Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,417)

Search Parameters:
Keywords = climate risks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 16782 KiB  
Article
Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province
by Keding Sheng, Rui Li, Fengqiuli Zhang, Tongde Chen, Peng Liu, Yanan Hu, Bingyin Li and Zhiyuan Song
Water 2025, 17(15), 2342; https://doi.org/10.3390/w17152342 - 6 Aug 2025
Abstract
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of [...] Read more.
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of extreme precipitation and its multi-scale stress mechanism on grain yield. The results showed the following: (1) Extreme precipitation showed the characteristics of ‘frequent fluctuation-gentle trend-strong spatial heterogeneity’, and the maximum daily precipitation in spring (RX1DAY) showed a significant uplift. The increase in rainstorm events (R95p/R99p) in the southern region during the summer is particularly prominent; at the same time, the number of consecutive drought days (CDDs > 15 d) in the middle of autumn was significantly prolonged. It was also found that 2010 is a significant mutation node. Since then, the synergistic effect of ‘increasing drought days–increasing rainstorm frequency’ has begun to appear, and the short-period coherence of super-strong precipitation (R99p) has risen to more than 0.8. (2) The spatial pattern of winter wheat in Henan is characterized by the three-level differentiation of ‘stable core area, sensitive transition zone and shrinking suburban area’, and the stability of winter wheat has improved but there are still local risks. (3) There is a multi-scale stress mechanism of extreme precipitation on winter wheat yield. The long-period (4–8 years) drought and flood events drive the system risk through a 1–2-year lag effect (short-period (0.5–2 years) medium rainstorm intensity directly impacted the production system). This study proposes a ‘sub-scale governance’ strategy, using a 1–2-year lag window to establish a rainstorm warning mechanism, and optimizing drainage facilities for high-risk areas of floods in the south to improve the climate resilience of the agricultural system against the background of climate change. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
20 pages, 2090 KiB  
Article
Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations?
by Le Yang, Lei Xu, Waner Liang, Jia Guo, Yongbing Yang, Cai Lyu, Shengling Zhou, Qing Zeng, Yifei Jia and Guangchun Lei
Animals 2025, 15(15), 2304; https://doi.org/10.3390/ani15152304 - 6 Aug 2025
Abstract
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals [...] Read more.
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals of a western subpopulation in the lake basin region of northern Tibet (2021–2024), focusing on migration patterns, stopover use, and habitat selection. This subpopulation exhibited short-distance (mean: 284.21 km), intra-Tibet migrations with low reliance on stopover sites. Autumn migration was shorter, more direct, higher in altitude, and slower in speed than spring migration. Juveniles used smaller, more fragmented habitats than subadults, and their spatial range expanded over time. Given these patterns, we infer that the short-distance migration strategy may reduce energetic demands and mortality risks while increasing route flexibility—characteristics that may benefit population growth. We refer to this as a low-energy, high-efficiency migration strategy, which we hypothesise could support faster population growth and enhance resilience to environmental change. We recommend prioritizing the conservation of short-distance migration corridors, such as the typical lake basin area in northern Tibet–Yarlung Tsangpo River system, which may help sustain plateau-endemic migratory populations under future climate scenarios. Full article
(This article belongs to the Section Ecology and Conservation)
19 pages, 787 KiB  
Article
The Impact of Climate Change Awareness on Fertility Intentions in Palestinian Society: Mediating Role of Threat Perception
by Maryam W. Fasfous, Mohamed N. Abdel-Fattah and Sarah A. Ibrahim
Int. J. Environ. Res. Public Health 2025, 22(8), 1228; https://doi.org/10.3390/ijerph22081228 - 6 Aug 2025
Abstract
Fertility is considered a significant demographic concern, especially in relation to climate change. This study examines how awareness of climate change, measured by five subscales—climate-friendly behavior, knowledge, personal concern, attitude, and multiplicative action—affects fertility intentions, emphasizing the mediating role of threat perception. Data [...] Read more.
Fertility is considered a significant demographic concern, especially in relation to climate change. This study examines how awareness of climate change, measured by five subscales—climate-friendly behavior, knowledge, personal concern, attitude, and multiplicative action—affects fertility intentions, emphasizing the mediating role of threat perception. Data were collected through an online survey administered to a sample of 817 Palestinian citizens aged 18–49 residing in the West Bank. Structural equation modeling (SEM) was utilized for the data analysis. The results revealed that climate change awareness does not directly affect fertility intentions. However, an indirect effect of climate change awareness on fertility intentions was observed, mediated by threat perception as an intervening variable. Individuals exhibiting increased awareness of climate change and perceptions of future risks demonstrated a greater likelihood of reducing their fertility intentions compared to others. Policymakers in the Palestinian territories should prioritize enhancing public awareness regarding climate change and its associated short- and long-term threats. Therefore, incorporating climate education and associated risks into fertility health programs is essential. Full article
(This article belongs to the Special Issue Environmental Factors Impacting Reproductive and Perinatal Health)
23 pages, 5773 KiB  
Article
Multi-Seasonal Risk Assessment of Hydrogen Leakage, Diffusion, and Explosion in Hydrogen Refueling Station
by Yaling Liu, Yao Zeng, Guanxi Zhao, Huarong Hou, Yangfan Song and Bin Ding
Energies 2025, 18(15), 4172; https://doi.org/10.3390/en18154172 - 6 Aug 2025
Abstract
To reveal the influence mechanisms of seasonal climatic factors (wind speed, wind direction, temperature) and leakage direction on hydrogen dispersion and explosion behavior from single-source leaks at typical risk locations (hydrogen storage tanks, compressors, dispensers) in hydrogen refueling stations (HRSs), this work established [...] Read more.
To reveal the influence mechanisms of seasonal climatic factors (wind speed, wind direction, temperature) and leakage direction on hydrogen dispersion and explosion behavior from single-source leaks at typical risk locations (hydrogen storage tanks, compressors, dispensers) in hydrogen refueling stations (HRSs), this work established a full-scale 1:1 three-dimensional numerical model using the FLACS v22.2 software based on the actual layout of an HRS in Xichang, Sichuan Province. Through systematic simulations of 72 leakage scenarios (3 equipment types × 4 seasons × 6 leakage directions), the coupled effects of climatic conditions, equipment layout, and leakage direction on hydrogen dispersion patterns and explosion risks were quantitatively analyzed. The key findings indicate the following: (1) Downward leaks (−Z direction) from storage tanks tend to form large-area ground-hugging hydrogen clouds, representing the highest explosion risk (overpressure peak: 0.25 barg; flame temperature: >2500 K). Leakage from compressors (±X/−Z directions) readily affects adjacent equipment. Dispenser leaks pose relatively lower risks, but specific directions (−Y direction) coupled with wind fields may drive significant hydrogen dispersion toward station buildings. (2) Southeast/south winds during spring/summer promote outward migration of hydrogen clouds, reducing overall station risk but causing localized accumulation near storage tanks. Conversely, north/northwest winds in autumn/winter intensify hydrogen concentrations in compressor and station building areas. (3) An empirical formula integrating climatic parameters, leakage conditions, and spatial coordinates was proposed to predict hydrogen concentration (error < 20%). This model provides theoretical and data support for optimizing sensor placement, dynamically adjusting ventilation strategies, and enhancing safety design in HRSs. Full article
Show Figures

Figure 1

28 pages, 930 KiB  
Review
Financial Development and Energy Transition: A Literature Review
by Shunan Fan, Yuhuan Zhao and Sumin Zuo
Energies 2025, 18(15), 4166; https://doi.org/10.3390/en18154166 - 6 Aug 2025
Abstract
Under the global context of climate governance and sustainable development, low-carbon energy transition has become a strategic imperative. As a critical force in resource allocation, the financial system’s impact on energy transition has attracted extensive academic attention. This paper presents the first comprehensive [...] Read more.
Under the global context of climate governance and sustainable development, low-carbon energy transition has become a strategic imperative. As a critical force in resource allocation, the financial system’s impact on energy transition has attracted extensive academic attention. This paper presents the first comprehensive literature review on energy transition research in the context of financial development. We develop a “Financial Functions-Energy Transition Dynamics” analytical framework to comprehensively examine the theoretical and empirical evidence regarding the relationship between financial development (covering both traditional finance and emerging finance) and energy transition. The understanding of financial development’s impact on energy transition has progressed from linear to nonlinear perspectives. Early research identified a simple linear promoting effect, whereas current studies reveal distinctly nonlinear and multidimensional effects, dynamically driven by three fundamental factors: economy, technology, and resources. Emerging finance has become a crucial driver of transition through technological innovation, risk diversification, and improved capital allocation efficiency. Notable disagreements persist in the existing literature on conceptual frameworks, measurement approaches, and empirical findings. By synthesizing cutting-edge empirical evidence, we identify three critical future research directions: (1) dynamic coupling mechanisms, (2) heterogeneity of financial instruments, and (3) stage-dependent evolutionary pathways. Our study provides a theoretical foundation for understanding the complex finance-energy transition relationship and informs policy-making and interdisciplinary research. Full article
Show Figures

Figure 1

41 pages, 4303 KiB  
Article
Land Use–Future Climate Coupling Mechanism Analysis of Regional Agricultural Drought Spatiotemporal Patterns
by Jing Wang, Zhenjiang Si, Tao Liu, Yan Liu and Longfei Wang
Sustainability 2025, 17(15), 7119; https://doi.org/10.3390/su17157119 - 6 Aug 2025
Abstract
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation [...] Read more.
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation model. Key methods included the Standardized Soil Moisture Index (SSMI), travel time theory for drought event identification and duration analysis, Mann–Kendall trend test, and the Pettitt change-point test to examine soil moisture dynamics from 2027 to 2100. The results indicate that the CMIP6 ensemble performs excellently in temperature simulations, with a correlation coefficient of R2 = 0.89 and a root mean square error of RMSE = 1.2 °C, compared to the observational data. The MMM-Best model also performs well in precipitation simulations, with R2 = 0.82 and RMSE = 15.3 mm, compared to observational data. Land use changes between 2000 and 2020 showed a decrease in forestland (−3.2%), grassland (−2.8%), and construction land (−1.5%), with an increase in water (4.8%) and unused land (2.7%). Under all emission scenarios, the SSMI values fluctuate with standard deviations of 0.85 (SSP1-2.6), 1.12 (SSP2-4.5), and 1.34 (SSP5-8.5), with the strongest drought intensity observed under SSP5-8.5 (minimum SSMI = −2.8). Drought events exhibited spatial and temporal heterogeneity across scenarios, with drought-affected areas ranging from 25% (SSP1-2.6) to 45% (SSP5-8.5) of the basin. Notably, abrupt changes in soil moisture under SSP5-8.5 occurred earlier (2045–2050) due to intensified land use change, indicating strong human influence on hydrological cycles. This study integrated the CMIP6 climate projections with high-resolution human activity data to advance drought risk assessment methods. It established a framework for assessing agricultural drought risk at the regional scale that comprehensively considers climate and human influences, providing targeted guidance for the formulation of adaptive water resource and land management strategies. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

23 pages, 3410 KiB  
Article
LinU-Mamba: Visual Mamba U-Net with Linear Attention to Predict Wildfire Spread
by Henintsoa S. Andrianarivony and Moulay A. Akhloufi
Remote Sens. 2025, 17(15), 2715; https://doi.org/10.3390/rs17152715 - 6 Aug 2025
Abstract
Wildfires have become increasingly frequent and intense due to climate change, posing severe threats to ecosystems, infrastructure, and human lives. As a result, accurate wildfire spread prediction is critical for effective risk mitigation, resource allocation, and decision making in disaster management. In this [...] Read more.
Wildfires have become increasingly frequent and intense due to climate change, posing severe threats to ecosystems, infrastructure, and human lives. As a result, accurate wildfire spread prediction is critical for effective risk mitigation, resource allocation, and decision making in disaster management. In this study, we develop a deep learning model to predict wildfire spread using remote sensing data. We propose LinU-Mamba, a model with a U-Net-based vision Mamba architecture, with light spatial attention in skip connections, and an efficient linear attention mechanism in the encoder and decoder to better capture salient fire information in the dataset. The model is trained and evaluated on the two-dimensional remote sensing dataset Next Day Wildfire Spread (NDWS), which maps fire data across the United States with fire entries, topography, vegetation, weather, drought index, and population density variables. The results demonstrate that our approach achieves superior performance compared to existing deep learning methods applied to the same dataset, while showing an efficient training time. Furthermore, we highlight the impacts of pre-training and feature selection in remote sensing, as well as the impacts of linear attention use in our model. As far as we know, LinU-Mamba is the first model based on Mamba used for wildfire spread prediction, making it a strong foundation for future research. Full article
Show Figures

Figure 1

20 pages, 1083 KiB  
Article
The Risk of Global Environmental Change to Economic Sustainability and Law: Help from Digital Technology and Governance Regulation
by Zhen Cao, Zhuiwen Lai, Muhammad Bilawal Khaskheli and Lin Wang
Sustainability 2025, 17(15), 7094; https://doi.org/10.3390/su17157094 - 5 Aug 2025
Abstract
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential [...] Read more.
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential in advancing economic sustainability has been less explored. How can these technologies mitigate environmental risks while promoting sustainable and equitable development, aligning with the Sustainable Development Goals? We analyze policy global environmental data from the World Bank and the United Nations, as well as literature reviews on digital interventions, artificial intelligence, and smart databases. Global environmental change presents economic stability and rule of law threats, and innovative governance responses are needed. This study evaluates the potential for digital technology to be leveraged to enhance climate resilience and regulatory systems and address key implementation, equity, and policy coherence deficits. Policy recommendations for aligning economic development trajectories with planetary boundaries emphasize that proactive digital governance integration is indispensable for decoupling growth from environmental degradation. However, fragmented governance and unequal access to technologies undermine scalability. Successful experiences demonstrate that integrated policies, combining incentives, data transparency, and multilateral coordination, deliver maximum economic and environmental co-benefits, matching digital innovation with good governance. We provide policymakers with an action plan to leverage technology as a multiplier of sustainability, prioritizing inclusive governance structures to address implementation gaps and inform legislation. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

19 pages, 4059 KiB  
Article
Vulnerability Assessment of Six Endemic Tibetan-Himalayan Plants Under Climate Change and Human Activities
by Jin-Dong Wei and Wen-Ting Wang
Plants 2025, 14(15), 2424; https://doi.org/10.3390/plants14152424 - 5 Aug 2025
Abstract
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed [...] Read more.
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed an improved Climate Niche Factor Analysis (CNFA) framework to assess the vulnerability of six representative alpine endemic herbaceous plants in this ecologically sensitive region under future climate changes. Our results show distinct spatial vulnerability patterns for the six species, with higher vulnerability in the western regions of the Tibetan-Himalayan region and lower vulnerability in the eastern areas. Particularly under high-emission scenarios (SSP5-8.5), climate change is projected to substantially intensify threats to these plant species, reinforcing the imperative for targeted conservation strategies. Additionally, we found that the current coverage of protected areas (PAs) within the species’ habitats was severely insufficient, with less than 25% coverage overall, and it was even lower (<7%) in highly vulnerable regions. Human activity hotspots, such as the regions around Lhasa and Chengdu, further exacerbate species vulnerability. Notably, some species currently classified as least concern (e.g., Stipa purpurea (S. purpurea)) according to the IUCN Red List exhibit higher vulnerability than species listed as near threatened (e.g., Cyananthus microphyllus (C. microphylla)) under future climate change. These findings suggest that existing biodiversity assessments, such as the IUCN Red List, may not adequately account for future climate risks, highlighting the importance of incorporating climate change projections into conservation planning. Our study calls for expanding and optimizing PAs, improving management, and enhancing climate resilience to mitigate biodiversity loss in the face of climate change and human pressures. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

19 pages, 1022 KiB  
Review
Leishmania in Texas: A Contemporary One Health Scoping Review of Vectors, Reservoirs, and Human Health
by Morgan H. Jibowu, Richard Chung, Nina L. Tang, Sarah Guo, Leigh-Anne Lawton, Brendan J. Sullivan, Dawn M. Wetzel and Sarah M. Gunter
Biology 2025, 14(8), 999; https://doi.org/10.3390/biology14080999 (registering DOI) - 5 Aug 2025
Abstract
Leishmaniasis, a vector-borne neglected tropical disease, affects over 6.2 million people globally. Case acquisition is increasingly recognized in the United States, and in Texas, most reported cases are locally acquired and speciated to Leishmania mexicana. We conducted a scoping literature review to [...] Read more.
Leishmaniasis, a vector-borne neglected tropical disease, affects over 6.2 million people globally. Case acquisition is increasingly recognized in the United States, and in Texas, most reported cases are locally acquired and speciated to Leishmania mexicana. We conducted a scoping literature review to systematically assess contemporary research on Leishmania in humans, animals, reservoir hosts, or vectors in Texas after 2000. Out of 22 eligible studies, the most prevalent themes were case reports, followed by studies on domestic animals, reservoirs, and vectors, with several studies bridging multiple disciplines. Climate change, urbanization, and habitat encroachment appear to be driving the northward expansion of L. mexicana, which is primarily attributed to shifts in the habitats of key vectors (Lutzomyia anthophora) and reservoirs (Neotoma spp.). Leishmania appears to be expanding into new areas, with potential for further spread. As ecological conditions evolve, strengthening surveillance and clinician awareness is crucial to understanding disease risk and improving early detection and treatment in affected communities. Full article
Show Figures

Figure 1

10 pages, 386 KiB  
Article
Certified Seed Use Enhances Yield Stability in Cereal Production Under Temperate Climate Conditions
by Patrycja Ojdowska, Tadeusz Oleksiak, Marcin Studnicki and Marzena Iwańska
Agronomy 2025, 15(8), 1886; https://doi.org/10.3390/agronomy15081886 - 5 Aug 2025
Abstract
In the face of growing demand for food and climate change, ensuring the stability and height of crop yields is becoming a key challenge for modern agriculture. One of the solutions supporting the sustainable development of crop production is the use of certified [...] Read more.
In the face of growing demand for food and climate change, ensuring the stability and height of crop yields is becoming a key challenge for modern agriculture. One of the solutions supporting the sustainable development of crop production is the use of certified seed. The aim of this study was to assess the impact of using certified seed on the level and stability of yields of three cereal species: winter wheat, winter triticale and spring barley, in temperate climate conditions. Data came from surveys conducted on over 8000 farms in six agroecoregions of Poland in 2021–2023. The analysis showed significantly higher yields on farms using certified seed for all species studied. Additionally, greater yield stability (lower values of Shukla variance and Wricke ecovalence) was noted in the case of using certified seeds, especially in region IV. This indicates the positive impact of certified seeds (e.g., genetic purity, health, and vigor) on the efficiency and resilience of agricultural systems. This phenomenon is of particular importance in the context of climate change and may be an important element of risk management strategies in agriculture. Full article
(This article belongs to the Special Issue Genotype × Environment Interactions in Crop Production—2nd Edition)
Show Figures

Figure 1

14 pages, 5448 KiB  
Article
A Study of Climate-Sensitive Diseases in Climate-Stressed Areas of Bangladesh
by Ahammadul Kabir, Shahidul Alam, Nusrat Jahan Tarin, Shila Sarkar, Anthony Eshofonie, Mohammad Ferdous Rahman Sarker, Abul Kashem Shafiqur Rahman and Tahmina Shirin
Climate 2025, 13(8), 166; https://doi.org/10.3390/cli13080166 - 5 Aug 2025
Abstract
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of [...] Read more.
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of data on climate-sensitive diseases and related hospital visits in these areas. This study explored the prevalence of such diseases using the Delphi method through focus group discussions with 493 healthcare professionals from 153 hospitals in 156 upazilas across 21 districts and ten zones. Participants were selected by district Civil Surgeons. Key climate-sensitive diseases identified included malnutrition, diarrhea, pneumonia, respiratory infections, typhoid, skin diseases, hypertension, cholera, mental health disorders, hepatitis, heat stroke, and dengue. Seasonal surges in hospital visits were noted, influenced by factors like extreme heat, air pollution, floods, water contamination, poor sanitation, salinity, and disease vectors. Some diseases were zone-specific, while others were widespread. Regions with fewer hospital visits often had higher disease burdens, indicating under-reporting or lack of access. The findings highlight the need for area-specific adaptation strategies and updates to the Health National Adaptation Plan. Strengthening resilience through targeted investment and preventive measures is crucial to reducing health risks from climate change. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

30 pages, 1235 KiB  
Article
Assessing Rainfall and Temperature Trends in Central Ethiopia: Implications for Agricultural Resilience and Future Climate Projections
by Teshome Girma Tesema, Nigussie Dechassa Robi, Kibebew Kibret Tsehai, Yibekal Alemayehu Abebe and Feyera Merga Liben
Sustainability 2025, 17(15), 7077; https://doi.org/10.3390/su17157077 - 5 Aug 2025
Abstract
In the past three decades, localized research has highlighted shifts in rainfall patterns and temperature trends in central Ethiopia, a region vital for agriculture and economic activities and heavily dependent on climate conditions to sustain livelihoods and ensure food security. However, comprehensive analyses [...] Read more.
In the past three decades, localized research has highlighted shifts in rainfall patterns and temperature trends in central Ethiopia, a region vital for agriculture and economic activities and heavily dependent on climate conditions to sustain livelihoods and ensure food security. However, comprehensive analyses of long-term climate data remain limited for this area. Understanding local climate trends is essential for enhancing agricultural resilience in the study area, a region heavily dependent on rainfall for crop production. This study analyzes historical rainfall and temperature patterns over the past 30 years and projects future climate conditions using downscaled CMIP6 models under SSP4.5 and SSP8.5 scenarios. Results indicate spatial variability in rainfall trends, with certain areas showing increasing rainfall while others experience declines. Temperature has shown a consistent upward trend across all seasons, with more pronounced warming during the short rainy season (Belg). Climate projections suggest continued warming and moderate increases in annual rainfall, particularly under SSP8.5 by the end of the 21st century. It is concluded that both temperature and rainfall are projected to increase in magnitude by 2080, with higher Sen’s slope values compared to earlier periods, indicating a continued upward trend. These findings highlight potential breaks in agricultural calendars, such as shifts in rainfall onset and cessation, shortened or extended growing seasons, and increased risk of temperature-induced stress. This study highlights the need for localized adaptation strategies to safeguard agriculture production and enhance resilience in the face of future climate variability. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

26 pages, 1697 KiB  
Review
Integrating Climate Risk in Cultural Heritage: A Critical Review of Assessment Frameworks
by Julius John Dimabayao, Javier L. Lara, Laro González Canoura and Steinar Solheim
Heritage 2025, 8(8), 312; https://doi.org/10.3390/heritage8080312 - 4 Aug 2025
Abstract
Climate change poses an escalating threat to cultural heritage (CH), driven by intensifying climate-related hazards and systemic vulnerabilities. In response, risk assessment frameworks and methodologies (RAFMs) have emerged to evaluate and guide adaptation strategies for safeguarding heritage assets. This study conducts a state-of-the-art [...] Read more.
Climate change poses an escalating threat to cultural heritage (CH), driven by intensifying climate-related hazards and systemic vulnerabilities. In response, risk assessment frameworks and methodologies (RAFMs) have emerged to evaluate and guide adaptation strategies for safeguarding heritage assets. This study conducts a state-of-the-art (SotA) review of 86 unique RAFMs using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic approach to assess their scope, methodological rigor, alignment with global climate and disaster risk reduction (DRR) frameworks, and consistency in conceptual definitions of hazard, exposure, and vulnerability. Results reveal a growing integration of Intergovernmental Panel on Climate Change (IPCC)-based climate projections and alignment with international policy instruments such as the Sendai Framework and United Nations Sustainable Development Goals (UN SDGs). However, notable gaps persist, including definitional inconsistencies, particularly in the misapplication of vulnerability concepts; fragmented and case-specific methodologies that challenge comparability; and limited integration of intangible heritage. Best practices include participatory stakeholder engagement, scenario-based modeling, and incorporation of multi-scale risk typologies. This review advocates for more standardized, interdisciplinary, and policy-aligned frameworks that enable scalable, culturally sensitive, and action-oriented risk assessments, ultimately strengthening the resilience of cultural heritage in a changing climate. Full article
Show Figures

Figure 1

Back to TopTop