] | No/minor corrections required for 13.0%/75.0% of CTVs; No unusable CTVs contours | NA | NA |
Radformation Inc. | ||||
AutoContour | Tsui et al. (2024), United States [30] | NA | NA | ΔV90/95% < 5% with DSC > 0.70: 94.1%, 67.7%, 14.7% and 0.0% for CTVp_breast, CTVn_L1-3, CTVn_L4 and CTVn_IMN of BCS patients; 62.5%, 56.3%, 9.4% and 3.1% for CTVp_chestwall, CTVn_L1-3, CTVn_L4 and CTVn_IMN of mastectomy patients, respectively. ΔV95% used for all structures except CTVn_IMN |
RaySearch Laboratories AB | ||||
RayStation v9B | Almberg et al. (2022), Norway [31] | No/minor corrections required for 72.0%/26.0% of OARs and 14.0%/71.0% of CTVs; No unusable OARs and CTVs contours | Estimation of time reduction/patient: 75.0% (manual: 60.0 min VS DLAS: 15.0 min) | CTV coverage (D98 > 95%): 100.0% for breast and 89.0% for lymph nodes; no clinically relevant difference of doses to OARs between DLAS and manual contouring |
RayStation v9B/10B-SP1 | Bakx et al. (2023), The Netherlands [33] | No/some corrections required for 39.0%/56.0% of OARs and 7.0%/75.0% of CTVs; Unusable contours: CTVp_breast (35.0%), CTVn_L1 (30.0%), CTVn_L4 (25.0%), heart (5.0%) and thyroid (5.0%) | Mean time reduction/patient: 58.2% (manual: 58.6 min VS DLAS: 24.5 min) | NA |
RayStation v11B-SP2 | Mikalsen et al. (2023), Norway [34] | No/minor corrections required for 85.0%/10.0% of OARs and 8.0%/77.0% of CTVs; Unusable contours: CTVs (6.0%) and OARs (2.0%) | Mean time reduction/patient: 68.0% (manual: 47.2 min VS DLAS: 15.1 min) | CTV coverage (D98 > 95%): 70.0% for breast and 85.0% for lymph nodes; no clinically relevant difference of doses to OARs between DLAS and manual contouring |
Siemens Healthineers AG | ||||
AI-Rad Companion Organs RT VA31 | Hu et al. (2023), Australia [37] | No/minor OARs corrections required: 87.3%/12.7%; No unusable OARs contours | Mean time reduction/patient: 82.2% (manual: 16.0 min VS DLAS: 2.9 min) | NA |
syngo.via RT Image Suite VB40 | Pera et al. (2023), Germany and Spain [36] | No/minor OARs corrections required: 75.7%/17.7%; Unusable OARs contours: 0.7% | Mean time reduction/patient: 88.6% (manual: 32.7 min VS DLAS: 3.7 min) | NA |
AI-Rad Companion Organs RT VA30 | Yamauchi et al. (2024), Japan [38] | Mean score: 3.6 out of 4.0 (indicating no/minor OARs corrections required); No unusable OARs contours | Mean time reduction/patient: 45.4% (manual: 18.6 min VS DLAS: 10.1 min) | NA |
Limbus AI Inc, RaySearch Laboratories AB and Therapanacea | ||||
Contour v1.5.0, RayStation v11B and Annotate v1.10.0 | Heilemann et al. (2023), Austria [39] | Median score for Limbus Contour/RayStation/Annotate: 3.5/3.0/3.5 out of 4.0 (indicating no/minor OARs corrections required); No unusable OARs contours | NA | No clinically relevant difference of doses to OARs between DLAS and manual contouring |
Mirada Medical Ltd., MVision.ai, Radformation Inc., RaySearch Laboratories AB and Therapanacea | ||||
DLCExpert v2.6.4.47181, Contour+ v1.2.1, AutoContour v1.0.25.0, RayStation v12.0.0.932 and Annotate v1.10.0 | Doolan et al. (2023), Cyprus and Germany [29] | NA | Mean time reduction/patient for DLCExpert/Contour+/AutoContour/RayStation/Annotate: 66.0%/92.8%/64.4%/86.0%/93.7% (manual: 22.0 min VS DLAS: 7.5/1.6/7.8/3.1/1.4 min) | NA |
Author, Year and Country | DLAS Architecture | Study Design | Multi-Center | Patient/Population | Training Dataset | Testing Dataset | Sample Size Calculation | External Testing | Reference Contour Source | Contouring Guidelines | Article Quality (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | Size (Number of Patient) | Source | Size (Number of Patient) | ||||||||||
Limbus AI Inc. Contour | |||||||||||||
Radici et al. (2022), Italy [26] | U-Net | Prospective | No | L breast cancer patients after BCS | Public: US TCIA and Iranian dataset by Rezaei et al. [68] | At least hundreds | Private: 1 Italian center | 3 | No | Yes | 4 expert ROs | DBCG | 53 |
Manteia Medical Technologies AccuLearning AI | |||||||||||||
Hou et al. (2023), China [27] | 4 CNN variants (encoder-decoder-based CNN, residual U-Net, U-Net, and V-Net) | Retrospective | No | L and R breast cancer patients after BCS and mastectomy | Private: 1 Chinese center | 139 | Private: 1 Chinese center | 83 (27 L and 26 R BCS, and 16 L and 14 R mastectomy) | No | No | Senior ROs with >8-year experience | NA | 65 |
Mirada Medical Ltd. DLCExpert | |||||||||||||
Vaassen et al. (2022), The Netherlands and UK [28] | CNN | Retrospective | No | Breast cancer patients | NA | 486 | Private: 1 Dutch center | 362 | No | Yes | All (40) RTTs | NA | 63 |
Radformation Inc. AutoContour | |||||||||||||
Tsui et al. (2024), US [30] | NA | Retrospective | No | Breast cancer patients after BCS/mastectomy | NA | NA | Private: 1 US center | 66 (34 BCS and 32 mastectomy) | No | Yes | 2 ROs with 20- and 30-year experience | NA | 58 |
RaySearch Laboratories AB RayStation | |||||||||||||
Almberg et al. (2022), Norway [31] | 3D CNN U-Net | Retrospective | Yes | L breast cancer patients after BCS | Private: 2 Norwegian centers | 170 | Private: 2 Norwegian centers | 30 | No | No | 3 ROs and 3 RTTs with >10-year experience | ESTRO except heart based on Feng et al.’s atlas [69] | 58 |
Bakx et al. (2023), The Netherlands [32] | 3D CNN U-Net | Retrospective | Yes | L and R breast cancer patients | Private: 2 Norwegian and 1 Dutch centers for RayStation original and in-house models, respectively | Original model: 170 and in-house model: 160 (80/side) | Private: 1 Dutch center | 30 | No | Only for original model | ROs and RTTs with final review by 1 experienced RO | ESTRO for CTVs, and Feng et al.’s [69] and Kong et al.’s [70] atlases for OARs | 53 |
Bakx et al. (2023), The Netherlands [33] | 3D CNN U-Net | Retrospective | NA | L and R breast cancer patients after BCS | NA | 160 | NA | 20 | No | No | ROs and RTTs with final review by 1 experienced RO | ESTRO | 56 |
Mikalsen et al. (2023), Norway [34] | 3D CNN U-Net | Prospective | No | L and R breast cancer patients | Private: 2 Norwegian centers | 170 | Private: 1 Norwegian center | 30 | No | Yes | 2 experienced ROs and 1 RTT | ESTRO except heart based on Feng et al.’s [69] atlas | 51 |
Zeverino et al. (2024), Switzerland [65] | 3D CNN U-Net | Retrospective | No | L breast cancer patients | Private: 2 Norwegian centers | 170 | Private: 1 Swiss center | 20 | No | Yes | 1 senior RO | ESTRO and DBCG | 51 |
Siemens Healthineers AG syngo.via RT Image Suite/AI-Rad Companion Organs RT | |||||||||||||
Marschner et al. (2022), Germany and US [35] | U-Net variant | NA | Yes | Breast cancer patients | Private: multi-centers | 10,386 | Private: 1 German center | 237 | No | Yes | 1 experienced RO | RTOG | 56 |
Hu et al. (2023), Australia [37] | NA | Retrospective | No | Breast cancer patients | NA | NA | Private: 1 Australian center | 5 | No | Yes | 1 RTT with >10-year experience | RTOG | 49 |
Pera et al. (2023), Germany and Spain [36] | U-Net variant | NA | No | L and R breast cancer patients | Private: multi-centers in Asia, Europe, and North and South America | Thousands | Private: 1 Spanish center | 30 (15/side) | No | Yes | 1 expert RTT with final review by 1 RO | NA | 47 |
Yamauchi et al. (2024), Japan [38] | U-Net variant | Retrospective | No | Breast cancer patients | Private: multi-centers in Europe and America | NA | Private: 1 Japanese center | 30 (5 with implants and 5 with mastectomy) | No | Yes | 6 expert ROs | RTOG | 44 |
Limbus AI Inc Contour, RaySearch Laboratories AB RayStation and Therapanacea Annotate | |||||||||||||
Heilemann et al. (2023)-Austria [39] | NA | Retrospective | No | Breast cancer patients | NA | NA | Private: 1 Austrian center | 15 | No | Yes | RTTs and 1 RO | NA | 51 |
Mirada Medical Ltd. DLCExpert, MVision.ai Contour+, Radformation Inc. AutoContour, RaySearch Laboratories AB RayStation and Therapanacea Annotate | |||||||||||||
Doolan et al. (2023), Cyprus and Germany [29] | NA | Retrospective | No | Bilateral, L and R breast cancer patients | NA | NA | Private: 1 Cypriot center | 20 (1 bilaterial, 10 R and 9 L) | No | Yes | 3 ROs with >10-year experience | RTOG | 53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, C.K.C. Performance of Commercial Deep Learning-Based Auto-Segmentation Software for Breast Cancer Radiation Therapy Planning: A Systematic Review. Multimodal Technol. Interact. 2024, 8, 114. https://doi.org/10.3390/mti8120114
Ng CKC. Performance of Commercial Deep Learning-Based Auto-Segmentation Software for Breast Cancer Radiation Therapy Planning: A Systematic Review. Multimodal Technologies and Interaction. 2024; 8(12):114. https://doi.org/10.3390/mti8120114
Chicago/Turabian StyleNg, Curtise K. C. 2024. "Performance of Commercial Deep Learning-Based Auto-Segmentation Software for Breast Cancer Radiation Therapy Planning: A Systematic Review" Multimodal Technologies and Interaction 8, no. 12: 114. https://doi.org/10.3390/mti8120114
APA StyleNg, C. K. C. (2024). Performance of Commercial Deep Learning-Based Auto-Segmentation Software for Breast Cancer Radiation Therapy Planning: A Systematic Review. Multimodal Technologies and Interaction, 8(12), 114. https://doi.org/10.3390/mti8120114