Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,107)

Search Parameters:
Keywords = climate policy support

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5621 KB  
Article
Driving Mechanisms of Blue–Green Infrastructure in Enhancing Urban Sustainability: A Spatial–Temporal Assessment from Zhenjiang, China
by Pengcheng Liu, Cheng Lei, Haobing Wang, Junxue Zhang, Sisi Xia and Jun Cao
Land 2026, 15(2), 233; https://doi.org/10.3390/land15020233 - 29 Jan 2026
Abstract
(1) Background: Under the dual pressures of global climate change and rapid urbanization, blue–green infrastructure as a nature-based solution is crucial for enhancing urban sustainability. However, there is still a significant cognitive gap regarding the synergy mechanism between its blue and green components [...] Read more.
(1) Background: Under the dual pressures of global climate change and rapid urbanization, blue–green infrastructure as a nature-based solution is crucial for enhancing urban sustainability. However, there is still a significant cognitive gap regarding the synergy mechanism between its blue and green components and its nonlinear combined impact on sustainability. (2) Method: To fill this gap, this study takes Zhenjiang, a national sponge pilot city in China, as a case and constructs a comprehensive assessment framework. The framework combines multi-source spatio-temporal big data (remote sensing images, point of interest data, mobile phone signaling data) with spatial analysis techniques (geodetectors, Getis-Ord Gi*) to quantify the synergistic effects of blue–green infrastructure on environmental, economic, and social sustainability. (3) Results: The main findings include the following: (1) urban sustainability presents a spatial differentiation pattern of “high in the center, low in the periphery, and multi-core”, and there is a significant positive spatial correlation with the distribution of blue–green infrastructure. (2) The economic dimension, especially daytime population vitality, contributes the most to overall sustainability. (3) Crucially, the co-configuration of sponge facility density and park facility density was identified as the most influential driving mechanism (q = 0.698). In addition, the interaction between the blue infrastructure and the green sponge facilities showed obvious nonlinear enhancement characteristics. Based on spatial matching analysis, the study area was divided into three priority intervention zones: high, medium, and low. (4) Conclusions: This study confirms that it is crucial to view blue–green infrastructure as an interrelated collaborative system. The findings deepen the theoretical understanding of the synergistic empowerment mechanism of blue–green infrastructure and provide scientifically based and actionable policy support for the precise planning of ecological spaces in high-density urbanized areas. Full article
Show Figures

Figure 1

21 pages, 6711 KB  
Article
Legume-Based Rotations Reduce Cereal Yield Loss and Water Use to Enhance System Yield Resilience in Response to Climate Change
by Bo Wang, Xiaolin Yang, Jos van Dam, Tiegui Nan, Taisheng Du, Shaozhong Kang and Coen Ritsema
Agriculture 2026, 16(3), 335; https://doi.org/10.3390/agriculture16030335 - 29 Jan 2026
Abstract
Climate change significantly challenges efforts to maintain and improve crop production worldwide. Diversified crop rotations have emerged as a promising way to adapt cropping systems and bolster food security under changing climate conditions; however, robust empirical evidence remains limited. This study evaluates the [...] Read more.
Climate change significantly challenges efforts to maintain and improve crop production worldwide. Diversified crop rotations have emerged as a promising way to adapt cropping systems and bolster food security under changing climate conditions; however, robust empirical evidence remains limited. This study evaluates the long-term performance of diversified crop rotations under future climate scenarios in the North China Plain via an 80-year scenario analysis (2020–2100) spanning three shared socioeconomic pathways (SSPs:126, 370, 585). The calibrated and validated SWAP (Soil–Water–Atmosphere–Plant)–WOFOST (WOrld FOod STudies) model simulated water consumption and yield. Sustainability indices were employed to assess the cereal yield stability and compensation effect to yield loss caused by climate change. The study compares the conventional winter wheat–summer maize rotation (WM) with two legume-based rotations: soybean–WM (S–WM) and peanut–WM (P–WM). The results indicate that, under all three climate scenarios, the two legume-based rotations reduced annual water consumption by 7–9%, maintained system economic equivalent yields with one crop less, and improved water productivity by up to 10%. Future climate change decreased cereal yields by 9–26% across all rotations compared to historical baselines. However, the two legume-based rotations showed a significant residual effect, increasing subsequent cereal yields by 9–14% over the conventional WM under all scenarios. Consequently, the legume-based rotations provided a 25–51% yield compensation. Additionally, these rotations improved the sustainable yield index and system resilience and reduced cereal yield variance under future climate scenarios compared to the more vulnerable WM. This study demonstrates that diversified crop rotations are a viable strategy to mitigate negative climate impacts. The study provides critical insights for policy-makers, supporting crop-rotation diversification as a core component of risk-reduction strategies to mitigate future climate change impacts. Full article
(This article belongs to the Section Agricultural Systems and Management)
39 pages, 3597 KB  
Review
Mapping the Nexus of Climate Resilience, Investment, Land Use, and Energy Justice in Energy Transition Regions: A Review
by Sofia Pavlidou, Lefteris Topaloglou, Despoina Kanteler, Efthimios Tagaris and Rafaella-Eleni P. Sotiropoulou
Energies 2026, 19(3), 704; https://doi.org/10.3390/en19030704 - 29 Jan 2026
Abstract
Energy transition regions (ETRs) face simultaneous pressures as decarbonisation policies intersect climate hazards, land-use constraints, and economic uncertainty. Although research on renewable energy deployment, climate vulnerability, spatial planning, and investment behaviour has expanded, these topics often remain disconnected, limiting their usefulness for guiding [...] Read more.
Energy transition regions (ETRs) face simultaneous pressures as decarbonisation policies intersect climate hazards, land-use constraints, and economic uncertainty. Although research on renewable energy deployment, climate vulnerability, spatial planning, and investment behaviour has expanded, these topics often remain disconnected, limiting their usefulness for guiding regional energy strategies. This review applies a structured, PRISMA-informed (but not protocol-registered) search and screening process, combining bibliometric mapping with qualitative thematic synthesis. In total, 231 peer-reviewed studies published between 2015 and 2025 were analysed to identify how climate-related risks, financial conditions, and territorial constraints jointly influence energy system choices in ETRs. Four major themes emerge: climate risk and infrastructure vulnerability, investment dynamics and policy stability, land-use governance and siting conflicts, and renewable energy system integration. Across these areas, common challenges include the impact of extreme events on system reliability, the influence of policy uncertainty on capital flows, and the role of land scarcity in shaping technology mixes. To link these dimensions, this study proposes the Resilience–Investment–Land Nexus (RILN), a framework that describes how climate exposure, investment risk, spatial suitability, and social acceptance interact to shape transition pathways. The results highlight the need for climate-informed planning, stable regulatory environments, and stronger spatial decision-support tools. It also identifies gaps in integrating climate risk, land-use modelling, and investment analysis and offers directions for future work on resilient, region-specific energy transitions. Full article
Show Figures

Figure 1

25 pages, 2783 KB  
Article
Ecological Drivers of Vertebrate Richness and Implications for Inland Wetland Survey in Korea
by Yein Lee, Minkyung Kim, Jae Geun Kim and Sangdon Lee
Animals 2026, 16(3), 419; https://doi.org/10.3390/ani16030419 - 29 Jan 2026
Abstract
Wetlands have been recognized as nature-based solutions to the climate crisis. This study evaluates the state of standardization in nationwide inland wetland survey datasets and analyzes terrestrial vertebrate patterns by integrating datasets with public environmental data. Species richness data for amphibians/reptiles (432 wetlands), [...] Read more.
Wetlands have been recognized as nature-based solutions to the climate crisis. This study evaluates the state of standardization in nationwide inland wetland survey datasets and analyzes terrestrial vertebrate patterns by integrating datasets with public environmental data. Species richness data for amphibians/reptiles (432 wetlands), birds (1183 wetlands), and mammals (72 wetlands) were compiled from 134 reports published between 2000 and 2021. Using generalized linear models (GLMs) and generalized additive models (GAMs), we assessed how 15 explanatory variables (climate, topography, wetland information, land use, and water quality) relate to species richness. Model families were chosen for each taxonomic group, and variables were selected using the Akaike information criterion (AIC) and ecological plausibility. Deviance explained was 55.5% for amphibians/reptiles, 60.1% for birds, and 52.4% for mammals. Wetland area and Normalized Difference Vegetation Index (NDVI) were positively associated with species richness across all groups. Despite the large volume of survey data, inconsistent reporting formats and limited metadata constrain longitudinal and time series analyses. Standardized protocols and metadata management are therefore needed to build a systematic national database that can support wetland ecological modeling and conservation policy. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

30 pages, 18552 KB  
Article
From Improvement to Rebound: Evolution Trajectory, Turning Point, and Dominant Factors of Desertification Sensitivity in Ordos over the Past 25 Years
by Meijuan Zhang, Qin Qiao, Wenting Zhang, Guomei Shao and Yongwei Han
Sustainability 2026, 18(3), 1312; https://doi.org/10.3390/su18031312 - 28 Jan 2026
Abstract
The prevention and control of desertification in northern China is currently in a critical stage of transitioning from large-scale governance to precise adaptation. Identifying potential risk areas during the ecological restoration process is a scientific prerequisite for achieving long-term governance. This study focuses [...] Read more.
The prevention and control of desertification in northern China is currently in a critical stage of transitioning from large-scale governance to precise adaptation. Identifying potential risk areas during the ecological restoration process is a scientific prerequisite for achieving long-term governance. This study focuses on the typical ecologically fragile area of Ordos City, where high-resolution grazing pressure grid data and a night-time light index were innovatively integrated into the assessment system to develop a desertification sensitivity evaluation framework that couples climatic, vegetative, soil, and human activity (CVSH) factors. Compared to linear models, the CVSH framework enhances dynamic assessment accuracy by coupling human activity indicators, particularly addressing the policy lag effect inherent in PSR models. The study systematically tracked the temporal and spatial differentiation process of desertification sensitivity from 2000 to 2024, finding that the spatial pattern shows a significant “the west is high while the east is low” concentration, and the time series has experienced a phased turning point of “first suppression then growth”. Mechanism analysis indicates that climate aridification and vegetation degradation are the dominant stress factors, while intense human activities have significantly exacerbated the vulnerability of local ecosystems through nonlinear interactions, leading to the re-expansion of high-sensitivity zones after 2018, with their area proportion increasing sharply from 15.52% to 30.07%. This study reveals the fragility of ecological engineering effectiveness and the complexity of risk evolution under the combined influence of climate fluctuations and human interference, providing a direct scientific picture and decision support for achieving differentiated ecological risk management and sustainable land management in different regions. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
21 pages, 2101 KB  
Review
Organic Pig Farming in Europe: Pathways, Performance, and the United Nations Sustainable Development Goals (SDGs) Agenda
by Vasileios G. Papatsiros, Konstantina Kamvysi, Lampros Fotos, Nikolaos Tsekouras, Eleftherios Meletis, Maria Spilioti, Dimitrios Gougoulis, Terpsichori Trachalaki, Anastasia Tsatsa and Georgios I. Papakonstantinou
Animals 2026, 16(3), 384; https://doi.org/10.3390/ani16030384 - 26 Jan 2026
Viewed by 285
Abstract
Organic pig farming in Europe is endorsed as a promising route to more sustainable livestock production, but its ultimate contribution to the United Nations (UN) Sustainable Development Goals (SDGs) is a contested matter. This study takes a critical perspective on the potential of [...] Read more.
Organic pig farming in Europe is endorsed as a promising route to more sustainable livestock production, but its ultimate contribution to the United Nations (UN) Sustainable Development Goals (SDGs) is a contested matter. This study takes a critical perspective on the potential of organic pig farming to contribute to SDGs that may include SDG 2 (Zero Hunger), SDG 3 (Good Health and Well-being), SDG 8 (Decent Work and Economic Growth), SDG 12 (Responsible Consumption and Production), SDG 13 (Climate Action), and SDG 15 (Life on Land). Organic farming systems delivered better animal welfare outcomes and positive benefits for biodiversity, soil health, and rural employment. Continued improvements in sourcing feed, greenhouse gas emissions per unit of product, animal health, and market could improve their contributions to agricultural sustainability. This study concludes that organic pig farming does not represent a guarantee of sustainable livestock production, but it could represent credible sources of sustainable livestock innovation if sufficient policy, practice, cost accounting, and sustainable metrics are organized together to support organic systems. Organic pig farming focused on innovation and policy support can make it a role model for the transition of European livestock sector towards the 2030 Agenda. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

14 pages, 259 KB  
Review
The Role of Plant-Based Diets for Cancer Survivors and Planetary Health
by Kaitlyn H. Kwok, Thomas E. Hedley and Caroline J. Mariano
Curr. Oncol. 2026, 33(2), 72; https://doi.org/10.3390/curroncol33020072 - 26 Jan 2026
Viewed by 100
Abstract
Purpose: A growing body of evidence has emerged on the role of diet for health outcomes in cancer survivors. Patients transitioning to post-treatment care may seek guidance on dietary changes, and summaries of the evidence for dietary patterns recommended by guidelines can support [...] Read more.
Purpose: A growing body of evidence has emerged on the role of diet for health outcomes in cancer survivors. Patients transitioning to post-treatment care may seek guidance on dietary changes, and summaries of the evidence for dietary patterns recommended by guidelines can support providers in effectively answering questions. Increasing evidence suggests that food choices impact planetary health. Plant-based diets are one eating pattern that may improve patient outcomes and planetary health. Methods: We performed a literature review and used narrative reporting to summarize evidence for plant-based diets and offer specific guidance for breast, colorectal, and prostate cancer patients who are post-diagnosis. Specifically, we reviewed impacts on recurrence, all-cause, and cancer-specific mortality. Results: Increased fibre intake by consuming foods like fruits, vegetables, and whole grains is associated with a decreased risk of breast cancer-specific and all-cause mortality, as well as reduced colon cancer-specific mortality. Replacing refined grains with whole grains is associated with improved disease-free survival for colon cancer survivors. Higher tree nut consumption is associated with improved disease-free survival for breast, colorectal, and prostate cancer survivors. Soy is safe to consume for breast cancer survivors and is associated with a reduced risk of recurrence. Conversely, more Western dietary patterns high in processed meat intake are associated with an increased risk of colon cancer recurrence and prostate cancer mortality. There are also environmental benefits of a shift towards plant-based diets to address the adverse health outcomes associated with climate change and its potential impact on cancer care delivery as previously outlined in a 2024 ASCO policy statement. Conclusions: Based on the best existing evidence, providers can suggest that patients consider plant-based dietary patterns in the post-treatment phase of their cancer care to support health outcomes and planetary health. Full article
(This article belongs to the Section Palliative and Supportive Care)
Show Figures

Graphical abstract

20 pages, 730 KB  
Article
Improving the Energy Performance of Residential Buildings Through Solar Renewable Energy Systems and Smart Building Technologies: The Cyprus Example
by Oğulcan Vuruşan and Hassina Nafa
Sustainability 2026, 18(3), 1195; https://doi.org/10.3390/su18031195 - 24 Jan 2026
Viewed by 184
Abstract
Residential buildings in Mediterranean regions remain major contributors to energy consumption and greenhouse gas emissions. Existing studies often assess renewable energy technologies or innovative building solutions in isolation, with limited attention to their combined performance across different residential typologies. This study evaluates the [...] Read more.
Residential buildings in Mediterranean regions remain major contributors to energy consumption and greenhouse gas emissions. Existing studies often assess renewable energy technologies or innovative building solutions in isolation, with limited attention to their combined performance across different residential typologies. This study evaluates the integrated impact of solar renewable energy systems and smart building technologies on the energy performance of residential buildings in Cyprus. A typology-based methodology is applied to three representative residential building types—detached, semi-detached, and apartment buildings—using dynamic energy simulation and scenario analysis. Results show that solar photovoltaic systems achieve higher standalone reductions than solar thermal systems, while smart building technologies significantly enhance operational efficiency and photovoltaic self-consumption. Integrated solar–smart scenarios achieve up to 58% reductions in primary energy demand and 55% reductions in CO2 emissions, and 25–30 percentage-point increases in PV self-consumption, enabling detached and semi-detached houses to approach national nearly zero-energy building (nZEB) performance thresholds. The study provides climate-specific, quantitative evidence supporting integrated solar–smart strategies for Mediterranean residential buildings and offers actionable insights for policy-making, design, and sustainable residential development. Full article
Show Figures

Figure 1

32 pages, 1831 KB  
Systematic Review
A Systematic Review of the Constraints, Food, and Income Contribution of Indigenous Leafy Vegetables by Small-Scale Farming Households in Sub-Saharan Africa
by Nkosingimele Ndwandwe, Melusi Sibanda and Nolwazi Zanele Khumalo
Sustainability 2026, 18(3), 1187; https://doi.org/10.3390/su18031187 - 24 Jan 2026
Viewed by 101
Abstract
Food security and income generation remain a critical issue for small-scale farming households in Sub-Saharan Africa (SSA) due to population growth, climate change, and market instability. Indigenous leafy vegetables (ILVs) offer high nutritional value and have the capability to mitigate food insecurity but [...] Read more.
Food security and income generation remain a critical issue for small-scale farming households in Sub-Saharan Africa (SSA) due to population growth, climate change, and market instability. Indigenous leafy vegetables (ILVs) offer high nutritional value and have the capability to mitigate food insecurity but are underutilized due to social stigma. This review aims to systematically analyze the food and income contribution of cultivation and utilization of ILVs by small-scale farming households in Sub-Saharan Africa. This review analyses the literature on the role of ILV cultivation in enhancing food security and household income over the past two decades. A systematic search across five databases was conducted and identified 53 relevant studies. Findings indicate that ILVs contribute significantly to household nutrition and income through consumption and surplus sales. However, ILV cultivation faces barriers such as climate change, pest infestations, land degradation, water scarcity, insecure land tenure, limited agricultural training, poor communication networks, and restricted market access. Policy interventions are necessary to support small-scale farmers in ILV cultivation by providing agricultural extension services, promoting sustainable farming practices, and integrating ILVs into food security strategies. Further research should examine policy frameworks and supply chain mechanisms to enhance farmer participation and economic benefits from ILV production. Full article
Show Figures

Figure 1

34 pages, 1419 KB  
Article
Load-Dependent Shipping Emission Factors Considering Alternative Fuels, Biofuels and Emission Control Technologies
by Achilleas Grigoriadis, Theofanis Chountalas, Evangelia Fragkou, Dimitrios Hountalas and Leonidas Ntziachristos
Atmosphere 2026, 17(2), 122; https://doi.org/10.3390/atmos17020122 - 23 Jan 2026
Viewed by 139
Abstract
Shipping is a high-energy-intensive sector and a major source of climate-relevant and harmful air pollutant emissions. In response to growing environmental concerns, the sector has been subject to increasingly stringent regulations, promoting the uptake of alternative fuels and emission control technologies. Accurate and [...] Read more.
Shipping is a high-energy-intensive sector and a major source of climate-relevant and harmful air pollutant emissions. In response to growing environmental concerns, the sector has been subject to increasingly stringent regulations, promoting the uptake of alternative fuels and emission control technologies. Accurate and diverse emission factors (EFs) are critical for quantifying shipping’s contribution to current emission inventories and projecting future developments under different policy scenarios. This study advances the development of load-dependent EFs for ships by incorporating alternative fuels, biofuels and emission control technologies. The methodology combines statistical analysis of data from an extensive literature review with newly acquired on-board emission measurements, including two-stroke propulsion engines and four-stroke auxiliary units. To ensure broad applicability, the updated EFs are expressed as functions of engine load and are categorized by engine and fuel type, covering conventional marine fuels, liquified natural gas, methanol, ammonia and biofuels. The results provide improved resolution of shipping emissions and insights into the role of emission control technologies, supporting robust, up-to-date emission models and inventories. This work contributes to the development of effective strategies for sustainable maritime transport and supports both policymakers and industry stakeholders in their decarbonization efforts. Full article
(This article belongs to the Special Issue Air Pollution from Shipping: Measurement and Mitigation)
Show Figures

Figure 1

16 pages, 313 KB  
Article
Eco-Friendly Trade: Can It Be the Pathway to Environmental Sustainability in Asia?
by Hasan Can Yildirim, Huseyin Ozdeser, Mehdi Seraj and Abdulkareem Alhassan
Sustainability 2026, 18(3), 1166; https://doi.org/10.3390/su18031166 - 23 Jan 2026
Viewed by 110
Abstract
The quest for environmental sustainability continues to gain prominence, but the environmental goods trade-environmental sustainability nexus has not received adequate research attention. Therefore, this study evaluates the impact of environmental goods trade on environmental performance. Environmental goods (EGs) are defined as products designed [...] Read more.
The quest for environmental sustainability continues to gain prominence, but the environmental goods trade-environmental sustainability nexus has not received adequate research attention. Therefore, this study evaluates the impact of environmental goods trade on environmental performance. Environmental goods (EGs) are defined as products designed to support environmental protection and climate-change mitigation and are identified using the IMF environmental goods classification based on the WTO–OECD list, ensuring cross-country comparability. Using second-generation panel time series methods and the Augmented Anderson–Hsiao (AAH) estimation technique with a sample of 47 Asian countries over the period 1994–2021, this study provides interesting findings and insightful policy implications. First, the findings confirm the EKC Hypothesis in all the models. Second, the results support the pollution halo hypothesis because trade openness has a significant negative impact on the ecological footprint in all the models. This implies that trade openness reduces environmental degradation. Also, the result revealed that an increase in ecological goods reduces ecological footprint in production, consumption, and distribution, as well as imports and exports, based on ecological footprint in Asia. Therefore, we conclude that environmental goods trade enhances environmental sustainability. Full article
38 pages, 3712 KB  
Article
A Framework for Profitability-Focused Land Use Transitions Between Agriculture and Forestry: A Case Study of Latvia
by Kristine Bilande, Una Diana Veipane, Aleksejs Nipers and Irina Pilvere
Land 2026, 15(2), 204; https://doi.org/10.3390/land15020204 - 23 Jan 2026
Viewed by 185
Abstract
Understanding when and where to shift land from agriculture to forestry is essential for designing sustainable land use strategies that align with climate, biodiversity, and rural development goals. However, traditional profitability comparisons rely on long-term discounting, which is highly sensitive to assumptions and [...] Read more.
Understanding when and where to shift land from agriculture to forestry is essential for designing sustainable land use strategies that align with climate, biodiversity, and rural development goals. However, traditional profitability comparisons rely on long-term discounting, which is highly sensitive to assumptions and often misaligned with the shorter-term decision-making horizons that are relevant for policymakers. This study presents a deposit-based framework that interprets annual timber biomass growth as accumulating economic value, enabling direct, per-hectare comparisons with yearly agricultural profits. The framework integrates parcel-level spatial data, land quality indicators, national statistics, and expert inputs to produce high-resolution maps of annual profitability for both agriculture and forestry. Applied to the case of Latvia, the results show strong spatial variation in agricultural returns, particularly in low-quality areas where profits are marginal or negative. By contrast, forestry provides more stable, though modest, economic gains across a wide range of biophysical conditions. These insights help identify where afforestation becomes a financially viable land use alternative. The framework is designed to be transferable to other regions by substituting local data on land quality, prices and growth. It complements policy instruments such as performance-based CAP payments and afforestation support, offering a future-oriented tool for spatially explicit and economically grounded land use planning. Full article
Show Figures

Figure 1

33 pages, 22017 KB  
Article
Mapping Grassland Suitability Through GIS and AHP for Sustainable Management: A Case Study of Hunedoara County, Romania
by Luminiţa L. Cojocariu, Nicolae Marinel Horablaga, Cosmin Alin Popescu, Adina Horablaga, Monica Bella-Sfîrcoci and Loredana Copăcean
Sustainability 2026, 18(3), 1155; https://doi.org/10.3390/su18031155 - 23 Jan 2026
Viewed by 123
Abstract
Grasslands represent an essential resource for rural economies and for the provision of ecosystem services, yet they are increasingly affected by anthropogenic pressures, functional land-use changes, and institutional constraints. This study develops a geospatial decision-support framework for assessing grassland suitability in Hunedoara County, [...] Read more.
Grasslands represent an essential resource for rural economies and for the provision of ecosystem services, yet they are increasingly affected by anthropogenic pressures, functional land-use changes, and institutional constraints. This study develops a geospatial decision-support framework for assessing grassland suitability in Hunedoara County, Romania, by integrating the Analytic Hierarchy Process (AHP) and Weighted Overlay Analysis (WOA) within a GIS environment. The assessment is based on nine criteria thematically grouped into three dimensions: (A) physical-geographical, including topographic suitability, climatic pressure, and hydrological risk exposure; (B) ecological and conservation-related, reflected by ecological conservation value, ecological carrying capacity, and the anthropic pressure index; and (C) socio-economic and functional, represented by spatial accessibility, recreational value, and policy support mechanisms. Suitability is defined as the integrated capacity of grasslands to sustain productive and multifunctional uses compatible with ecological conservation and the existing policy framework. Results indicate that 0.43% of the grassland area exhibits very high suitability (Class 1), 44.51% high suitability (Class 2), and 54.75% moderate suitability (Class 3), while unfavorable areas account for only 0.31% of the total (Class 4). The proposed methodology is reproducible and transferable, providing support for prioritizing management interventions, agri-environmental payments, and rural planning in mountainous and hilly regions. Full article
Show Figures

Figure 1

23 pages, 687 KB  
Article
From Policy to Progress: How Stringent Environmental Policies Drive Global Energy Transitions
by Yongheng Li and Sisi Meng
Climate 2026, 14(2), 30; https://doi.org/10.3390/cli14020030 - 23 Jan 2026
Viewed by 123
Abstract
In pursuit of global climate goals and sustainable development, countries have adopted a wide range of environmental policy instruments. This study examines the relationship between environmental policy stringency (EPS) and environmental outcomes, measured by carbon intensity (CI) and renewable energy intensity (REI), in [...] Read more.
In pursuit of global climate goals and sustainable development, countries have adopted a wide range of environmental policy instruments. This study examines the relationship between environmental policy stringency (EPS) and environmental outcomes, measured by carbon intensity (CI) and renewable energy intensity (REI), in 16 G20 countries from 1990 to 2020. The empirical findings reveal that more stringent environmental policy is a significant predictor of reduced CI and increased REI, although effects vary by policy type, time horizon, and country group. A novel sub-index-level analysis reveals that market-based incentive instruments, particularly trading schemes on CO2 emissions and renewable energy, as well as technology support instruments, particularly wind and solar initiatives, exhibit the strongest and most robust effects. Emerging economies generally display greater responsiveness to policy interventions than advanced economies. By identifying which specific policy instruments are most effective across different development contexts, this study provides actionable insights for designing targeted climate policies that support both energy transition and sustainable development pathways. Full article
(This article belongs to the Special Issue Sustainable Development Pathways and Climate Actions)
Show Figures

Figure 1

30 pages, 3470 KB  
Article
Integrated Coastal Zone Management in the Face of Climate Change: A Geospatial Framework for Erosion and Flood Risk Assessment
by Theodoros Chalazas, Dimitrios Chatzistratis, Valentini Stamatiadou, Isavela N. Monioudi, Stelios Katsanevakis and Adonis F. Velegrakis
Water 2026, 18(2), 284; https://doi.org/10.3390/w18020284 - 22 Jan 2026
Viewed by 85
Abstract
This study presents a comprehensive geospatial framework for assessing coastal vulnerability and ecosystem service distribution along the Greek coastline, one of the longest and most diverse in Europe. The framework integrates two complementary components: a Coastal Erosion Vulnerability Index applied to all identified [...] Read more.
This study presents a comprehensive geospatial framework for assessing coastal vulnerability and ecosystem service distribution along the Greek coastline, one of the longest and most diverse in Europe. The framework integrates two complementary components: a Coastal Erosion Vulnerability Index applied to all identified beach units, and Coastal Flood Risk Indexes focused on low-lying and urbanized coastal segments. Both indices draw on harmonized, open-access European datasets to represent environmental, geomorphological, and socio-economic dimensions of risk. The Coastal Erosion Vulnerability Index is developed through a multi-criteria approach that combines indicators of physical erodibility, such as historical shoreline retreat, projected erosion under climate change, offshore wave power, and the cover of seagrass meadows, with socio-economic exposure metrics, including land use composition, population density, and beach-based recreational values. Inclusive accessibility for wheelchair users is also integrated to highlight equity-relevant aspects of coastal services. The Coastal Flood Risk Indexes identify flood-prone areas by simulating inundation through a novel point-based, computationally efficient geospatial method, which propagates water inland from coastal entry points using Extreme Sea Level (ESL) projections for future scenarios, overcoming the limitations of static ‘bathtub’ approaches. Together, the indices offer a spatially explicit, scalable framework to inform coastal zone management, climate adaptation planning, and the prioritization of nature-based solutions. By integrating vulnerability mapping with ecosystem service valuation, the framework supports evidence-based decision-making while aligning with key European policy goals for resilience and sustainable coastal development. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

Back to TopTop